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The oscillations of a drop moving in a hackgoru~dj'i'c~icl nredirrm have hem 
studied fiy including th? mrihihutionr from the viscosifies of the two pIrn.res, the 
inertial eSfects couserl by rlie droll nzofion und the d<formation of rhe drop. The 
no~rsphericnl shape of the drop a l f e r ~  /he expression for .frepue~zcy of a spherical 
drop F,y r~rlrtdinf correction terms explaining many of the exprrintentai reszrirs on 
highly &formed drops. The ivscoits terms split the mode 0-f frequency into two- 
m e  lower ond the other higher than Lunrb's. Experimen~al evidence exists for 
both the lorver and the higher fiequerr~y modes. I f  the size of the drop is smaller 

, A  . A 

zhu?7 a certain niticol vahlc, ( - P vZ /T ,  p the rlensitv, v the kinematic viscosity 
and T ~nterfacial temioir befmcen the two pllases) fheperfztrbations OI I  the &op 
surface will be damped aperioiiically. This critical size which is very small 
(- cm.) for a sysrrrn like u liquid drop in free space, becomrs promi~wzt 
(- a few nim) for aj%id drop in a dense viscous liquid mediunz This can be a 
possible explanation for the nonobservance of oscillations in highly dense viscous 
systems. Detailea calculations are given in the limiting caseJ (a '  > > 1, o'- 1, 
a' i i 1 )  of  an oscillation parameter 0 '  (=  c a/U, o being the oscillation 
frequency, a rhe radius of rhe drop and U the terminal ~xelocity of the drop in the 
j%Pd menl'ztm). 

An analysis of the motion of drops and bubbles is vital for n better 
anderstanding of  certain physico-chemical processes. For example, the 
osc~llations of  the drop contribute to such interfacial phenomena like heat 
and mass transfer. But a complete theoretlcll study of the oscillations I S  
hampered by inadequate knowledge about the shape of the drop and the 
contributions from the inertial effects caused by rhe drop motion, the 
interfacial tension and the two phase parameters like the viscosities. 

Lsmb' studied Lhe limiting case of the oscillatiofis of a spherical liquid 
drcp at rest in an inviscid fluid. When the surface disturbance can be 



in terms of  Legendre polynomiais, he found that the frequency of 
oscillation is given by the expression 

A 

where p is the density of  the drop phssc, P the  density of rhc external phase, 
a is the drop radius and the mode of  frequency I i s  related Lo the perturbed 
drop surface 

1-=n [ I  + E~ PL (COS 0) cxp ( i  u r  t ) ]  

and c0 1s ~ h c  amplitude of  oscil1;ttion. I - ->  corresponds to the familiar 
ypolare-obIate oscillations. Such calculations are  of  limited applicability and 
have failed to explain many of thc observational details2. 

In an carlier paper911e oscillaiions o f  fluid drops rel'itively ac Irest i n  
background ~ncd la  were discussed by rncluding the viscous en'ects and 
&fornlation of ihe drop. Independent of our  wol-k Miller and Striven' have 

discussed the oscillations of stationary viscous drops in background 
fldid media. They include the terms from interfacial viscosity and e l a s t ~ c ~ t ~  
and study both the frcquewy and damping of  the oscillations in variou? 
lilniting cases. But in many of the practical situations, the drop will he in 
a steady terminal motion in a backgrour~d n ~ e d i u n ~ .  Consequently the above 
calculations are not srrictiy co~nparable with the experiments. 

In  order t o  remove this lacuna, we have undertaken a siudy of the 
oscillations of a drop moving with a stcady t e r~n ina l  velocity in another fluid 
medium. The contribution? from the deformation of  the drop and the viscous 
terms h a w  been tliken inro accounl. The  analysis is resil lcted to  Lhe Lamb's 
oscillation modes where ihe disturbance IS  expressed in terms of 1 egendre 
polynomials. The calculations nre valid for low He and We. 

Oscillations of  a spherical drop in terminal motion in another fluid 
medium are discussed in the next section whereas section 3 deals with a study 
of the oscillations o r  a deformed drop in motion. Finally the theoretical 
results are compared wit11 the available experimental results in secllon 4. 

