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ABSTRACT

The oscillations of a drop moving in a background fluid medium have been
studied by including the contributions from the viscosities of the two phases, the
inertial effects caused by the drop motion and the deformation of the drop.  The
nonspherical shape of the drop alters the expression for frequency of a spherical
drop by including correction terms explaining many of the experimental resulis on
highty deformed drops.  The viscous tevms split the mode of frequency info two-
cne lower and the other higher than Lamb's. Experimenial evidence exists for
both the lower ana the higher frequency modes. If the size of the drop is smaller

than a certain critical value, ( ~{” vAZ/T, P the density, ; the kinematic viscosity
and T winterfacial tension between the two phases) the periurbations on the drop
surface will be damped aperiodically. This critical size which is very small
(~10"%cm.) jor a system like a liquid drop in free space, becomes prominent
(~ a few mm) for a fluid Jrop in a dense viscous liguid medium  This can be a
possible explanation for the nonobservance of oscillations in highly dense viscous
systems.  Detailea calculations are given in the limiting cases (¢’ > > 1, ¢’ ~1,
o' < < 1) of an oscitlation parameter o' (=o af/U, ¢ being the oscillation
Jrequency, a the radius of rhe drop and U the terminal velodity of the drop in the
fluid medium).

1. INTRODUCTION

An analysis of the motion of drops and bubbles is vital for a better
understanding of certain physico-chemical processes. For example, the
oscillations of the drop contribute 1o such interfacial phencmena like heat
and mass transfer. But a complete theoretical study of the oscillations is
hampered by inadequate knowledge about the shape of the drop and the
contributions from the inertial effects caused by the drop motion, the
interfacial tension and the two phase parameters like the viscosities.

Lamb! studied the limiting case of the oscillations of a spherical liguid
drep at rest in an inviscid fluid. When the surface disturbance can be
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exprossed in terms of Legendre polynomials, he found that the frequency of
oscillation is given by the expression

. LU=DI+DUDT
o3 =LUTRMI DT L

" ; il
[d+-De+iela

where ?’ is the density of the drop phase, £ the density of the external phase,
a is the drop radius and the mode of frequency / is related to the perturbed
drop surface

r=a[l+ey P {cos &) exp (i o’ D]

and €, 18 the amplitude of oscillation. /=2 corresponds to the familiar
prolate-oblate oscillations. Such calculations are of limited applicability and
have failed to explain many of the observational details?.

In an carlier paper® the oscillations of fluid drops relatively at rest in
background media were discussed by including the viscous effects and the
deformation of the drop. Independent of our work Miller and Scriven* have
also discussed the oscillations of stationary viscous drops in background
fluid media. They include the lerms from interfacial viscosity and elasticity
and study both the frequency and daumping of the oscillations in various
limiting cases. But in many of the practical situations, the drop will be in
a steady terminal motion in a background medium. Consequently the above
calculations are not strictly comparable with the experiments.

In order to remove this lacuna, we have undertaken a study of the
oscillations of a drop moving with a steady terminal velocity in another fluid
mediim.  The contributions from the deformation of the drop and the viscous
terms have been taken into account.. The analysis is restiicted to the Lamb’s
oscillation modes where the disturbance 1s expressed in terms of Legendre
polynomials. The calculations are valid for low Re and We.

Oscillations of a spherical drop in terminal motion in another fluid
medium are discussed in the next section whereas section 3 deals with a study
of the oscillations of a deformed drop in motion. Finally the theoretical
results are compared with the available experimental results in section 4.

2. OSCILLATIONS OF A SPHERICATL. LIQUID DROP MOVING WITH A STEADY
TERMINAL VELOCITY IN ANOTHER FLUID MEDIUM

21 Formulation of the Perturbation Equations:

The equations of motion will here correspond cither to a drop moving
with a uniform velocity U in a fluid medium (the coordinate system being
fixed in the continuous phase) or to the fluid baving a uniform velocity U at
infinity flowing past a drop (the coordinate system being fixed in the drop and
conveniently the otfigin at the centre of the drop). The latter coordinate
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system can be chosen as it simplifies the calculations. The equations can be
made dimensionless by choosmng a the radius of the spherical drop as a
characteristic length, [/ the uniform stream velocity as a characteristic velocity,
Ua® as a characteristic stream function, %P U?as a characteristic pressure
and ofU as a characteristic time. The dimensionless equations can be

written in the forin

(Dot 4 E(h, )= (1/ReYD* Y for a<r <oo

3 (D)ot + E( )= (1/Re) DA for 0 =r=a 2]

where
Re="Ualv, Re= Ua/:;, = 4/P, &=cosb,

» ; 2A' ) : ) [, ~
EGh ) =7‘,{%ﬁ;‘f’§)¢> j (if 24,2 a_¢) e 4

2 & 52
D = 5‘_‘ I’_zb‘ an
dr? r €

If the time dependent part [a {D?:fy/at] of the above equations is left
out (corresponding 1o the condition ¢ @?/y < < 1) then the equations describe
the steady flow of a fluid past a drop. This case has been fairly well analysed
at Jow Reynolds numbers by Proudman and Pearson® for a rigid sphere and
Taylor and Acrivos® for a fluid sphere.

