ON TRIANGULAR DECOMPOSITIONS TO EVALUATE THE DETERMINANT OF AN ARBITRARY SQUARE MATRIX A INCLUDING THE SOLUTION OF $A x-b$ AND ON THE RELATED COMPUTATIONAL RECURRENCE RELATIONS

By Syamal Kumar Sen
(Central Instruments and Services Laboratory, Indian Institute of Science, Bangalore-I2, India)

[Received: December 24, 1968]

1. Abstract

The invariant nature of the determinant of a matrix under elementary tranformations affords an easy deternining way of obtaining the determinant of a matrix by converiing it into atrangulir form The single $L R$ decomposition does it still more easily, provided all the leading submatrices are non-smgular. In fart, in case of any singular or near-singular leading submatris or submatrices $L R$ decomposition fails or produces inaccurate results. In this context, presented m this paper are four types of triangular decompositions (different from $L R$ type) which asually succeed in such singutar or near-singular cases. Also presented here is a discussion of all possible triangular decompositions, and their usefulness and wiqueness in presenting a square matrix. A solution of a spstent of linear algebrcic equtaions $A x=b$ through the easy inversion of the trangular ones is shown. Also presented are the simple explicil computational recurrence relations for easy attomatic computations of the solution vector \vec{x} of $\overrightarrow{A x}-\vec{b}$ by all possible triangular decompositions. A trpical numerical example has been worked out as an ilhustration.

2. Triangular Decompositions

Four possible triangular matrices may be tholight of for any square matrix. These triangular decompositions spring from the fact that any square matrix has two and only two diagonals, left and right. In any triangular decomposition, the dagonal elements of any of the two triangular matrices must be specified in order to determine them uniquely from a given square matrix. It is convenient here to define a few matrix terms to be used in the treatment.
(a) Triangular matrix is a square matrix having either a left or a right diagonal below or above which all elements are zeros, thus presenting a form of a bilateral triangle of elements, normally, non-zero in nature.
(b) Lower triangular matrix of left diagonal $\left(L_{p}\right)$ is a square matrix, all the elements of which above the left diagonal are zeros.
(c) Upper triangular matrix of lef. diagonal $\left(R_{l}\right)$ is a square matrix all the elements of which below the left diagonal, are zeros.
(d) Lower triangular matrix of right diagonal $\left(L_{r}\right)$ is a square matrix, all the elements of which above the right diagonal are zeros.
(e) Upper triangular matrix of right diagonal $\left(R_{7}\right)$ is a square matrix, all the elements of which below the right diagoral are zcros.

Since the conventional matrix multiplication is not commutative, the four triangular matrices L_{t}, R_{l}, L_{r} and R_{r} have twelve different product combinations taking any two at a time. Out of these, only five product combinations can represent a given square matrix uniquely, They are $X_{t} R_{1}, R_{1} L_{l}, L_{1} R_{p}$, $L_{r} L_{l}$ and $R_{r} R_{i}$. The rest of the possible combinations $R_{r} L_{l}, L_{l} L_{r}, R_{l} R_{r}$, $R_{l} L_{r}, L_{r} R_{l}, R_{r} L_{r}$ and $L_{v} R_{r}$ only give rise to triangular matrices and are therefore of no use in presentation of a given square matrix uniquely.

It can be seen that of the five decompositions cited above the first two can also represent a square matrix uniquely even if they are multiplied in the reverse way. The last three of these, since they fail in this respect, cannot be used for finding eigen values of a square matrix. But these three decompositions as also the $R_{l} L_{\text {}}$ decomposition have the advantage over the conventional $L_{1} R_{1}$ decomposition in that when the leading submatrix or submatrices of a square matrix is singular or near-singular they succeed in complete decompositions It can also be seen that triangular martices of the right diagonal only e.g., $R_{r} R_{r}$ or $R_{r} L_{r}$ camot represent a square matrix.

