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1. ABSTRACT

The invariant nature of the determinant of a matrix under elementary
transformations affords an easy determining way o) obtaining the determinant of a
matrix by converting it into o triangula form  The single LR decomposition
does it still more easily, provided all the leading submairices are non-singular.
In fact, in case of any singular or near-singular leading submatrix or submatrices
LR decomposition fails or produces inaccurate results.  In this context, presented
wm this paper are four types of triangular decompositions (different from LR type)
which wsually succeed in such singular or near-singular cases. Also presented
here is a discussion of all possible triangular decompositions, and their usefulness
and uniqueness in presenting a square matriv. A solution of a system of linear
algebreic equations Ax =b through the easy inversion of the triangular ones is shown.
Also presented are the simpie explicit computational recurrence relations for easy

- A
automatic compurations of the solution vector x of Ax=b by all possible triangular
decompositions. A typical mumerical example has been worked out as an

iltustration.

2. TRIANGULAR DECOMPOSITIONS

Four possible triangular matrices may be thought of for any square
matrix. These trianguiar decompositions spring from the fact that any square
matrix has two and only iwo diagonals, left and right. In any triangular
decomposition, the diagonal elements of any of the two triangular matrices
must be specified in order to determine them uniquely from a given square
matrix. It is convenient here to define a few matrix terms to be used in the
treatment.
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(a) Triangular matrix is a square mairix having either a left or a right
diagonal below or above which all elements are zeros, thus presenting a form
of a bilateral triangle of elements, normally, non-zero in nature.

(b) Lower triangular matrix of left diagonal (£)) is a square matrix, all
the elements of which above the left diagonal are zeros.

(¢) Upper triangular matrix of lefi diagonal (R) is a square matrig al]
the elements of which below the left diagonal, are zeros.

(d) Lower triangular matrix of right diagonal (L,) is a square matrix, all
the elements of which above the right diagonal are zeros.

(¢) Upper triangular matrix of right diagonal (R} is a square matrix, all
the elements of which below the right diagonal are zeros.

Since the conventional matrix multiplication is not commutative, the four
triangular matrices L, R, [, and R, have twelve different product combina-
tions taking any two at a time. Out of these, only five product combinations
can represent a given square matrix uniquely, They are L, R, R/ L, LR
L,Lyand R R,. The test of the possible combinations R, L, L, L, RR,
RyL,, L,R, R, L, and L, R, only give rise to triangular matrices and are
therefore of no use in presentation of a given square matrix uniquely.

7

Tt can be seen that of the five decompositions cited above the first two
can also represent a square matrix uniquely even if they are multiplied in the
reverse way. The last three of these, since they fail in this respect, cannot
be used for finding eigen valucs of a square matrix. But these three
decompositions as also the R, L, decomposition have the advantage over the
conventional L; R; decomposition in that when the leading submatrix or sub-
matrices of a square matrix is singular or near-singular they succeed in
complete decompositions Tt can also be seen that triangular martices of the
right diagonal only e.g., L, R, or R, L, cannot represent a square matrix.

3. COMPUTATIONAL RECURRENCE RELATIONS

Simple recurrence relations for finding L, R, L, and R, for the five
useful decompositions have been derived explicitly from a given squarc
matrix using conventional matrix multiplication rules (i.e. defining unit matrix
as a left diagonal matrix with unity in its left diagonal terms, instead of
right diagonal terms).

Consider the square matrix
A=lah i=1,2,3, .-, n-Ln
j=1,2,3,-+.,n~1,n

and the sriangular matrices
Li={l;} 1=1,2,3 ... n-1,n

J=1,2,3, ., i-1,1
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Ry= {r,-d,} J=1,2,3, ¢, 01 n
i=1,2,3 <~ ,j-1J
L :{lfj} P=1,2,3 «=-«,n0-14Ln

j={n= (-0}, {a-(-D}+
a-G-D+2, o, a—1,n

>

and .
2,3 .- ,n~-1,n

3 L

1,2, 3, -+, {n—(i-D}

Jt can be seen that the sequence of values of ihe subscripts § and ; (to
represent matrix elements) carries the follow.ng meaning all through our,
though in some cases brief note will be added for easy and quick access to
the recurrence relatrons.  The sequence of subscripis 7 and / in