On such a steady flow of a fluid past a drop, a perturbation causing the
drop to oscillate can be superimposed. Then the resulting drop surface can
be written as

re=1 1€ P (§) 3]

where ¢ is a function of time [such as €gexp (i ' 1) ], €, being the amplitude
of oscillation, P, (&) isa spherical, harmon.c nforder /, and ¢'=¢g a/Uisa
dimensionless frequency,

The perturbation is assumed to be quite small compared to the size (=1)
of the drop so that €2, €3, ... can be neglected. Then the stream function
undergoes a change from iy, ,,2-,, 10 iy + A (1) and 5y + A o {f) respectively.
The stream function can be expanded in the form

o =fo + A exp G’ 1)+ AdexpQRic )+~ + - [41
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Substituting these expansions in the equations of motion (2) and collecting
coeflicients of exp (i e’ 1), exp (2ie’ 1), -+ - and time independent terms, the
equations for A iy, A ¥y -+ - and g are obtained. The zeroth (steady)
and I order perturbation equations can be written as

E(y, do)=(1/Re) D*

E(l, do)=(1/R) Doy B3]
io" DPAd, + E(de AY) + E(Ld b)) =(/Re) DAY,
10’ P A+ Etl, AR 1 E(AR. ) = (URY D AS, (8]

2.2 Solutions of the perturbation equations : -

The solutions of the above equations will have to saiisfy the following
boundary conditions ¥*7.  As r—eo, #,= —§, y=sin8=(1—-£)"? and hence
F—>L (1-£% r®. At the interface of the drop and the continuous phase, u,, U,
tangential stress (7,,) and the radial stress (7,,) should be continuous taking
into account the surface stresses. Physically meaningful solutions only are
to be considersd at r=0 and at r=oo,

The steady flow equations [5] have been discussed by Taylor and Acrivos®
and Matunobu® for flow past a liquid drop at low Re. In the creeping flow
region (inertial contribution neglected), the solution shows that the drop should
remain spherical for all Weber numbers. Inertial effects can then be studied
by expanding ¢ in terms of Re. Then the shape of the drop departs from
spherical into a spheroidal shape.

r=l~¢, We Py (£), We=palU?T

at low Weber numbers, and into a spherical cup shape
r=1~¢; We P, (£)—€, (We*/Re) P, (£)

at higher Weber numbers.

Now let us study the I order perturbation equations [6]. The dimensionless
oscillation parameter ¢'=¢ a/U, o being the complex oscillation frequency
can have any value in a wide range. Let us consider three limiting cases.

Case (iy: e'> > 1. This can happen at very low We. The inertial
contribution in eq. [6] can be neglected as it is O (Re). The time dependent
terms are predominating and the terms in D* A y's are taken since they are the
highest derivative terms. Hence the equations become

DX(D+F)AYy=0; W=—ia'Re=—icdly

DDA =05 W=—ia’ Re=—ia
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Tt is obvious that these are just the basic equations of I order perturbation for
an oscillating liquid drop, relatively at rest in a background fluid medium?®.
The solutions can be discussed as before with a diffcrence in the boundary
conditions for the stress components. -

7 _2_[1 du, ,_f’_é_.,‘?uﬂl
P

i zRe 28 ar
%ro _ 2,:)’ _l~ du, Uy . Dty 8
Re | F 20 r oF
4
T,,=pg+8p—me —L
DT OP TR, o
A A a4y 3,
T, =py+8p— — vy !

Re

where ’YfF?/P, kr——:z/,u, y=ufp.
Physically meaningful solutions of [7] can be written.
A b =[Br=ta Drf J_ oy BN Y F (&)

A =LAr T+ O Ty Gie) 1F (6 [10]

£ .
where Fy(€) = [ P (€Yd £ arc the Gegenbuauer functions,
~1

A more general solution satisfying the boundary conditions would involve
Hankel functions H’ instead of Bessel functions. But the latter have been
chosen for purpose of casy computation as tables of J, (x) arc readily
available.