3. Computational. Recurrence Relations

Simple recurrence relations for finding L_{j}, R_{b}, L_{r} and R_{r} for the five useful decompositions have been derived explicitly from a given square matrix using conventional matrix multiplication rules (i.e. defining unit matrix as a left diagonal matrix with unity in its left diagonal terms, instead of right diagonal terms).
Consider the square matrix

$$
\begin{aligned}
A=\left\{\begin{array}{ll}
a, j
\end{array} \quad\right. & i=1,2,3, \cdots, n-1, n \\
& j=1,2,3, \cdots, n-1, n
\end{aligned}
$$

and the friangular matrices

$$
L_{i}=\left\{\begin{array}{ll}
l_{1 j}
\end{array}\right\} \quad \begin{aligned}
& i=1,2,3, \cdots, n-1, n \\
& \\
& j=1,2,3, \cdots, i-1, i
\end{aligned}
$$

$$
\begin{aligned}
& R_{I}=\left\{r_{i s}\right\} \quad j=1,2,3, \cdots, n-1, n \\
& i=1,2,3, \cdots, j-1, j \\
& L_{r}=\left\{l_{i j}^{\prime}\right\} \quad \begin{array}{l}
i=1,2,3, \cdots, n-1, n \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array}=\{n-(n-(i-1)\},\{n-(i-1)\}+2, \cdots, n-1, n
\end{aligned}
$$

and

$$
\begin{aligned}
R_{r}=\left\{r_{i}^{\prime}\right\} & i=1,2,3, \cdots, n-1, n \\
& j=1,2,3, \cdots,\{n-(i-1)\}
\end{aligned}
$$

It can be seen that the sequence of values of the subscripts i and j (to represent matrix elemenis) carries the followng meaning all through our, though in some cases brief note will be added for easy and quick access to the recurrence relations. The sequence of subscripis i and j in

$$
\begin{array}{rllll}
* & i=1, & 2, & 3, & \cdots, \\
j=1, & n \\
j=1, & 2, & 3, & \cdots & n-1,
\end{array},
$$

indicate that i is to be taken as 1 (fixed) firsi and j is to be varied from 1 to n at the interval of 1 . Then $i=2$ (fixed) and $j=1,2,3, \ldots, n-1, n$. Next $i=3$ (fixed), $j=1,2,3, \cdots, n-1, n$, and so on.

The square matrix A when expressed as the product of L_{1} and R_{l} matrices, the left diagonal elemencs of L_{l} being specified as unity, we get the following recurrence relations.

$$
\begin{align*}
& r_{i j}=a_{s j}-\sum_{p=1}^{i-1} l_{i p} r_{p j}, \quad l_{f f}-1 \text { for all } i \tag{1.1}\\
& i \leqq j \\
& l_{i j}=\left(a_{i j}-\sum_{p=1}^{\sum_{i p}} l_{i p} r_{p j}\right) / r_{j j} \\
& i>j \\
& j=1,2,3, \cdots, n-1, n ; i=1,2,3, \cdots, n-1, n
\end{align*}
$$

We first take $j=1$ (fixed) and go on varying i from 1 to n at an interval of 1. As a result we get r_{11} from the first relation and then $l_{21}, l_{31}, l_{51}, l_{51}, \ldots, l_{n 1}$ from the second relation. Next we take $j=2$ (fixed), and vary i from I to n as usual at an interval of 1 and find r_{12}, r_{22} from the first relation and l_{32}, l_{42}. $l_{x_{2}}, \cdots, l_{n 2}$ from the second relation and so on. Lastly we take $j=n$ (fixed) and vary i from 1 to n at an interval of 1 and consequently we get $r_{1 n}, r_{2 n}$, $r_{3 n}, \cdots, r_{n n}$.

$$
\begin{equation*}
\operatorname{Det} A={\underset{n}{n}=1}_{n}^{I_{H}} \tag{1.2}
\end{equation*}
$$