“i=1, 2,3, -+, n—1, n

J=12, 3 oo n=1, n”
indicate that i is to be taken as 1 (fixed) first and j is to be varied from 1 io
n at the interval of 1. Then i=2 (fixed) and j=1, 2, 3, -« «, n-1, n.
Next i=3 (fixed), j=1, 2, 3, « « -, n—1, n, and so on. -

The square matrix 4 when expressed as the product of L; and R, matri-
ces, the left diagonal elemencs of L, being specified as uniy, we get the
following recurrence relations.

i-1
ry=a;— 2
p=1

Lyt l; =1 for all {

iee)

i<y

. {111
Ly=(ay— Z I, r,pr, ®
=1
i>J
J=1,2,3 «+«+, n-1, n; i=1,2,3 +--,n~1, n

We first take j=1 (fixed) and go on varymg i from 1 to n at an interval of 1.
As a result we get r;, from the first relation and then Ly, Iy, Jes Isp = =+ Ty
from the second relation. Next we take j=2 (fixed), and vary i from 1 t0o n
as usual at an interval of 1 and find ry,, 7, from the first relation and I, /.
N I,z from the second relation and so on. Lastly we take j=n (fixed)
and vary i from 1 to » at an interval of 1 and consequently we get ry,, 7,

L

Det A= IT r, .2}
=1
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We replace the system of equations Ax= by

L; Ryx=b, hence Ryx=L ' b=¢ (say)
The elements of L;! marix are

izl
by = - 2} bplype J=1, 2, 3+ v ey m=1yd=]+1 42 j43, « oo, 513
.

This recurrence relation has the unique feature of demanding no separate
storage for its elements and it moreover, comverts I, matrix to L;! matrix
in the same locations as those of I, with maximum possible automaiion.
All the above elements /;; are but the elements of Ly matrix; the elements
of L; matrix get desiroyed. In all the subsequent presentation of the inverse
triangular matrix, the same property and nawure can be observed except at those
places where different letters have been used.

The elements of the column vector ¢ are
J
c,=ﬂ§‘ Lohy §=1,23 -+-, n~-4Ln [1.4]

The raots are
x,=cfr, Ii=n [L5]

»
x,=(c,~ hAr,r"’x")/r“’ i=n—1, n—2, »+ ., 1
=i

This evaluation of the roots are evidenily carried out by back substitution
method.

If A=R,L;, then 21
3 1
r,=4a; -~ ,,:;H Fiplpys Dy=1 foralli
i<j
L 2.1
|

n
I, = (ﬂrj - = , Tip Ip})/”i:
Pt

i>j
i=n, n—1, n—-2, ««+, 2, 1}

j=n, n—1, n—=2, «+ ., 2,1

a
Det A= = ry {2
i=]

2
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The equations 4x=>b are written as
R, L;x=b, ie., Lix=R 'bh=c (say)

The elements of the R; ! matrix are

i<j j=i, P41, « .0, m
[2.3]

g =—

3
Gy=—1 2 rpdllry i=m =1, .., 21 I
p=i+1
1
Py l

J

i—j

It can be seen here that extra n(n+1)/2 locations have been used for the
R matrix. Since the diagonal elements of R, matrix are not unity, exactly
similar recurrence relations as in [1.3] are not feasible. It can be noted that
g,'s are to be taken zer s for i>j].

The elements of ¢ are, therefore,

o= 2 gk, i=1, 2 3 cee,n 2.4
r=}
and the roots are
xi=a— iii lpX, i=1,2,3 <+, n 23]
’ If A=L,R,, then 3l
i=1,2, 3, -+, n-1, n 13.1]

Ly={a;, puyp1— a L7, nejit W hneisrs lp=1 forall i

j=1,2,3, ««., i~1
r;j=aij ? 1y =1, 2,3, «++, (n-D, (m-i+1).

wppj
We first find for i=1, Pits Tiz Yhss v v+ s 1,3 then for i=2, we find 7y ;
Tois Thas Phgy v o o 47l n-1- Next for i=3, we find Iy, Ly R
!
Y-z and so on. Lastly we find for i=n, Iy, Lo L = 0 ¢ s las meys T

Det 4 (__]) Int n/2 H r“ il [3.2]

1=1

where Int n/2 is the integral part of n/2.
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Since I;R, x=b ie. R,x=L;'b=c (say) we have the elements of IAd
mairix as