The constanls A, B, €, and D can be eliminated by the interfacial

>

conditions ; namely
~ ~
U=t Uy =1y,

Tpy=T,, and T, =T, +(2/We) [1x,+1/x,] (1]

1 24 1 ¢

at the interface r=1; where u, = — = gg s = “;—“U _zz)uz 3
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x;, X, are the principal radii of curvature and We=0aU%T. The resulting
four equations for A4, B, C and D can hold good only if their secular
determinant vanishes. ‘This cau be further simplified!?.

~£ Qs @) @1+ hQ ()
hAZ ~ Ht
k(—-—2— . th} k@P-)-10+2) X 0
“ =0
1 2hQhy (1 . 1, 2-D 2hQ gy _ 1 )
! iﬁe { Y({+1) i1€e \  ikRe T+

| 2042 (=) (112_)>
: ik Re We [12]
where Queip=Nwapl vy Qv =I-v-iml g

With the help of this equation, the frequencies of oscillation canbe computed
for any fluid-fluid system provided the dimensionless parameter ¢’ =aa/U > > 1.
This holds good for drops in very slow motion. For the general case like a
nitrotoluene drop oscillating in water, the full characteristic equation [12]
will have to be solved for the damping and oscillatory parts. The results of
such a calculation® have been plotted in the Figure 4 against the observed
frequencies.

For a spherical drop in free space (¥ — oo, k ~—» oo}, the above equation
reduces to the form

2 LU=NEED | 20-) | 2@- 43D Q.
o' We iRe  #-2hQ,, iRe(h-2Q,)

131

For the case Re—as-afy (i.e., the drop relatively at rest, this agrees with
the result of Reid'® and Chandrasekhar®. From the equation it is evident
that the frequencies are altered from the Lamb’s hy the introduction of
viscous terms. L.H.8. is merely the ratio of Lamb’s to the modified
frequency.

If o is taken to be purely imaginary, then the aperiodic damping modes
discussed by Reid and Chandrasekhar result. These have been calculated
using equation [13] and plotted in Fig. 1 for the case of a drop in free space.
It shows that there are two possible damping modes for a given drop size
{the lower ome being favoured because of energy considerations and that

above a certain critical drop size defined by the quantity ~ oy a*/y or BoyT
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FiG. 1
Aperiodic damping modes of a spherical drop in free space (y =, k3w,

aperiodic damping cannot occur. This means that for oscillations to start,

the drop size must be larger than this critical size(a, = C?’ :2/T, C a constant
~1). Though this critical size is very small {(~10"%cm.) for a system like
water drop in air, it assumes as large values as a few mm for a drop or a
bubble in a dense viscous liquid.
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For the oscillations of a drop in a similar fluid (Y=1, k=1),

1A-D g+ 0+2) _, 20+ y
TG IT D) We Q= b4

oh=

The frequencies of oscillation compiled from this equation have been plotied
as a function of drop size in Fig. 2. It shows that the contribution from
viscous terms split the mode of frequency into two branches —one lower and
the other higher than Lamb’s. The deviation from Lamb’s result is small
when the two phases are dissimilar like a drop in free space or a bubble ina
dense viscous liquid, but in this case of two similar phases the departure is
significant. Even here the splitting becomes pronounced when the drop size
is not too small or not too large.

12 S~

-
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2

3 4 5 3 7 8
log o(T8?)
90l 5

Fia. 2

Osciliation modes of a drop in a similar fluid (y=1, k=1). Full curve corresponds to a
spherical drop, dashed curve refers to a deformed drop (e1=0 2),
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Case (ii): @' < < 1. This case does nol have many applications and
hence will not be discussed here.

Cuase (n): & ~ |
By far, the very interesting limiting case seems to be thal for which

¢’=0(13. This cun be swdied at low Re by the well known expansion
meihods.  Expanding A, and Az[r, in powers of Re,
AVEISA‘/"IG'J'R"A‘L'H’L e
ANy = Aifg+-Re Aby+ - - - {15}
and subsiituting 'bese expansions in the equations [6} and collecting the

cocflicients of Re®, Re', - - - we obian

DY A =05 DY A -0 [16]
DY Ay L EGlge, A ) Y ECA g, o) ] ~1 0" D* A g0

DY A by [ E kg A o)+ ECAY . $o) )l 10" DA =0 {17]
etc.
These pairs of equations are then to be solved satislfying the boundary
conditions.
Equations [16] have the physically meaningful solutions

Ao (Bl DR F(E)
Adhg= (A1 %) Fy(£) (18]

The consiants, 4, B, C, and D can be eliminated by the use of the four
interfacial conditions at r=1, namely the continuiwy of radial and tangential
velocity components, continuity of tangential siress and the equality of excess
radial stress with that due to the interfacial tension. The resulting equations
for 4, B, C, and D at r=1 are'!