We replace the system of equations $A x=$, by

$$
L_{i} R_{d} x=b, \text { hence } R_{1} x=L_{i}^{-1} b=c(s a y)
$$

The elements of L_{1}^{-1} marix are
$l_{i j}=-\sum_{p=j}^{i-1} l_{i p} l_{p j}, j=1,2,3, \ldots, n-1 ; i=j+1, j+2, j+3, \cdots, n[1.3$
This recurrence relation has the unique feature of demanding no separate storage for its elements and it moreover, converts L_{l} matrix to L_{l}^{-1} matrix in the same locations as those of L_{l}, with maximum possible automation. All the above elements $l_{i j}$, are but the elements of L_{i}^{-1} matrix; the elements of L_{1} matrix get destroyed. In all the subsequent presentation of the inverse triangular matrix, the same property and nature can be observed except at those places where different leiters have been used.

The elements of the column vector c^{a} are

$$
\begin{equation*}
c_{p}=\sum_{p=1}^{1} l_{\mathrm{j} p} b_{p} \quad \mathrm{j}=1,2,3, \ldots, n-1, n \tag{1.4}
\end{equation*}
$$

The roots are

$$
\begin{gather*}
x_{i}=c_{i} / r_{i 1} \quad i=n \tag{1.5}\\
x_{i}=\left(c_{i}-\sum_{p=1+1}^{n} r_{i p} x_{p}\right) / r_{i}, \quad i=n-1, n-2, \ldots, 1
\end{gather*}
$$

This evaluation of the roots are evidently carried out by back substitution mothod.

$$
\begin{align*}
& \text { If } A=R_{z} L_{j} \text {, then } \\
& r_{y}=a_{i j}-\sum_{p=j+1}^{n} r_{i p} p_{p j}, \quad l_{n}=1 \text { for all i } \\
& i \leqq j \\
& l_{u j}=\left(a_{i j}-\sum_{p=i+1}^{n} r_{i p} l_{p j}\right) / r_{i j} \tag{2.1}\\
& \text { i>j } \\
& \begin{array}{l}
i=n, n-1, n-2, \cdots, 2,1 \\
j=n, n-1, n-2, \cdots, 2,1
\end{array} \\
& \text { Det } A=\underset{i=1}{\boldsymbol{\pi}} r_{i s} \tag{22}
\end{align*}
$$

The equations $A x=b$ are written as

$$
R_{l} L_{l} x=b, \text { i.e., } L_{l} x=R^{-1} b=c \text { (say) }
$$

The elements of the R_{l}^{-1} matrix are

$$
\begin{array}{ll}
q_{i j}=-\left[\sum_{p=i+2}^{j} r_{t p} q_{p j}\right] / r_{t i} & i=n, n-1, \cdots, 2,1 \tag{2.3}\\
i<j & j=i, i+1, \cdots, n \\
q_{1 j}=\frac{1}{r_{1 j}} & \\
i=j &
\end{array}
$$

It can be seen here that extra $n(n+1) / 2$ locations have been used for the R_{l}^{-1} matrix. Since the diagonal elements of R_{l} matrix are not unity, exactly similar recurrence relations as in [1.3] are not feasible. In can be noted that $q_{t j}$'s are to be taken zer $1 s$ for $i>j$.

The elements of c are, therefore,

$$
\begin{equation*}
c_{j}=\sum_{p=1}^{n} q_{j p} b_{p} \quad \mathrm{j}=1,2,3, \ldots, n \tag{2.4}
\end{equation*}
$$

and the roots are

$$
\begin{gather*}
x_{i}=c_{i}-\sum_{p=1}^{i-1} l_{f p} x_{p} \quad i=1,2,3, \cdots, n \tag{2.5}\\
\text { If } A=L_{l} R_{r}, \text { then } \tag{3}\\
i=1,2,3, \ldots, n-1, n \tag{3.1}\\
l_{1 j}=\left(a_{i, n-j+1}-\sum_{p=1}^{\left.\sum_{i p}^{-1} l_{i p} r_{n, n-j+1}^{\prime}\right) / r_{j, n-j+1}^{\prime}, \quad l_{i}=1 \text { for all } i} \begin{array}{l}
j=1,2,3, \cdots, i-1 \\
r_{i j}^{f}=a_{i j}-\sum_{p=1}^{i-1} l_{i p} r_{p j}^{\prime}, \quad \mathrm{J}=1,2,3, \cdots, \quad(n-i), \quad(n-i+1) .
\end{array}\right.
\end{gather*}
$$