G J=1 2,3, -++, n-1
Ix] == 2 Ip by i—j1, 42, . n [3.3}
7=
The elements of the column vector ¢, then, are
A .
o= 2 1, by =L 23« en (3.4}
p=1
and the roots are
! . R
X= [0 — 2{”1;4‘*1’ o Xp )P norens 1 [3.5]
o=
i=1, 2, 3, -, n
When A=L,L;, we have 14
g=1 2,3, - -+, n [4.11

U=ay— 2 11

ps fn=1 for all ¥
g=jt1

je=n—g+1; i=n—j+1, n=j+2, n~j+3, ««+, n

];,z(ﬂn-;ﬂ.i“ z I’n—j+1,p1pi)/]ln—j+l,j
peitl
j=n—g+1l;i=1,2, 3, -, j-L
We first find for g=1, 1, Mp Lo = v o5 Uy then Ly, Loy Dy < v
I, w-1- Next for ¢=2, we find 2 .5 55 aey3 Mopas s * " dn pogs then

lpero1d Jmeras lucgss cc 3 Inoy, me and so on.  Lastly for g=n
we find 7',,.

Det A (—~1) 102 0 )P [42)
i=1

The equations Ax=D> can be writtenas L L, x=b i.e. L, x= L™} h=c(say)
The elements of L7} matrix are

1 .
9y = 57— when i+ j » n
In-i+l. i
otherwise
"-j’jl r ’
Gy == AZ I, G W niins
p=itl

i=p,n—l,n-2, » oo, 15 §=1,2,3,«+4, n—i+l
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We first take i=n, j =1 and find g, ; from the first relation. Next we take
j=n—1, j=1and find g,  from the second relation, Then we take i=p—1,
j=2 and calculate ¢,.y, 5 from the first and so on,

The elements of the column vector ¢ are
n~L§l .
o= Z qub,, j=1, 2,3, .-, n {4.4]
=1

Roots are then given by

i-1
== Z lyx, i=1, 2,3, <+ 1 4.5
=1
If A=R,R,, tren (s
=1, 2,3, -+, .4

i~
K ¢
’)j;—(an'i'ﬂ,)' - 21 Tneiqn, prpl)/rn‘i -1,
-

P=1,2, 3, -+ j—1
'] i-l
re=a.— & o

= i ip o
o=t

f=n—j+1, n—j, n-j—1,--, 1
From these recurrence formulae we find first (for j=1) ry; Facn 13
+ ., 7, in a sequence; next we fin' (for j=2) ry; followed by
’;—1.2; Fa—pin; Ppozzs v g Next (for j=3), we find ryy; 7y
followed by )., 33 Foos. 35 Fuedrs; * = = s Py and so on. Proceeding in this

way we find at the end (for j=n) rip; T2a5 ami * * ° 3 Tu-i,ns f0llowed by 7'y,

{5.2]

'
[ ARSI

"
Det A=(—1) o2 = S
-

The equations Ax=» can be wriiten as R R, x=5b i.e. Ryx =R 'b=c (say)
The elements of R matrix are
Gy=1/r, i=m n—1,0-2,«++, 1; j=n-i+l
j=2, 3, 4, -, n [5 3]

-1

- P ; .

9= 2 e Gl fem,n—1, n=2, « ]}
p=a~j+1
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From the first recurrence relation we find Gu15 Guey, 25 Gn-2,33 * ;5 q, in
a sequence, then we move on to second 161&110[1 and find gq,,; Gy, 33
Gp-2,45 * * ° 5 on sequentially ; followed BY ¢y Gnoy, 45 Gu-z 55 =« + s G
and so on. Proceeding m thm way we find at the end ¢q,,,.

The clements of the column vector ¢ are

n
o= >
pen-jt

Gpbp i=1, 2, 3, «++ . n [5.4]
1

and the roots are
#

;= 2 rpx)ing [5.5)
p=it1

i=n, n—1, =2, « « -, 1

4.  Example

A= {2 4 3 2 )
3 6 5 2
2 5 2 -3
4 5 14 14

Well-conditioned with respect to inverse and having a determinant value of
—35, the above matrix, however, fails to oblige IL; R, decomposition, since in
the course of decomposition ry, turns out to be zero, and as a result, Iy, and
4z cannot be determined.