A+C—B-D=0
A@EDACI I DEBIAD{I—-2)=0

KA+ D U=+ CI{I+2D)~BI(I+2y~-D (*~1) =0
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In writing the last equation of {19], use has been made of the expressions

Uz F(fx) ~ 2+ -1 {I+2) e P,

2 7 —
Bplya=2Pic ( "/—[i‘[ "1"9“]> - DPZN—Q'L—”

5

A y AN AT YT
B ) —2rvio (A Sy 22U
‘ Tz ;

Since the four interfacial conditrons {19] should hold good simultancously
and since they are homogeneous in A, B, C, aud 8, their secular determinant
should vanish.  This can be simplified to

{ 2 2741 0 [

; k@1 k@2—1y- 1(112) G+ @i

b ‘
(_ 26 ) (L L1 20 (w 22,

| 42 o i Lo e U Y@E-D

| 20 Ty 2)) ) 6 ) |

| ke Re oW iet Rek (/1 10]

In practice, since the prolate-oblate oscillations predominate over
others, only /-2 mode need be considered. In such a case the determinental
equation gets reduced to

—40 (k-+ 1) ’ 38K 89Kk 448 26k+29 16k 14 0 1
TS T A e e = -
o We ioc'k Re 4 vy
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This equation exhibits all the qualitative features described by the characte-
ristic equation in the case of oscillations of a stationary spherical drop. The
difference in the form arises because of the range of ¢’ considered. However
both the Tesults merge with each other when we consider, say, for example
the aperiodic damping modes for k —» co,

As the characteristic equation [21] describes oscillations for drops in
terminal motion in other fluid media, it is more useful for purposes of
comparison with expeiimental results. But it cannot give an accurate
description of the oscillation frequency for all Re as it is derived for the

case ¢’ ~ 1.
(@) For the osciliations of a drop in free space, ¥ -» oo, k — co Then

, >2 1i2
o= 38 [1 + (13‘30;1{‘8 «[) }

13 Re 382 We
2.2 3P 2
For  B3XBORE e asa 1304 1221
382 we 137

¢’ consists of a damping and an oscillatory term. This represents the usual
damped oscillations of a liquid drop. For a typical case of water drop
oscillating jm air, the present results are compared with those given by
Lamb’s equation ; in Fig. 3. A detailed discussion of these will be taken up
in section 4.

When the radius of the drop is almost the critical size, a,, the oscillations

commence. This can be compared with the results obrained by Reid'®,

The two results agree fairly well.

For drops with sizes smaller than this critical size, o’ has two imaginary
solutions and this results in two different modes of aperiodic damping.

(b) The oscillations of a bubble in a viscous liquid is given by the
lmiting values of Y and k tending to zero. Then

w o2 12
o= 28 14 + 14160 R, }
28 Re | 482 We

Asinihe previous case, oscillations set in at a critical drop radius &, =~ P wIT.
For drops larger than a,, damped oscillaiions take place whereas for smaller
Irop sizes, iwo modes of aperiodic damping are preseni.
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\\ x CONSTAN AND CALVERT (1583)
5 \ O LANE (1957)
[ o GUNN (1949) (EDDY ERCQUENCY)
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OGscillations of & water drop in air with a uniform relative velocity. Also are plotted
the eddy discharge frequencies.
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(¢) The third limiting case of a fluid sphere oscillating in a similar fluid
is very important from practical considerations. In this case Y=1, k=1, Then

2 2 12
oo 2 {ii/_lﬁRe _]) }

T Re 35 we

Again, as before, oscillations set in at a critical drop size a, = 35p u2/16 T.
This is about twice the critical drop size for oscillation in free space.
Oscillations w1l be aperiodically demped for sizes less than the critical
size (@), For drop sizes larger than g, damped oscillations take place.
Using the full equation [21] the oscillation -frequency of o-nitrotoluene drop
in water has been studied as a function of drop size. Fig, 4 shows the
present calculated values with those of Lamb. The results are consistently
lower than Lamb’s values by more than 30%, clearly indicating the inadequacy
of the limited calculations of Lamb. Part of the abnormally large deviation
from the experimetal results is due 1o the nonspherical shape of the drop.

The critical size at which a drop can execute oscillations is approximately
Cp (T for all fluid-Aluid systems. (The numerical constant C is of the order
of ). Hence Winnikow’s reasoning that this critical size may be increased
by a few orders for liquid-liquid systems proves to be not correct. However
for very viscous liquids like m-cresol, cyclohexanol, Glycerine, castor oil etc.,
this critical size assumes practical magnitudes. Some of the calculated
aritical sizes for such viscous liquids are shown in Table 1. Absence of
oscillations moticed in several viscous liquid systems is most probably because
of this reason.