We first find for $i=1, r_{11}^{\prime}, r_{12}^{\prime}, r_{13}^{\prime}, \cdots, r_{1 n}^{\prime}$; then for $i=2$, we find l_{21}; $r_{21}^{\prime}, r_{22}^{\prime}, r_{23}^{\prime}, \ldots, r_{2}^{\prime},{ }_{n-1}$. Next for $i=3$, we find $l_{31}, l_{32} ; r_{31}^{\prime}, r_{32}^{\prime}, r_{33}^{\prime}, \ldots$, $r_{3, n-2}^{\prime}$ and so on. Lastly we find for $i=n, l_{n 1}, l_{n 2}, l_{n 3}, \cdots, l_{n}, n-1 ; r_{n 1}^{\prime}$.

Det $A=(-1)^{\mathrm{tnt} \pi / 2}{\underset{i=1}{n} r_{1}^{\prime}, n-i+1}^{n}$
where Int $n / 2$ is the integral part of $n / 2$.

Since $L_{i} R_{r} x=b$ i.e. $R_{y} x=I_{i}^{-1} b=c$ (say) wo have the elements of L_{l}^{-1} matrix as

$$
l_{i j}=-\sum_{p=j}^{j} l_{t p} l_{p j} \quad \begin{align*}
& j=1,2,3, \cdots, n-1 \tag{3.3}\\
& i=j+1, j+2, \cdots, n
\end{align*}
$$

The elements of the column vector c, then, are

$$
\begin{equation*}
c_{j}=\sum_{p=1}^{3} l_{1 p} h_{p} \quad \mathfrak{j}=1,2,3, \cdots n \tag{3.4}
\end{equation*}
$$

and the roots are

$$
\begin{align*}
& x_{i}=\left[c_{n-i+1}-\sum_{p=1}^{i-1} r_{n-i+1}^{\prime}, p\right.\left.x_{p}^{\prime}\right] / r_{n-i+1}^{\prime}, i \tag{3.5}\\
& i=1,2,3, \cdots, n \tag{4}
\end{align*}
$$

When $A=L_{r} L_{1}$, we have

$$
\begin{equation*}
q=1,2,3, \ldots, n \tag{4.1}
\end{equation*}
$$

$$
\begin{aligned}
& l_{i, j}^{\prime}=q_{i j}-\sum_{p=j+1}^{n} l_{t p}^{\prime} l_{p j}, l_{n}=1 \text { for all } i \\
& \qquad j=n-q+1 ; i=n-j+1, n-j+2, n-j+3, \cdots, n
\end{aligned}
$$

$$
l_{j 1}=\left(a_{n-j+1, j}-\sum_{p=1+1}^{n} l_{n-j+1, p} l_{p i}\right) l_{n-j+1, j}^{\prime}
$$

$$
j=n-q+1 ; i=1,2,3, \cdots, j-1
$$

We first find for $q=1, l_{\mathrm{In}}^{\prime}, l_{l_{n}}, l_{3 n}^{\prime}, \ldots, l_{n n}^{\prime} ;$ then $l_{n 1}, l_{n 2}, l_{n 3}, \ldots$ $l_{n, n-1}$. Next for $q=2$, we find $l_{2, n-1}^{\prime}$; $l_{3, n-1}^{\prime} ; l_{4, n-1}^{\prime} ; \ldots l_{n, n-1}^{\prime}$; then $l_{n-1,1} ; l_{n-1,2} ; l_{n-1,3} ; \cdots ; l_{n-1, n-2}$ and so on. Lastly for $q=n$, we find $l_{n t}^{\prime}$.