2. OSCII.LATIONS OF h SPIIERIC:AI. LIQUID DROP MOVING WITH .4 STEADY 
TRRMINAL VELOCITY I N  ANOTHFR Fr.um ML;DIIJM 

The equations of motion will here correspond cither to a drop moving 
with a uniform velocity U in a fluid medium (the coordinate aystcm hein8 
fixed in the continuous phase) or  to  the fluid having a uniform velocity 1/ a t  
infinity f l o w i ~ g  past a drop (the coordinate system being fixed in thc drop and 
conveniently the origin at the centre of the drop). The latter coordinate 



,ystenl can be chosen as it simplifies the cnl,culations. The equations can be 
dinlensionless by choosmg n the radius of the spherical drop as a 

&aracterlstic length, U the uniform stream velocity as a characteristic velocity, 
~'az as a characteristic stream function, t P U * as a characteristic pressure 
and a/U 3s a ch~racteristic lime. The dimensionless equations can be 
~rritten in the ro1111 

where 
A A 

Re = Urrlu, Re = Unlu, v - NIP, 5 = cos 0, 

If the time dependent part [a ;D2 $ ) / a t ]  of the sbove equations is left 
out (corresponding LO the cond~t ion  o a2/v < < 1) then the equations describe 
the steady flow of a f l u ~ d  past a drop. This case has been fairly well analysed 
at low Reynolds numbers by Proudman and Pearson6 for a rigid sphere and 
Taylor and AcrivosS for a fluid sphere. 

On such a steady flow of a fluid past a drop, a perturbation causing the 
drop to oscillate can be superimposed. Then the resulting drop surface can 
be written 3s 

where G is a function of time [such as c0 exp (i a '  t )  1, E~ being the anlplitude 
of oscillation, P, ( f )  is a spherical, harmon c nf  order I, and a' = a a/V is a 
dimensionless frequency. 

The perturbation is assumed to be quite small compared to the size (= 1 )  

of the drop so that G ;, E z ,  . . . can be neglected. Then the stream function 
A A 

undergoes a change from $,, 2, t b  I$, + A $ ( t )  and $o -- A ?b ( t )  respectively. 

The stream function can be expanded in the form 



Substituting these expansions i n  the equalions of motion (2) and Col]ectind 
coefficients of exp (i o '  r), exp (2  i a' t ) ,  - . - and time independent terms, the 
equations for a $,, A &, . . and $o are obtained. The zeroth (steady) 
and I order perturbation equations can be written as 

E (il.,, $0) = ( ! / R e )  1)' $, 

2.2 Solurions of the pert~rrbarior~ eqlrotions : ' 

The solutions of the above equations will have to  saiisfy the following 
boundary conditions *". AS r+-, U, = - f ,  uB =sin 0- ( I  -fZ)1'2 and hence 
++ (1 - r2. At the interface of the drop and the continuous phase, u,, us, 
tangential stress (T',#) and the radial stress (T,J should be continuous taking 
into account the surface stresses. Physically meaningful solutions only are 
to be considered at r = 0 and at r - -. 

The steady flow equations [j] have been discussed by Taylor and Acrivos6 
and Matunobu8 for flow past a liquid drop at low Re. In the creeping flow 
region (inertial contribution neglected), the solution shows that the drop should 
remain spherical for all Weber numbers. Inertial effects can then be studied 
by expanding 4 in terms of Re. Then the shape of  the drop departs from 
spherical into a spheroidal shape. 

at low Weber numbers, and into a spherical cup shape 

r = l . - ~ ~  We P1( f ) -~ , (F i ' e ' /Re )  P,(& 

at highsr Weber numbers. 
Now let us study the I order perturbation equations [6]. The dimensionless 

oscillation parameter o l =  o  a/U, o being the complex oscillation frequency 
can have any value in a wide range. Let us consider three limiting cases. 

Case (i) : o' > > 1. This can happen a t  very low We. The inertial 
contribution in eq. [6] can be neglected as it is 0 (Re). The time dependent 
terms are predominating and the terms in D4& $'s are taken since they are the 
highest deriY,ative terms. Hence the equations become 

D 2 ( D ' + h 2 ) A # l = 0 ;  h 2 = - i o ' R e - - i o n 2 / , ,  



Jr i j  ohvious llsat LheX arc the basic cqilutions of I order pcrturbntion for 
oscillating liquid drop, relalively at rest in a background f h i d  mediunlf, 

The solutions can be discussed as before with a difference i n   he boulldary 
for llre stress coniponcrrrs. 

A 

where Y - PIP, k- p/p, V =  PIP. 

Physically nleaningf~il solutions of [ 7 ]  can be wrttten. 

A more general 
Hankcl limctions H' 
chosen for purpose 
avniloble. 

solution satisfyiiig the boundary conditions would involve 
rnstcad of Ressel l"~~nclions. RuL the latter have heen 
of casy conlputation as tablcs of J,  (x) arc rendiiy 

The cons1a:lLs A, B, C, and D can he  eliminated by the interfacial 
conditions ; namely 

A 

r r ,  - li,, us = l le  



x,, x2 are the principal radii of curvature and We=P aUZ/T. ?he resulting 
four equations for A, 8, C and D can hold good only if their secular 
determinant vanishes. This can be further simplified". 