TABLE 1

Critical Size (@) for Oscillations to start in some viscous Liquids

a, =~ C (QQZ/T) which C 13 a constaut factor ~ 1
(All values approximate)

Liquid drop :L ;) witl;rair Wilh.{Va!tr (6 ;’/T)

in water Poise gmjcc dyne/cm. dyne/cm. cm.
m-cresol 0.21 1.034 4.0 0.01
Cyclohexanol 0.68 094 25.3 392 0.12
Glycerine (in oil) 14.9 1.26 60 28.6 6.2
Castor oijl 9.86 0.96 39 20.0 5.0
Machine oil (light) 1.14 1.0 35 15.0 0.08
Olive o] 084 0.92 358 229 0.03
Oleic acid 0.26 0.895 325 15.59 0.004
Phenot 0.127 1.072 40.9 0.34 0.05
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\ o KaPAETHE AND LICHT (1962)

...... LAMB'S THEORY
A% PRESENT CALCULATIONS

-2 ) I | H 1
-5 -4 -3 -2 -1 4} 1 2
log na
FiG. 4

Frequencies of oscillation of an O-nitrototuens drop falling with its terminal velocity
in water. (00, ..calculated frequencies if the drop motion is very slow.
Full fine calculated frequenciesif ea/U~ 1)
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3. OSCILLATIONS OF A DErORMED DRrROP IN MOTION

The deformation of a drop moving in a liquid medium has been
aitributed mainly to the inertial cffects’.  Taylor and Acrivos showed that
w0 a first approximation the shape of the drop can be taken as that of an

oblate spheroid.

relte Py (&) 23]
We [[81 .5 57, 105, 3\ 71—l
h i Sieany | iy <Ay P Aol SIS B
vaere & 4(/c+-1)3[\go T T A PR

¢, which is linear in We at low Weber numbers determines the deviation of
the drop from the spherical shape. For higher We, the drop shape changes
into that of a spherical cup, given by

re=1--€ Py (&) €y (We[Re) Py (£) [24]
ahere e, J(UEH10) He
2 70 (k1 1)

These equations do not fully explain many of the experimental results at high
We and Re'® . But at small values of We and Re, they satisfactorily explain
the observed shapes of drops. Further they are the best calculations available
so far and therefore form the basis for our study of the effect of deformation
on oscillations of a drop. We consider the drop shape to be an oblate
spheroid given by [23] for the present calculations.

A perturbation on the surface of ithe drop which causes it to oscillate
can be considered as usual 1o consist of spherically symmetric Legendre
displacements. Hence

= lhe Py(é) 4 el (§)expia’ 1 [25]
The equations of motion can be written and split into various time ordered
terms.  The first of these correspond to time independent steady flow and the
latter to various ordered perturbations.  The perturbation equations of I
order are (hose given by [6]. Various ranges of o' can be considered as
before.

Casz (i): o' > >1.

In this case, the inertial contribution can be neglected as the time
dependent terms predominate and together with terms in D*Ad;, the
equations [7] are obtained. These equations which are similar to those
obtained in the study of oscillations of a stationary liquid drop?® are to be
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solved subject to the boundary conditions using equations [8] and [9] at the
deformed surface r=1+¢€, P,(£). Results very similar to those for g
stationary drop are obtained. These have been briefly summarised in case 6]
of section (2). Especially if one neglects the wviscous effects, then (he
resulting equations

DA G, =0, D Adhy =0
satisfying the boundary conditions give
— 1 o
gie JU-D U U+ T('__ ﬁ)
ea{i+144/7]

\
= o'i(l—--%
\

With the iniroduction of viscous terms, the characteric equation [12] is
altered by the contribution from the deformation of the drop. For cxample
eq. [14] becomes

3

Y
”lz)l: - ——5——*—-—--—— - E—i— -+ O(—lz)
h(Qs, — Qosp2) 4 nr
Cae(): o <<l

In this case, terms containing ¢’ can be ncglected from the basic
equatiors [6]. The resulting equations are devoid of these time dependent
terms. Hence they are not useful in discussing the oscillations of drops in
media.

Case (il): o' ~1.

Ay, and Ay can be expanded in powers of Re and the solutions
obtained for small Re. Equations [16], which will be oblained in this case
also can be solved.

A= (Br- i+ Dr %) F, (&)

A= (A1 4 Cr ) F (8

The constants A4, B, C and D can be eliminated by using the interfacial
conditions [11]} for the velocity and the stress components at the deformed
surface. Then as in the previous case we get four homogeneous cquations in
A, B, C and D. For a simultanecous fulfillment of these conditions, the
secular determinant should vanish. For /=2 mode, the following characteristic
equation can then be oblained.