Det $A=(-1)^{\text {int } n / 2} \sum_{i=1}^{n} l_{i, n-i+1}^{\prime}$
The equations $A x=b$ can be written as $L_{r} L_{1} x=b$ i.e. $L_{1} x=-L_{r}^{-1} h=c$ (say) The elements of L_{r}^{-1} matrix are

$$
q_{i j}=\frac{1}{l_{n-i+1, i}^{-}} \quad \text { when } i+j>n
$$

otherwise

$$
\begin{aligned}
& \left.q_{13}=-\sum_{p=i+1}^{n-j+1} l_{n-i+1, p}^{\prime} q_{p, j}\right) / l_{n-i+1, i}^{\prime} \\
& i=n, n-1, n-2, \cdots, 1 ; \mathrm{j}=1,2,3, \cdots, n-i+1
\end{aligned}
$$

We first take $i=n, j=1$ and find $q_{n,}$; from the first relation. Next we take $i=n-1, j=1$ and find $q_{n-1,1}$ from the second relation. Then we take $i=n-1$, $j=2$ and calculate $q_{n-1,2}$ from the first and so on,

The elements of the column vector c are

$$
\begin{equation*}
c_{j}=\sum_{p=1}^{n-1+1} a_{j p} b_{p}, j=1,2,3, \ldots, n \tag{4.4}
\end{equation*}
$$

Roots are then given by

$$
\begin{aligned}
& x_{i}=c_{i}-\sum_{p=1}^{i-1} I_{i p} x_{p_{p}} i=1,2,3, \ldots, n \\
& \text { If } A=R_{r} R_{l}, \text { tren } \\
& \mathrm{j}=1,2,3, \ldots, n \\
& r_{i j}=\left(a_{n-i+1, j}-\sum_{p=1}^{i-1} r_{n-i+1, p}^{\prime} r_{p j}\right) / r_{n-i=1}^{f}, \\
& i=1,2,3, \ldots j-1 \\
& r_{i j}^{\prime}=a_{i j}-\sum_{p=1}^{\prime 1} r_{i p}^{\prime} r_{p j} \\
& i=n-\mathrm{j}+1, n-\mathrm{j}, n-\mathrm{j}-1, \cdots, 1
\end{aligned}
$$

From these recurrence formulae we find first (for $j=1$) $r_{n i}^{\prime} ; r_{n-1,1}^{\prime}$; $r_{n-2,1}^{\prime} \cdots, r_{1 t}^{\prime}$ in a sequence; next we fin' (for $\mathrm{j}=2$) r_{12}; followed by $r_{n-1,2}^{\prime} ; r_{n-2},{ }_{2} ; r_{n-3,2}^{\prime} ; \cdots ; r_{12}^{\prime}$ Next (for $j=3$), we find $r_{13} ; r_{23}$; followed by $r_{n-2,3}^{\prime} ; r_{n-3.3}^{\prime} ; r_{n-4,3}^{\prime} ; \cdots, r_{13}^{\prime}$ and so on. Proceeding in this way we find at the end (for $j=n$) $r_{t n} ; r_{2 n} ; r_{3 n} ; \cdots ; r_{n-1, n}$; followed by $r_{t n}^{\prime}$.

$$
\begin{equation*}
\text { Det } A=(-1)^{\text {int } n\{2}{\underset{i=1}{n} r_{i, n-i+1}^{\prime}}_{n}^{n} \tag{5.2}
\end{equation*}
$$