With the help of this equation, the frequeucies of oscillation can be computed 
for any fluid-fluid system provided the dimens~onless parameter a'= oa/V r > 1 .  
This holds good for drops in very slow motion. For  the general case like a 
nitrotoluene drop oscillating in water, the full characteristic equation 1121 
will have to be solved for the damping and oscillatory parts. The results of 
such a calculation3 have been plotted in the Figure 4 against the observed 
frequencies. 

For a spherical drop in free space (7 -, - , k -+ m), the above equation 
reduces to the form 

For the case Re - ao-alv (i.e., the drop relatively at rest, this agrees with 
the result of Reidlo and Chandrasekhar9. From the equation it is evident 
that the frequencies are altered from the Lamb's by the introduction of 
viscous terms. L.H.S. is merely the ratio of Lamb's to  the mod~fied 
frequency. 

If o is taken to be purely imaginary, then the aperiodic damping modes 
discussed by Reid and Chandrasekhar result. These have been calculated 
using equation 1131 and plotted in Fig. 1 for the case of a drop in free space. 
I t  shows that there are two possible damping modes for a given drop size 
(the lower one being favoured because of energy considerations and that -- 

n A *  

above a certain critical drop size defined by the quantity - a,n2/v or P v'IT 



F I G  1 
Aperiodic damping modes of a spherical drop in free space (+.-, k->-) 

Veriodic dmnping cannot occur. This means that Tor oscillations to start, 
A A 

the drop size must be larger thnn this critical size(n, - CP vZ/T,  C a coilqtant 
-1). Though this critical size is very small (- 1W6 cm.) for a system like 
\\'am drop in air, it assurnes as  large values as a few rnnr for a drop or a 
babble in a dcnsc viscom liquid. 
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For the oscillations of a drop in a similar fiuid (Y = 1: k = I), 

The freqtlencies of oscillation compiled from this equation have been plotted 
as a function of drop size in Fig. 2. It shows that the contribution from 
viscous terms split the mode of frequency into two branches -one lower and 
the other higher than Lamb's. The deviation from Lamb's result is smsll 
when the two phases are dissimilar like a drop in free space or  a bubble in a 
dense v:scous liquid, but in this case of two similar phaszs the departure is 
significant. Even here the splitting becomes pronouiiced whcn the drop size 
is not too small or not too large. 

c------------ 

a a') tog lo( +- 
FIG. 2 

Oscillation modes o f  a drop in a similar fluid ( ? = I ,  k-I). Full curve corresponds to a 
spherical drop, dashed curve refers t o  a deformed drop (er=O 2). 



G s e  (ii) : n' < < I .  This ciisi: does no1 have many applications atrd 
hence will noi hc  discus& llerc. 

C'LISP (I I i) : c ' - [ 
n y  far, thc very interesting limiting case seems lo be tlial for \vhicl> 

o ' -O( l ) .  This c:in he saudicd at low RL' by the wcll known expansion 

mrlhods. Exp:nidlng A 2nd A $, in powers o f  RP, 

and substituting kbcse erp:lnsions in tlic cqunlion [6] and coliecling the 
cocflicicnrs cf Re0. Re', . - - we ~hi : l .n  

n d ~ ' ~ , O = n ;  [I61 

These pairs o r  cqu;ltions :ire thtn to bc colied satisrying (lie boundary 
cond~tions. 

Eclr~aliulrs {!6] 1i:ive the pliysicolly ~ n e a n i n g f ~ l  s,)li~iions 

- (Er-' 1 ~ r " + ~  1 Fi ( f )  

The conslants, A ,  B, C, and D can be eliminated by the use o f  the four 
interfacial conditions st r = l ,  namely the continui~y of radial and tangential 
\'elocity components, conrinuity of tangential siress and the equality of excess 
radial stress with that due to the interfacial tension. The resulting equations 
for A, II, C', and D  at r -  l are" 

A t-C-B-D-fJ 

( I  I )  C(1  I I )+  B l t  D(1-21-0 

h[ .4  ( I -1-I ) ( / - l ) - !Cl( / :  2 ) ] - ~ 1 ( 1 - i - 2 ) - D ( l ~ - l )  = O  



in viriting the !asl equslion of [19], use has h e m  niodc o r  the expressioix 

(11.~~)  I ( l / q  2 5  2-,-  (1-1) (1-1-2) € P, 

Since the four interfacial coi~dit!ons [I91 should hold good siniultaneouslp 
and since they are homogeneous in A, 6.'. C .  axid D, their secular determinant 
should van id^. This can be simplified to  

In practice, since the prolate-oblate oscillations ~redominate  over 
others, only 1 - 2  mode need be considered. In such a case the determinen~l 
equarion gcts reduced to 

- 0  (k  t I 38k2 k89k  ;-48 2Gk+29 l 6k - t  14 
I +-- I - = 0 [?]I 

o r 2  I &  i u '  k ~e 4 Y 



 hi^ equation exhibits all  the  qualitative features described by the characte- 
ristic equation in the case of oscillations of a statiomry spherical drop. 
difference in tile form arises because of the range of a' considered. Nowever 
both the resallts merge with each other when we consider, say, for example 
the aperiodic damping modes fof. k - oo. 