A can be written as, when 4=R, [,

A4 = { -5 28 1 2] f.I }

J

When 4=1I;R,, the clements of L;and R, are calculated rowwise as
follows :— '

=2, =4, ri;=3, F=2 {3.1ex]
by = g1y =212 '1 3 rh=ag —ly =1 Pty =1y rly=2

’232023'121 riy=5-13=2

by=ayfryy = ~3[2; ly—(ag—1y riy)/ri=13/4

ry=ay —lyy Iy "51""2‘*‘%‘ -3 1=
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Pt~ ly 1y =l =543 412, =%
Ly =uafr3a=14/2=T; lg=(a,—1Iyy ri)/riy= - ~%
la=(an— 1y iyl rzlz)/ralz:(5‘7’4" 7)/(’ = =3
T =Gl Tyl My~ =4 -T7.24 20 1182 1o 8
Therefore
L R= ( 1 3o 2 4 3 2 }
J 1 1 l ! 1 2 2 [
- o ;
—3 134 1 | 74 9 |
7 =72 =325 1] L -5 j
Det d=riy rhy iy rf=2.2 2 (=) F~ } (3.2 ex]
The elements of Z;! matrix are
Iy= f]zx‘ =1 by= =Dy Iy =l b=+ 34 =12
o= =Ty Iyl Iy "143 I3y~ "‘7”1 Tt >
by= =I5y lyy= ~ ‘7!‘; Lp= "l Ln—1py Iy~ rg
Lg=—lyy Iy= + 332
Therefore L7 matrix is
ri 3
|
} 17‘_9 ;_143_ 1 J
U =it 21
When 4=L, L, and f,=1 for all i, we can rewrite A4 as [4.2 ex]
{ 2y (1 ]
| 2 2 ! 7 ! (
) I T
R IR,
U—de —16 —7 14 L1 2 2 1

and L7l= ~23 29 -t -—LE
[ 19 —13 2
18 18 9

|
W
e
| U ——"
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5. CoNnCLUSION

The motivation of such triangular decomposition lies in the fact that,
uniike a square matrix, the inverse of a triangular matrix can always be
determined very easily. Furthermore computational recurrence relations can
easily be formulated for triangular matrices from the matrix operation rules,
using simple expressions of double subscripts of the matrix elements and of
the order of the matrix ; these computational relations actually mechanize the
whole problem for computational purposes, irrespective of programmmg
languages used. It can be seen that the last three decompositions i.e. LR,
L,R; and R L, in their reverse multiplication, give rise to a triangular
matrix of the right diagonal, and not of the left diagonal. As a result, the
possiblity of direct computation of eigen values which should be the left
diagonal elements of a diagonal or a triangular matrix is remote. Further-
more it may be noted that L7 matrix is an upper triangular matrix of right
diagonal and R;' matrix is a lower triangular matrix of the right diagonal.
This is unlike the L; ! and R; ! matrices, in which case, I; ! matrix is a lower
iriangular matrix of the left diagonal and R;! matrix is an upper triangular
matrix of left diagonal.

It can be seen that all these triangular Algorithms along with those of
Gaussian type produce the identical resulis® 7 within the limitations of
computing precission and rounding errors of arithmetic calculations, whenever
all of them succeed well for an arbitrary matrix. The last four Algorithms
(R Ly, LiR,, L I, and R R}, however, usually succeed in those cases also
where L; R, as well as Gaussian Algorithms fail. For a malrix having one or
more leading submatrices singular, Gaussian Algorithms along with that of
L, R, fail unless we use row intercharging technique’. Thus the importance of
using triangular matrices of right diagonal along with that of left one need
not be stressed.

It can be, furthermore, seen that the last four Algorithms involve
divisions in their computational recurrence relations. Yt is, therefore, a
a problem to find the class of matrices where these denominators become zero.
In this class of matrices, the I, R, as alse Gaussian Algorithms probably will
succeed. For example, the R, L; algorithm though suceeds when some leading
principal minors vanish, fails when some trailing minors vanish. The LR,
algorithm is, on the other hand, immune to such some vanishing trailing
minors.

Lastly, the R, L; Algorithm is the one which can be used not only for

- RO
finding the solution vector x of Ax=5, but also for eigenvalues of an arbit-

rary matrix having one or more leading submatrices singular or even the
original matrix singular”.
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