The equations $A x=b$ can be written as $R_{r} R_{I} x=B$ i.e. $R_{J} x=R_{r}^{-1} b=c$ (say) The elements of R_{r}^{-1} matrix are

$$
\begin{align*}
& q_{i j}=1 / r_{j 1}^{\prime}, t=n, n-1, n-2, \cdots, 1 ; j=n-i+1 \\
& q_{i j}=-\left[\sum_{p=n-j+1}^{f-1} r_{n-i+1, p}^{\prime} q_{p j}\right] / r_{n-i+1,1}^{p} \quad \begin{array}{l}
j=2,3,4, \cdots, n \\
i=n, n-1, n-2, \cdots, j
\end{array} \tag{53}
\end{align*}
$$

From the first recurrence relation we find $q_{n a 1} ; q_{n-1,2} ; q_{n-2,3} ; \cdots ; q_{1_{n}}$ in a sequence, then we move on to second relation and find $q_{n 2} ; q_{n-1,3}$; $q_{n-2,4} ; \cdots ; q_{2 n}$ sequentially; followed by $q_{n, 3} ; q_{n-1,4} ; q_{n-2,5} ; \cdots, q_{3 n}$ and so on. Proceeding m thas way we find at the end $q_{n t_{3}}$.

The clements of the column vector are

$$
\begin{equation*}
c_{j}=\sum_{p=n-j+1}^{n} q_{j p} h_{p, j} j=1,2,3, \ldots, n \tag{5.4}
\end{equation*}
$$

and the roots are

$$
\begin{align*}
& x_{i}=\left[c_{i}-\sum_{p=i+1}^{n} r_{i p} x_{p}\right] / r_{i i} \tag{5.5}\\
& i=n, n-1, n-2, \cdots, 1
\end{align*}
$$

4. Example

$$
A=\left\{\begin{array}{rrrr}
2 & 4 & 3 & 2 \\
3 & 6 & 5 & 2 \\
2 & 5 & 2 & -3 \\
4 & 5 & 14 & 14
\end{array}\right\}
$$

Well-conditioned with respect to inverse and having a determinant value of -5 , the above matrix, however, fails to oblige $L_{1} R_{l}$ decomposition, since in the course of decomposition r_{22} turns out to be zero, and as a result, l_{32} and I_{42} cannot be determined.
A can be written as, when $A=R_{i} L_{i}$,

$$
A=\left\{\begin{array}{llll}
-\frac{1}{23} & \frac{29}{14} & 1 & 2 \\
& \frac{23}{14} & 3 & 2 \\
& & 5 & -3 \\
& & & 14
\end{array}\right\}\left\{\begin{array}{cccc}
1 & & & \\
\frac{1}{2} \frac{0}{3} & 1 & & \\
\frac{4}{7} & \frac{1}{1} \frac{7}{4} & 1 & \\
\frac{4}{14} & \frac{5}{14} & 1 & 1
\end{array}\right\}\left[\begin{array}{ll}
-1 \mathrm{ex}]
\end{array}\right.
$$

When $A=L_{1} R_{r}$, the elements of L_{1} and R_{r} are calculated rowwise as follows:-

$$
\begin{align*}
& r_{11}^{\prime}-2, \quad r_{12}^{\prime}=4, \quad r_{13}^{\prime}=3, r_{14}^{\prime}=2 \tag{3.1ex}\\
& l_{21}=a_{24} / r_{14}^{\prime}=2 / 2=1 ; r_{21}^{\prime}=a_{21}-l_{21} r_{11}^{\prime}=1 ; r_{22}^{\prime}=a_{22}-l_{21} r_{12}^{\prime}=2 \\
& r_{23}^{\prime}=a_{23}-l_{21}^{\prime} r_{13}^{\prime}=5-1.3=2 \\
& l_{31}=a_{34} / r_{24}^{\prime}=-3 / 2 ; l_{32}=\left(a_{33}-l_{31} r_{13}^{\prime}\right) / r_{23}^{\prime}=13 / 4 \\
& r_{31}^{\prime}=a_{31}-l_{31} r_{11}^{\prime}-l_{32} r_{21}^{\prime}=2+\frac{3}{2} \cdot 2-\frac{13}{4}=1=\frac{7}{4}
\end{align*}
$$