.4s the characteristic equation 1211 describes oscillations for drops in 
!enninal motion in other fluid media, i t  is more nseful for purposes of 
comparison with expe~imental  results. But it cannot give an accurate 
description of the oscillation frequency for all Re as it is derived for the 
case a' - 1. 

(a) For  the oscillations of 3 drop in free space, Y -+ m, k - uo Then 

u' consists of a damping and an oscillatory term. This represents the usual 
damped oscillations of a liquid drop. For a typical caue of wader drop 
oscillating in air, the present results are compared with those given by 
Lamb's equation ; in Ftg. 3. A detailed discussion of these will he taken up 
in section 4. 

When the radius of the drop is almost the critical s i x ,  a,, the  oscillations 
Commence. This can be compared with the results obrained by Reidfo, 

The two results agrec fairly well 

For drops with sizes smaller than this critical size, a' has two i~nngin:~ry 
;elutions and this results in two different modes of aperiodic damping. 

(b)  The oscillations of a bubble in a viscous liquid is given by the 
lilniiing values of Y and k tending to zero. Then 

44 in the previous case, osciilations set in at a critical drop radius u, = P v2/T.  
For drops larger ihan a,, damped oscilla~ions krke place whereas for snlalier 
Irop sizes, two modes of aperiodic damping are prcseni. 



03ciliations o f m  water drop in air with a uniform relative velocity. Also areplottcd 
the eddy discharge frequencies. 
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(c) The third limiting case of a fluid sphere osciliating in a similar fluid 
isvery important from practical considerations. In this case Y = 1, k =  1. Then 

Again, as before, oscillations set in at a critical drop size a, % 35 P v2/16 T. 
This is about twice the critical drop size for oscillation in free space. 
Oscillations will be aperiodically d:mped for sizes less than the critical 
size (a,), For drop sizes larger than a,, damped oscillations take place. 
Using the full equation [21] the oscillation frequency of n-nitrotoluene drop 
in water has been studied as a function of drop size. Fig, 4 shows the 
present calculated values with those of Lamb. The results are consistently 
lower than Lamb's values by more than 30%, clearly ind~cating the inadequacy 
of the limited ca1culat;ons of Lamb. Part of the abnormally large deviation 
from the experimetal results is due to the nonspherical shape of the drop. 

The critical size at which a drop can execute oscillations is approximately 
CP SIT for all fluid-fluid systems. (The numerical constant C is of the order 
of 1). Hence Winnikow's reasoning that this critical size may be increased 
by a few orders for liquid-liquid systems proves to be not correct. However 
for very viscous liquids like m-cresol, cyclohexanol, Glycerine, castor oil etc., 
this critical size assumes practical magnitudes. Some of the calculated 
critical sizes for such viscous liquids are shown in Tablp 1. Absence of 
oscillations noticed in several viscous liquid systems is most'probably because 
of this reason. 

Critical Size (a,) for Orcillaiions to start in some viscoun Liquids 

A ,. 
a, .r C ( P  v ' / T )  which C 1s a constant factor - 1 

(All values approximate) 
--- -- ,. T T 

Lipuid drop .U P with air with water 
in water Poise gm,cc dynelcm. dyne:cm. 

- - -- -- -- 
m-cresol 0.2 1 1.034 4.0 

C~~tohexanol 0.68 0 94 25.3 3 92 

Glycerine (in oil) 14.9 1.16 60 28.6 
Castor oil 9.86 0.96 39 20.0 

bfachine oil ( l i ~ h t )  1.14 1 .O 35 15.0 
Olive oil 0 84 0.92 35 S 22.9 
Oleic acid 0.26 0.895 32 5 15.59 
Phenol 0.127 1.072 40.9 0.34 - - - _  -. P --- 

A A 

fP valT) 
cm. -- 

0.01 
0.12 
6.2 
5.0 
0.08 
0.03 
0.004 
0.05 



Frequencies o f  oscillalion of an 0-nirrotolucnt  drop falling v ~ t h  i t s  rcrminal \d&Jl)  
In wdrcr. (00. . .calculated frc.luencies i f  the Jrop malion is very %lo\\. 