_M &+ JA_gs_lc_z_zf_@kﬂ_AQ(l _ e,) ( . E‘)[ZGk—.‘—ZQ L 16k+14] 4
o2 W; ik a’RAe 4 '

4 4 b

[26]
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As before the characteristic equation for oscillations of a deformed drop in
motion can be studied for various limiting cases of V¥ and k.

(@) Y->oo, k—oo. This corresponds to oscillations of a drop in
free space. Then

_ "2 12
,,/=§,8_9_S;/.2>[,-i{&i; (1-:»&)—1} ] 27
13 Re 361 We 4

¢'=g afU consists of a damping and an oscillatory term, There exists a
eritical size a,

361 Pyt e
PUECLLI L L TY 2%
%~ 260 T( 4) 28

at which oscillations start. For drop sizes smaller than a,, two modes of
aperiodic damping occur. The critical size below which the drop canmmot
execute oscillations at all is smaller than that for a spherical drop by a factor

of (1-3¢,/4).
() Y—>0, k—0. This can be used for the study of oscillations of a
bubble in a dense viscous liguid medium. Drops with sizes larger than a,

]
acxgﬁff. I—,E—F—l
35T 4

execute damped oscillations, but disturbances on smaller drops will be
aperiodically damped.
(¢) Y~ 1, k~ 1. Inthis case, similar behaviour results except that the

critical size is
2
aCXSSPV 1— Je,
16T 4

Numerical result for the frequencies of oscillation of a deformed drop
moving in a background medium are given in Table 2, for a system of water
drop oscillating in air, It appears that the deformation does not affect the
frequency in a major way, but alters it by a correction factor which is how-
ever appreciable.

4 RESULTS AND DISCUSSION

The general features of the calculated results can be discussed as follows:
The various factors like the deformation of the drop, the viscosities of the
two phases, the inertial effects caused by the drop motion etc., give nearly
comparable effects to the oscillations and it is not justified to ignore any one
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TABLE 2
Damped Oscillations 6f a Deformed Water Diop in Air
v=841.74, k=48.31, T=71.97 dyne em~!
Shape of the drop is assumed as
re=lte, Py=1—(k'(4) We Py % 1-0.0155 We

A @, for Weber number

om, 0 0.4 0.8 1.2 1.4
1674 21 < 106 21.26 % 108 21.5% 108 21.78 % 108 21.9 % 108
1073 6.64 % 10° 6.72 % 10° 6.8 x 10° 6.89 < 10° 6.93x10%
10%2 21 x 10° 21.26 x 10 21.5x10 21,78 x 107 21.9x10°
i0-1! 6.64 < 10% 6.72 % 10? 6.8 % 10% 6.89 < 10% 6.93 102

2101 234.7 237.6 240.5 243.4 2449
4% 1071 83.0 840 851 86.1 86.6
63107 452 45.8 46.3 46.9 412
81107} 29.35 29.71 30.1 30.4 306

1 21.0 21.26 215 21.78 219

10 0.664 0.672 0.68 0.689 0.693

of them. It is also not possible to simplify the calculations by sepearately
studying the individual effects from each of these factors, as in a practical
situation all the different factors will give a net resultant efiect.

(i) The deformation of the drop modifies the Lamb’s expression for
frequency and the resuliing expression can be used to explain the experimental
results of highly deformed drops. Sch ssaw and Boumeister’® studied the
oscillation frequencies of a stationary dr. 5 for the modes /=2 to I=8. The
experiment was conducted for drops supported by their own superheated
vapour over a hot plate. The presence of large temperature gradients can
cause oscillations, but it is supposed that the frequency of oscillation is
independeut of temperature. Observed results were lower than Lamb's by
about 10 to 15% and this can easily be explained with the help of the

equation
oi=.1_”:11.)_(_]il(’i_zlf(x —E> - ai(i —f,!)
P 4 4
If the drop shape in their experiments is assumed 1o be cblate spheroidal of
the form r=1+¢€, P,, then €;=0.8 to 1.3, Then
oo, =0.837 for ¢,=1.3
=09 if ¢,=08



Viscous Fluid drop moving in a Background Fluid Medium 263

Hence for €,=08 to 1.3, o/o; =~ 09 to 0.84. To a fair ddgree, this
agrees well with the observaticnal frequencies, although strictly one cannot
apply the present calculations for such large €.

(ii) The viscosities of the two phases tend to damp the perturbation
on the surface of the drop in two  different ways depending on the size of the
drop.  If the drop size is smaller than a critical value, then aperiodic
damping occurs. In order to study these damping modes, the perturbation
was expressed in the form

r=1--€ Py (&) exp (—or1) . . .