$$
\begin{aligned}
& r_{32}^{\prime}=a_{32}-l_{31} r_{12}^{\prime}-l_{32} r_{22}^{\prime}=5+\frac{3}{2} \cdot 4-\frac{13}{4} \cdot 2=\frac{9}{2} \\
& l_{41}=a_{44} / r_{24}^{\prime}=14 / 2=7 ; l_{42}=\left(a_{43}-l_{41} r_{13}^{\prime}\right) / r_{23}^{\prime}--\frac{1}{2} \\
& l_{43}=\left(a_{42}-l_{41} r_{12}^{\prime}-l_{42} r_{22}^{\prime}\right) / r_{32}^{\prime}=\left(5-7.4+\frac{7}{2} \cdot 2\right) / \frac{9}{2}=-\frac{32}{9} \\
& r_{41}^{\prime}=a_{41}-l_{41} r_{11}^{\prime}-l_{42} r_{21}^{\prime}-l_{43} r_{31}^{\prime}=4-7.2+\frac{7}{2} \cdot 1+1-\frac{32}{9} \cdot \frac{7}{4}=-\frac{s}{18}
\end{aligned}
$$

Therefore

$$
L_{1} R_{r}=\left\{\begin{array}{cccc}
1 & & & \tag{3.2ex}\\
1 & 1 & & \\
-\frac{3}{2} & 13 / 4 & 1 & \\
7 & -7 / 2 & -32 / 9 & 1
\end{array}\right\}\left[\begin{array}{llll}
2 & 4 & 3 & 2 \\
1 & 2 & 2 & \\
7 / 4 & 9 / 2 & & \\
-5 / 18 & &
\end{array}\right]
$$

Det $A=r_{14}^{\prime} r_{23}^{\prime} r_{32}^{\prime} r_{41}^{\prime}=2.2 \cdot \frac{9}{2}(-) \frac{5}{18}=-5$
The elements of $L_{2}^{-i s}$ matrix are

$$
\begin{aligned}
& l_{21}=-l_{21} l_{11}=-1 ; l_{31}=-l_{31} l_{11}-l_{32} l_{21}=+\frac{3}{2}+\frac{13}{4} \cdot 1=\frac{19}{4} \\
& l_{41}=-l_{41} l_{11}-l_{42} l_{21}-l_{43} l_{31} ;-7-\frac{7}{2} \cdot 1+\frac{32}{9} \times \frac{19}{4}=\frac{115}{18} \\
& l_{32}=-l_{32} l_{22}=-\frac{13}{4} ; l_{42}=-l_{42} l_{22}-l_{43} l_{32}=-\frac{145}{18} . \\
& l_{43}=-l_{43} l_{33}=+\frac{32}{9} .
\end{aligned}
$$

Therefore L_{i}^{-1} matrix is

$$
\left[\begin{array}{cccc}
1 & & & \\
-1 & & & \\
\frac{19}{4} & -\frac{13}{4} & 1 & \\
\frac{115}{18} & -14 \frac{45}{18} & \frac{32}{9} & 1
\end{array}\right]
$$

When $A=L_{r} L_{1}$ and $i_{i 2}=1$ for all i, we can rewrite A as

$$
\left\{\begin{array}{ccc}
& 2 & 2 \\
\frac{9}{2} & \frac{13}{2} & -3 \\
-\frac{5}{18} & -16 & -7
\end{array}\right)\left[\begin{array}{cccc}
1 & & & \\
\frac{7}{18} & 1 & & \\
\frac{3}{2} & 1 & 1 & \\
1 & 2 & \frac{3}{2} & 1
\end{array}\right\}
$$

and $L_{r}^{-1}=$

$$
\left\{\begin{array}{cccc}
-23 & 29 & -\frac{64}{5} & -\frac{18}{5} \\
\frac{19}{18} & -\frac{13}{18} & \frac{2}{9} & \\
-\frac{1}{2} & \frac{1}{2} & & \\
\frac{1}{2} & &
\end{array}\right\}
$$