Full line - calcularcd frcquencics i f  ;a L ' -  3 8. 



The delhrnmtion of a drop moving in  a liquid n~ediuln has been 
mainly to the inertial cirect,'. T ~ y l o t  and Acrivos showed that 

to 3 krst approxi~n:itioir lire s1r:ipc of tlic drop can be taken as that of an 
ablate spheroid. 

r -  I t - € I  P2 (f) [23] 

6, whicli is linear in We at Eow Webcr numbers determines the deviation of 
the drop from the spherical shape. For higher kVp, the drop shupc ch~nges  
into that oi' a spheric:~l cup, given by 

r - -  1 I-€I P1 (5) I c2 (Wr/Re)  P, (f) 12B 

These equations do not fully explain many of the experimental results a t  high 
We and Ret3'.I4. B J ~  at  smali values of We and Re, they salisfactorily explain 
the observed shapes o f  drops. Further they are the best calculations available 
so far and therefore form the basis for our study of the effect of deformation 
on oscillations of a drop. We consider the drop sliape to be an oblate 
spheroid given by 1231 for the present calculations. 

A perturbation on the surface of t!re drop which causes it to oscillate 
can be considered as usual t o  consist ol' spherically spm~netric kegendre 
displacenients. Wcnce 

r =  l t -  P, (5) i €PI ( 5 )  exp i a' r [?S] 

The equations of motion can be written and split into various time ordered 
terms. The Brsl of thcse correspond to time independcnr ateady flow and the 
latter to various ordered perturbal~ons. The perturbation equations of I 
order are those given by [GI. Var~ons ranges of r' can be considered as  
before. 

Cos.? (i) : u' > > 1 

I n  this case, tlie inertial contribution can be neglected as the t ime 
dependent terms predominare and together with terms in D*A$l,  llle 
equations [7] are obtained. These eqiiations whicli are sin~ikrr to those 
obtained in the s t~ .dy of oqeillarions 01" a statiuwry liquid di-op' arc to be 



solved subject l o  the  boundary conditions using equations [8j  and [9] at the 
deformed suiface r =  l i - + ,  P, ( f ) .  Wesu!ts very similar t o  those for , 
stationary drop arc obtained. These have been briefly summariscd in case (i) 
of section ( 2 ) .  Especially if  one neglecls the VISCOUS eKects, then the 
resulting equations 

With the iniroduction of viscous terms, the characfcric equ:ilion [I21 is 
altered by the colitribution from the deforn~at ion o f  the drop. For  cxzmple, 
eq. [14] becomes 

I n  this case, terms containing sr' can be ncglccted from the basic 
equations [6]. The  resulting equations a re  devoid of thesc time dependent 
terms. Hence they are not useful in discussing the oscillations of drops in 
media. 

CQ.W (ii i):  v ' -  I .  
A 

A$, and A$, can be expanded in powers o f  Rr and the solutions 
obtained for small Re. Equations [16], which will be oblained in this case 
also ~ 3 n  he solved. 

A $, , , - (Br- '+Dr-J+2)  F, ( E )  

The constants A, B, C and D can be eliminated by using the in:erfacisl 
conditions [I l l  for the velocity and the stress components a t  the defxmed 
surface. Then a s  in the previous case we get four honiogeneous cquat~ons in 
A, B, C and D. For  a simultaneous fulfillment o f  these conditions, the 
secular determinant should vanish. For  1 - 2  mode, the roll ow in^ characteristic 
equation can then b c  obiaincd. 



before the characteristic equation for oscillations of a deformed drop in 
motion can be studied for various limiting cases of 7 and k .  

(a)  Y -. oo , k -. .o. This corresponds to oscillations of a drop in 
free space. Then 

U ' = U  a/U consists of a ddmping and an oscillatory t e r m  There exists a 
crztical size n, 

at which oscillations start. F o r  drop sizes smaller than a,, two modes of 
aperiodic damping occur. The critical size below which the drop cannot 
execute oscillations a t  all is smaller than that for a spherical drop by a factor 
of (1 - 3  ~ ~ 1 4 ) .  

( b )  Y -* 0, k 40. This can be used for the study of oscillations of a 
bubble in a dense viscous liquid medium. Drops with sizes larger than a, 

execute damped oscillations, but disturbances on smaller drops will be 
aperiodically damped. 

(c) Y 7 1, k - I .  In  this case, similar behaviour results except that the 
critical size 1s 

Numerical result for the frequencies of oscillation of a deformed drop 
moving in a background medium are given in Table 2, for a system of water 
drop oscillating ;n air, It appears that the deformation does not affect the 
frequency in a major way, but alters it by a correction factor which is how- 
ever appreciable. 