Then the characteristic equation obtained can be studied in the three limiting
cases —drop in free space, bubble m a dense viscous lignid and a fluid drop
in a similar medium. First let us consider the case ¢'>>1. The casc of
the aperiodic damping modes of a drop in free space has been studied by
Chandrasekhar® and Reid!®.  The principal conclusion that can be drawn
from Figure 1 is that there are two modes of aperiodic decay. That with
the smaller decay constant usually predominates, because it requires smaller
energy. In addition to the lowest modes «f aperiodic decay, which has been
described above, there are an infinity of other higher order modes. These
have larger damping constants and can be derived from the characteristic

equation by considering fater intervals of .  Considering the first interval
only, it is evident from the figure 1 that the characteristic equation allows

aperiodic modes so long as o a*/y is less than a certain maximum value.
And for larger values, a different type of damping namely oscillatory damping
results.  For the principal mode /=2, the critical point is a,~2.34 x 10~° cm
for a system of water drop in air. Similar aperiodic damping modes have
been studied for the cases of a bubble in a viscous liquid and a liquid drop
in a liquid medium. For drops with sizes smaller than this critical size,
oscillations cannot occur. This may very well account for the nonobservance
of osciilations in some viscous systems'® '8, although such. an aperiodic
damping mode has not been explicitly observed. Very similar conclusions
about the critical size can easily be drawn for the case ¢'~1. The magni-
tude of critical size does not differ much from that of the previous case. If
the drop is deformed into an oblate spheroid of the form r=1+¢€, P, (£},

then the critical size for the two modes will be approximately (CP7/T) x
(1-3e,/4).

(ili) If the drop size is larger than this criticsl size, then the viscous
effects split the frequency mode into a pair of permissible freguencies—one
lower and the other higher than Lamb’s. The deviation of these from
Lamb’s resull is small for the asymptotic cases of a drop oscillating in free
space and a bubble in a dense viscous liquid. But it acquires large values
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for systems of similar fluids. Even in this case, as shown in Fig. 2, the
splitting is small for drops with extreme sizes like very smuall and very large
drops. But the splitting is very pronounced for drops of infermediate sizes
in similar fluid media.

The higher frequency mode larger than Lamb’s by about 20 to 309, hys
an indirect evidence in the experimental resuits of Valentine er a7, They
observed oscillation frequencies larger than Lamb’s result by abount 30409
in rather special circumstances. Small drops of cyclohexano! were made 1o
coalesce with a solution of benzene and carbon tetra chioride reducing the
interfacial tension by about 10-20 dyne cm~!. Frequencies of benzene-carbon
tetra chloride drop before and after coalescene with cyclohexanol were obtained,
The frequeneies after coalescence were about 30% larger than the values
calculated from Lamb’s equation. This would happen if the higher frequency
mode of these drops were resonantly excited by the natural frequency of the
smaller drops. An approximate analysis, using the parameters of these
experiments, shows that such a type of excitation of the higher mode is quite
possible, In these experiments of Valentine ef al. the 739, benzene and
27% carbon tetrachloride drop (A) had a density of 1 gm «m™ and an
interfacizl tension of 35 dynes em™! with respect to water. Using these
values we can compute the Lamb’s frequeney of oscillation for the prolate-
oblate mode (/=-2) by using

ok (8 TalPy 0

The higher mode has a frequency larger than Lamb’s and can approximately
be written as &, > ¢ ,,+ K where K == 5/4. The 809, cyclohexanol drop
(cyclohexanol : density —0.945 gm/ce, interfacial tension with respect 1o
water = 3.92 dynefem) possesses a natural oscillation frequency a g, given by

a5 =k? (8 T/(Pyap)

where &' & 9/10 corrects the Lamb’s frequency for viscous effects. For the
volumes of the drops used (A—0.25 to 0.75 ¢e, B—0.005 to 0.013 ¢¢) we can
estimate ¢ 5/ 05 -

ohn _ [K2\(T, (P_B"(.’_lé ~ 0-4 o 1-3.
ol KIN T, ‘PA) v,

Hence the higher mode frequency of the 4 drop matches with the natural
frequency of the 8 drop for & number of drops used in the experiments.
This plausible explanation for the higher frequencies observed by Valentine
et al. provides an indirect justification for the predicted higher mode of
oscillation.  However it is highly desirable to test this prediction explicitly.

The lower frequency mode (lower than Lamb’s by about 10-15%)
requires comparatively smaller energy to be excited and hence is ysually
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favoured in practical systems. This mode can be studied either in a general
fiid-fluid system or in limiting cases like a drop osciilating in free space,
a bubble in a dense viscous liquid and a flvid drop in a similar fluid. The
introduction of the shape parameter into thess expressions does not
significantly alter the results, but the form of the expressions is slightly
changed as though a correction term has been introduced. The results were
obtained in several limiting cases of an oscillation parameter o' =¢ a/u.