5. CONClUSION

The motivation of such triangular decomposition lies in the fact that, unlike a square matrix, the inverse of a triangular matrix can always be determined very easily. Furthermore computational recurrence relations can easily be formulated for triangular matrices from the matrix operation rules, using simple expressions of double subscripts of the matrix elements and of the order of the matrix; these computational relations actually mechanize the whole problem for computational purposes, irrespective of programmong languages used. It can be seen that the last three decompositions i.e. $L_{s} R_{r}$, $L_{r} R_{i}$ and $R_{r} L_{l}$, in their reverse multiplication, give rise to a triangular matrix of the right diagonal, and not of the left diagonal. As a result, the possiblity of direct computation of eigen walues which should be the left diagonal elements of a diagonal or a triangular matrix is remote. Furthermore it may be noted that L_{r}^{-1} matrix is an upper triangular matrix of right diagonal and R_{p}^{-1} matrix is a lower triangular matrix of the right diagonal. This is unlike the L_{l}^{-1} and R_{l}^{-1} matrices, in which case, L_{l}^{-1} matrix is a lower triangular matrix of the left diagonal and R_{l}^{-1} matrix is an upper triangular matrix of left diagonal.

It can be seen that all these triangular Algorithms along with those of Gaussian type produce the identical results ${ }^{2}$, ${ }^{3}$ within the limitations of computing precission and rounding errors of arithmetic calculations, whenever all of them succeed well for an arbitrary matrix. The last four Algorithms ($R_{1} L_{l}, L_{i} R_{r}, L_{r} I_{i}$ and $R_{r} R_{l}$), however, usually succeed in those cases also where $L_{l} R_{l}$ as well as Gaussian Algorithms fail. For a matrix having one or more leading submatrices singular, Gaussian Algorithms along with that of $L_{I} R_{1}$ fail unless we use row intercharging technique ${ }^{5}$. Thus the importance of using triangular matrices of right diagonal along with that of left one need not be stressed.

It can be, furthermore, seen that the last four Algorithms involve divisions in their computational recurrence relations. It is, therefore, a a problem to find the class of matrices where these denominators become zero. In this class of matrices, the $L_{l} R_{l}$ as also Gaussian Algorithms probably will succeed. For example, the $R_{l} L_{l}$ algorithm though suceeds when some leading principal minors vanish, fails when some trailing minors vanish. The $L_{l} R_{l}$ algorithm is, on the other hand, immune to such some vanishing trailing minors.

Lastly, the $R_{l} L_{l}$ Algorithm is the one which can be used not only for finding the solution vector \vec{x} of $\vec{A} \vec{x}=\vec{b}$, but also for eigenvalues of an arbitrary matrix having one or more leading submatrices singular or even the original matrix singular ${ }^{7}$.

ACKNOWLEDGEMENT

The author wishes to express his sincere thanks and gratitude to Prof. P. L. Bhatnagar for taking keen interest in the preparation of this paper and for fruitful suggestions and to Dr. S. Dhawan, Director, for constant encouragement.

Reterinces

1. Sen, S. K. J. Indian Inst. of Sci., 1967, d9, 37
2. Ibid, 1968, 50, 37.

3 Rutishauer, H. Nat Bur of Stands (Appl. Math. Ser.), 1958, 49, 47.
4. Fox, L. An tntroduction to Numerical Linear Algebra, (Clarendon Press, Oxford), 1964, 33.
5. Wilkirson. J. H. The Algebraic Eigen Value Problem, (Clarendon Press, Oxford), 1965, 199.
6. Bodewiq. E. Matrix Calculus. (North-Holland Pubishing Co., Amsterdam), 1956, 105.
7. Sen, S.K. . . . Communicated for publication.