The general features of the calculated results can be discussed as f o l l o ~ s  : 
The various factors like the deformation of the drop, the viscosities of the 
two phases, the inertial effects caused by the drop motion etc., give nearly 
comparable effects to the oscillations and it is not justified to ignore any one 
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T A ~ L E  2 

bamped Bscillations bf a Qeftirmed Water Drop in Air 

Y =84l.74, k=48.31, T=71.97 dyne cm-" 
Shape of the drop is assumed as 

? = I + € ,  Pi=l-(k ' j4)  Wc P2r2 1-0.0155 W e  
-- - -. . 

w ,  For Weber number 
0 ----- 

cm. 0 0.4 0.8 1,2 1.4 
- _ _ _  

- 
10-4 21 .< 106 21.26 x 106 21.5 x 106 21.78 x 10' 21.9 x 106 
10-3 6.64 x lo5 6.72 x lo5 6.8 x lo5 6.89 x lo5 6.93 x 10' 
loa2 21 x 1Op 2i.26x103 21.5x103 21.78x!03 21.9~10" 
lo-' 6 . 6 4 ~  IOZ 6 . 7 2 ~  102 6.8 r 10' 6.89 x 102 6.93xloZ 

2 x 10" 234.7 237.6 240.5 243.4 244.9 
4 x lo-' 83.0 84 0 85 1 86.1 86.6 
6 x lo-' 45.2 45.8 46.3 46.9 47.2 
8 :.: lo-" 29.35 29.71 30.1 30.4 30 6 

I 21.0 21.26 21.5 21.78 21.9 
10 0.664 0.672 0.68 0.689 0.693 

-- . 

of them. It  is also not possible to simplify the calculations by sepearately 
studying the individual effects from each of these factors, as in a practical 
situation all the different factors will give a net resultant efiect. 

(i) The deformation of the drop niodifies the Lamb's expression for 
frequency and the resulting expression can be used to explain the experinlenial 
results of highly deformed drops. Schl w w  and Boumeister" studied the 
oscillatLw 'frequencm of a stationary drq.,> for the modes I = 2 to 1 = 8. The 
experiment was conducted for drops supported by their own superheated 
vapour over a hot plate. The presence of large temperature gradients can 
cause oscillations, but it is supposcd that the frequency of oscillalion is 
independeut of temperature. 0bserv.ed results were lower than Lamb's by 
about 10 to 15:! and this can easiiy be explained with the help of the 
equation 

0 2  = - -  
P" 2 [\-I-  I i - ( / j?) l  

If the drop shape in their experiments is assumed to be cblate spheroidal of 
the form r= 1 +a,  P2, then E l  = 0.8 to 1.3. Then 

c/oL =OX37 for c ,  - -  1.3 

-0.9 if c,=O.8 
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IIellce for €,=O.8 to 1.3, r r / u i x 0 . 9  t o  0.84. TO a fair dkgree, this 
agrees well with the observat icml  frequencies, although strictly one cannot 
apply the present calculations for such large E,. 

(ii) The viscosities of the two phases tend to damp the perturbation 
an the surface of the d rop  in two different ways depending on the size of the 
drop. If the drop size is smaller than a crilical value, then aperiodic 
damping occurs. Tn order  to study these damping modes, the perturbation 
was expressed in the fomm 

Then the characteristic equation obtained can be studied in the  three limiting 
cases-drop in free space, bubble In a dense viscous liquid nnd a fluid drop 
in a similar medium. First  let us consider the case o'> > 1. The casc of 
the aperiodic damping modes of a drop in free spncc has been studied by 
Chandmsekhai9 and Rcid1'. The pnncipal conclusion that can be drawn 
from Figure 1 is that there are  two modes or  aperiodic decay. That with 
the smallcr decay constant usually predominates, because it rcquires s ~ n ~ l l e r  
energy. i n  addition to the lowest modes :.I" aperiodic decxy, which has been 
described abovc, there a r e  a n  mfinity of other higher order modes. These 
havc larzer damping constants and cJn be derivcd from the characteristic 

equation by considering later intervals o f  It.  Considering the first interval 
only, it is evident from the figure 1 that the characlcrislic cquation allows 

A 

aperiodic modes s o  long as  o,nZ/v is less than a certai,i maximum value. 
And for larger values. a different type of damping nxmelv oscillatory damping 
resulls. For the principal mode 1=2, rhe critical poinL is ~ ~ ~ 2 . 3 4  x cm 
for a system of water drop in air. S i~n i l s r  aperiodic damping modes have 
been studied Tor the cases o f  a bubble in 3 viscous liquid and a liquid drop 
in a liquid msdium. F o r  drops with sizes smaller than this critical size, 
oscillations cannot occur. This may vel-y well account for the nonobservance 
of oscillations in some viscons systems1" 16, although such. an aperiodic 
damping mode has not been expl~citly observed. Very smi l a r  conclusions 
about the crilical size can easily be  drawn for the caae 0 ' -  1. Thc magni- 
tude of critical size does not differ much from that of the p:.evious case. I f  
the drop is deformed into an oblate spheroid o r  the form r - I  + € I  P2 (El, 

A A 

then the critical size for the two mode? yiI1 be approximately ( C  P v 7 / T )  x 
( 1  -3cJ4). 