If the drop is moving at low Weber number, then ¢’>>1. In such
a case, the characteristic equation [12] will have to be split into real and
imaginary parts to find the oscillatory and damping part of the oscillations.
The results are very simitlar to those obtained in the case of a stationary
drop®.

If the drop is moving with a Reynolds number of the order of ¢4y i.c.,
o'=0(1), then the final characteristic equations determining the frequency
are eq. [21] and eq. [26]. The numerical results in this case depart much
more from Lamb’s values than in the last case. The oscillation frequencies
of (i) water drop in air, (ii) o-nitrotoluene drop in water, (iii) m-cresol drop
in water and (iv) o-nitrobenzene drop in water have been computed and
compated with the experimental results'® 81 20 in the Figs. 3,4, 5 and 6.
The absence of a uniform sphericity of the drop and a considerable amplitude
of oscillation caused a large scatter of the experimental data. The general
trend of ihe results seem to be in somewhat better agreement with the present
calculated values than with Lamb’s. A word should be said about this
comparison of the theoretical results with the available experimental data.
Much of the earlier experimental investigations on the oscillations of the
drop lack such details as the shape of the drop as a function of drop size and
and also the purity of the systems used. The absence of these details make
ateal comparison futile. Impurities largely affect the drop oscillations'2,
Recently there has been some reliable experimental data'’ on pure liquid-
liquid systems, which can be used as a real check of the analysis. However
we first use the earlier results for a qualitative comparison and afterwards
make a real quantitative check with the results on pure liquid-liquid systems.

The oscillations of water drops in air have been experimentally studied
by both Constan and Calvert!® and by Lane®®. The Fig. 3 shows a comparison
of the observed results with the present calculated and Lamb’s values. The
other result of Constan and Calvert on the oscillations of propylene glycol
and ethylene glycol drops in gaseous media show that to a first approximation.
the frequencies are independent of Re and this is well borne out by the
present calculations also.

The results of Schroeder and Kintner's could not be fully utilised since
the results are for nineteen liguid-liquid systems put together. However
their conclusion that the frequencies of oscillation are lower than Lamb’s by
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about 169, is well supported from these results. The dependence of the
frequency on the amplitude of osciilation is also studied by Schroeder and
Kintner and this may also be taken into account.

In the Figs. 4 and 5, the experimental findings of Kaparthi and Lich®
are plotted against the present calculated values and Lamb’s results. For the
system of aitrotoluene drop oscillating in water, the results for the cage
o’'>>1, ie., very small We are also plotted. These values agree very well
with the experimental findings. Even in the other case of the values calou-
lated for large Re, the continuous variation of the shape of the drop and the
amplitude of oscillation make the comparison of the calculated and observed

‘ “

results very difficult. . . W

The cbsence of impurities from the system is very important for a better
comparison and in this connection the results of Winnikow and Chao'? are
of special interest, since a critical check can be made on the observed and

\ L] KAPARTHI AND LICHT
RN (1s62)
TN e e LAMB'S THEORY
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Frequencies of oscillation of an m-cresol drop moving
with its terminal velocity in water.



Viscous Fluid drop moving in a Background Fluid Medium 267

28

@  OSCILLATION FREQUENCY
N [winnikow anp cHaD (1966 ]]
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Oscillation frequencies of a pure liquid-liquid system (0-nitrobenzene drop oscillating in water)

calculated results. The observed frequencies and those obtained by the
present calculations are compared with the Lamb’s result in Fig. 6. It
clearly establishes the limited applicability of Lamb’s results. Accurate
measurements on pure liquid-liquid systems, such as the above one are badly
needed for a definite comparison between theory and experiment.

The eddy discharge frequency as measured by Gunn?' for water drop in
air and Winnikow and Chao'? for a nitrobenzene drop in water is also shown
in the Figs. 3 and 6. The intersection of the eddy discharge curve and the
oscillation line will result in a resonznce which have been noticed by several
workers. A striking maximum in the frequency-drop size curve observed by
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Kaparthi and Licht*® is also most probably due to such a process.  But if the
oscillation of the drop is caused by Vortex discharge, then the problem wilp
have to be treated as a forced oscillation problem and this has not been done
so far.

Tn conclusion it appears that experiments reveal distinet deviations from
the classic analysis of Lamb. These discrepancies undoubtedly arise from
the neglect of viscous and ivertial effects caused by the drop motion. We
have extended Lamb’s analysis by including these effects.  As a resuit most
of the discrepancies are qualitatively accounted for and indeed in the one case
where very careful mcasurements on pure systems have qcen performed, there
is even a quantitative agreement. Further expermmental studies on clearly
defined systems would help to efucidate the valid:y of the present calculations.
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