(iii) IT the drop size is larger than lhis critical size; then the viscous 
effects split the frequency mode into a pair of permissihle frequencies-one 
lower and the  other higher than Lamb's. The devistion of these from 
Lamb's result is small fo r  the asymptotic cases of a drop oscillating in free 
space and a bubble in a dense viscou3 liquid. But it acquires large values 



fox systen;ts of similar liuids. Even in this case, :IS shown in Fig. 2, the 
splitting is small for drops with extreme sizes like very small and very large 
drops. But the sylitting is w r y  pronounced for drops of intermediate sizes 
in similar fluid media. 

The higher freqilcncy mode Iarfru than Lnmh's by about 20 to 307, hCis 
all indirect evidence in the experimental res~llts of Valentine rr a)."?. They 
observed oscillation frequencies !arger than Lamb's result by abount 3n-4Q 
in rather special circumstances. Small drops of  cyclohexnnol were made To 
coalesce with a solution of bcnzcne and carbon tetra chloride reducing the 
interfacial tension by about 10-20 dyne on-'. Frequencies of benzene-carbon 
tetra chloride drop before and afker coalescenc with cyclohexnnol were obtained, 
The fvequenejes after coalescence were about 307, larger than the values 
calculated from Lamb's equation. This would happen if the higher frequency 
mode of these drops were resonantly excited by the nalural frequency of the 
smaller drops. An approximate analysis, using the parameters of these 
experiments, shows that such a type of excitatio~l of Ihc higher mode is quite 
possible. I n  these cxpsriments of Valentine rt al.' the 73% benzene and 
27y0 carbon tetrachloride drop (A) had a density of I gm cm-' and an  
interfacid tension of 35 dynes cm-' with respect to water. Using these 
values we can compute the Lamb's frequcney of oscillation for the prolate- 
oblate mode (1-2) by using 

c I r =  (8 TAIPA 01) 

The higher mode has a frequency larger than Lamb's and can approximately 
be written as rAH -- uAL K where K r 514. The SO')/, cyclohexanol drop 
(cyclohexanol : density -0.945 gm/cc, interracial tension with respect lo 
water- 3.92 rlyne/ctn) poscesses a nalur:fl oscillation frequency  an^ given by 

where k' = 9/10 corrects the  Lamb's frequency for viscous eKects. For the 
volumes of the drops used (A-0.25 to 0.75 cc, R -0.005 to 0.013 re) we can 
estimate a ,, / o,, . 

Hence thc higher mode frequency of the A drop matches wilh the natural 
frequency of the 5 drop for a number of drops used in the experiments. 
This plausible explanation for the higher frequencies observed by Valenline 
e t  a!. provides an indivect justification for Ihe predicted higher mode of 
oscillation. Ilowever it is highly desirable t o  lest this prediction explicitly. 

The lower frequency mode (lower than Lamb's by about 10-1%) 
requires ccmparatively smallcr energy to be excited and hence is usually 



favoured in practical systems. This mode can be studled either in a general 
fluid-fluid system or in limiting cases like a drop oscillating in free space, 
a bubble in s dense viscous liquid and a fluid drop in a similar fluid. The 
introduction of the shape parameter into these expressions does not 
significantly alter the results, but the form of the expressions is slightly 
changed as though a correction term has been introduced. The results were 
obtained in several limiting cases of  an oscillation parameter n ' =  w alu. 

If the drop is moving at low Weber number, then o'> > l .  In such 
a case, the characteristic equation [l2] will have to be split into real and 
imaginary parts to find the oscillatory and damping part of the oscillations. 
The results are very s im~lnr  to those obtained in the case of a stationary 
drop3. 

If the drop is moving with a Reynolds number of the order of un2/v i.e., 
o'=O(I ) ,  then the final characteristic equations determining rhe frequency 
are eq. [21] and eq. 1261. The numerical results in this case depart much 
more from Lamb's values than in the last case. The oscillation frequencies 
of (i) water drop in air, (ii) o-nitrotoluene drop in water, (iii) m-cresol drop 
in water and (iv) o-nitrobenzene drop in water have been computed and 
compared with the experimental results"' Is' '" 'O in the Figs. 3, 4, 5 and 6. 
The absence of a uniform sphericity of the drop and a considerable amplitude 
of oscillation caused a large scatter of the experimental data. The general 
trend of rhe results seem to be in somewhat better agreement with the present 
calculated values than with Lamb's. A word should be said about this 
comparison of the theoretical results with the available experimental data. 
Much of the earlier experimental investigations on the oscillations of the 
drop lack such details as the shape of the drop as a function of drop size and 
and also the purity of the systems used. The absence of these details make 
a real comparison futile. lmpurities largely affect the drop oscillations". 
Recently there has been some reliable experimental data" on pure liquid- 
Liquid systems, which can be used as a real check of the analysis. However 
we first use the earlier results for a qualitative comparison and afrerwards 
make a real quantitative check with the results on pure liquid-liquid systems. 

The oscillations of water drops in air have been experimentally studied 
by both Constan and Calvert" and by LaneTs. The Fig. 3 shows a comparison 
of the observed results with the present calculated and Lamb's values. The 
other result of Constan and Calvert on the oscillations of propylene glycol 
and ethylene glycol drops in gaseous media show that to a first approximation. 
the frequencies are independent of Re and this is well borne out by the 
Present calculations also. 

The results of Schroeder and Kintner16 could not be fully utilised since 
the results are for nineteen liquid-liquid systems put together. However 
their conclusion that the frequencies of oscillation are lower than Lamb's by 



about 169; is well supported from these results. The dependence of the 
frequency on the amplitude of osciilstion is also studied by Schroeder and 
Kintner and this may also be taken into accourir. 

In the Figs. 4 and 5, the experimental findings of Kaparthi and Lich[1° 
are plotted against thz present calculated values and Lamb's results. For the 
system of nitrotoluene drop oscillating , in  water, the resuits for the case 
o'> > I ,  i.e., very small 'We are also plotted. These values agree very well 
with the experimental findings. Even in the other cssc of the values calcii- 
lated for large Re, the continuous variation of the shape of the drop and the 
amplitude of oscillation make the comparison of the calculated and observed 
results very difficult. ., ,. 

The zh,ence of impurities from the system is very important for a better 
comparison and in this connection the results of Wlnnikow and Chads are 
of special interest, since a critical check can be made on the obszrved and 

m KAEARTHI AND L ~ C H T  
( I C 6 2 )  

---- LAMB'S THEORY 
\ ------ PRESENT CALCdICATIONS 
\ 

FIG. 5 
Frqusncies of  oscillation of an mmesol drop moving 

with its terminal velocity in water. 
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Oscillation frequencies o f  a pure liquid-liquld system (0-nitrobenzene drop orciliating in water) 

calculated results. The observed frequencies and those obtained by the 
present calculations are compared with the Lamb's result in Fig. 6 .  It 
clearly establishes the limited apphcability of Lamb's results. Accurate 
measurements on pure liquid-liquid systems, such as  the above one are badly 
leeded for a definite comparison between t h e o ~ y  and experiment. 

The eddy discharge frequency as measured by Gunn2' for water drop in 
air and Winnikow and Chao" for a nitrobenzene drop in water is also shown 
in the Figs. 3 and 6 .  The intersection of the eddy discharge curve and the 
Oscillation line will result in a resonnnce which have been noticed by several 
Workers. A striking maximum in the frequency-drop size curve observed by 



fiaparthi and ~ i c h t "  ia  slso n u s t  probably due Lo sucli a process. But if  [he 
oscillation of the drop is czused by Vortex dlschasge, then the problc~il u;li 
have to be treated as a fcirccd oscilPalion problem and this has not been done 
so Far. 

Pn conclusion it appears that experiments rcvznl distincL deviations from 
the classic analysis of Lamb. These discrepancies tmdoubtedly arise frolll 
the ~icglect of viscous and iiicrtial effects cmsed by the drop motion. we 
have extended Lsmb's ana1ys;s by including thcse elrecis. 4s a rcsuit most 
of the discrepancies are quiilitaiively accounted for and i ~ ~ d e c d  in the onc case 
whcre very careful measurements on  pur-e systems have qccn performed, tlicre 
is even :I quantitative agiccment. Furrher exlxr!rnent$l studies on clearly 
defined systems would hcip Lo elucidate the valid!ty of tile prcsant cnlcu1atiol:s. 

Thc ai~tllors thank Prof. R. S. Kr,shiinn for liis cncour;igcmcn:, tile 
Universi~y Grants Ccxi1niss;cn and the National Ins!;iutc of Scienccs Tor the 
amnrd of Research Fr1lowhh:ps to one of $he aulhors (S. V. Siihracnanyam). 
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