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Tile irzvaria~ll nature o f  the rletern~innnt o f  a mnfr i r  under clernoiitary 
tron~formalions afircis an nrnsji cif~lri~ininiffg 1t~:v oj" obtai~~in,o the rietrr~rrinunt 0.f o 
matrix Bjl corr'wrtirtg i t  into i, t r i~~:r~rr lrr  i h m  Thr single L R  decompositio~l 
ilues it t i l l  more emily,  provided uil rAr irarling srhmatrices are non-srngulur. 
i n  fact, in case ofariq singular or neor-singular leading subtnatrix or submatrices 
LJ? ilcromposition foils or prorlucw i t m c ~ ~ r i i t ~  rfsults. In this context, presenteri 
m this p q ~ e r  oref&u t.vpe.r o f  trimigular deco~~ipositioii.~ (&&rerit fio?n L R  f jrpe) 

w'I?icI~ i!,\uitII1. succreri in such sing~!iar o, near-singulnr ciises. Also prcsevted 
h e  is a iliseiisiioiz o f  all possible ~riungulor i!ecomposiiiows, uliil their usefulness 
and I I I I ~ ~ I I C ' ~ S S  in pr,..rentinp a squrue m:ztriv. A soluiioiz of o q~ste?n of 1i11~'ur 
alg,.rbri.ic equdiuns A,? = b through the easy inversion i $ t h  trimzgulur orws is S / ? ~ W I I .  

Also presenred are the si?np/e explicit computurionul recurrcwce rrlatiurzs for easy - + 4  

mtomotie compurations o f  rhs solution vector x of Au -B 17.v a / /  possible triangular 
drcomposition.~. A tjpicol irunrerirai exan~ple has been worked out as an 
iliustrntion. 

Four possible triangular matrices may be t h o ~ g h t  o i  for any square 
matrix. These triangular decompositions spring from the fact that any square 
matrix has two and only two diagonals, l e a  and right. In any triangular 
d e ~ o r n ~ o s ~ t i o n ,  the diagonal elemcnts of any of the two triangular matrices 
mu7t be specified in order to determine them uniquely from a given square 
matrix. It is convcnicnt here to define a Ccw matr;x terms to be used in the 
treatment. 



(a) Triangular matrix is a square mairix having either a left or a right 
diagonal below or above which all elements are zeros, thus presenting a form 
oTa bilateral trianglc o r  elements, normally, non-zero in naturc. 

(6) Lower t r i a n g u h  matrix of left diagonal (L,) is a square matrix, ail 
the elements of wh~cl? above the left diagonsl ore zeros. 

(c) IJpper triangular matrix of lcri d.agonal (R,) is a square matrix all 
the elements of which below the left diagonal, are zcros. 

(d)  Lower trianguhr m:ltrix of right diagonal (4) is a squsre matrix, all 
the eIements of which above the right diagonal are zcros 

( e )  Uppcr triangular matrix of right diagonal (R,) is a square matrix, ail 
the elements of wlricl~ below thc right diagonal are zcros. 

Since the convention:rl matrix multiplication is not commutative, the four 
triangular matrices Li ,  R,, ', and R, have twelve different product combina- 
tions taking any two at  a time. Out of Lhesc, only five product combinations 
can represent a given square matrix uniquely, They are L, R,, R, L,, L,R,, 
LrL, and R, K , .  The rcsl of the possible combinaiions I(, L,, L, L,, R,,?,, 
R,L,, I ,  R,, R, L, ar;d L, R, only give rise to triangular matrices and are 
therefore of no use In presentation of a given square ~ ~ ~ a t r i x  nniquely. 

It can be seen that of the five decon~positions cited above the first two 
can also represent a siltlare matrix uniquely even if they are multiplied in the 
reverse way. The ltst three of these, since they fail in this respect, cannot 
be used for findmg eigen valucs of a square matrix. But these thrze 
decon>positions as also the R i I ,  deco~npxi t ion have the advmitage over the 
conventional L, R, decomposition in that when the leading submatrix or sub- 
matrices of a square matrix is singular or near-singular they succeed in 
complcte decompos,tions It can also be seen that triangular martices of the 
right diagonal only e.g. ,  I., I?, or R, L, cannot represent a square matrrx. 

Simple recurrence relations for finding Li, R,, L, and R, for the five 
useful decompositions have been derived explicitly from a given squarc 
matrix using conventional matrix multiplication rules (i.e. defining unit matrix 
as a left diagonal matrix with unity in its !eft diagonal terms, instead of 
right diagonal tcsms). 

Consider the square matrix 

and the lciangular matrice? 



On fhe related Computnfionnl Reewrrence Relations 

and 

R,--jr:,j i -1 ,  3, 3 , .  . . , n - I , n  

j=1, 2, 3 ,  . . . , {,I-(i-I)] 

J t  can be seen that the sequence of values of the subscripts j and j (to 
represent matrix elements) carries the follow,ng meaning all through ow, 
though in some cases brier note will be added for easy and quick access to 
the recurrence relations. The sequence of sub scrip;^ i and j i n  

indicate that i i s  to be taken as 1 (fixed) first and j  is to be varied from 1 to 
n at the interval of I .  Then i-2 (fixed) and j= 1 ,  2, 3, . . . , n - 1 ,  n. 
Next is 3 (tixed), j = 1, 2 ,  3, . . . , n - I ,  n, and so on. 

The square matrix A whcn expressed as Lhe product of L, and R, niatri- 
ces, the left diagonal elemenrs of L1 being soecified as unily, we get the . 
following recurrence relations. 

We first take j =  1 (fixed) and go on varymg i from 1 to n a t  an interval of 1. 
As a result we get r , ,  from the first relation and then 12,, 13 , ,  la,, IS,, - , In, 
froin the second relation. Next we take j=2  (fixed), and vary i from 1 to n 
as usual at an  interval of 1 and find r,,, r,, from the first relation and I,,, 1,. 

a . . . I,,, from the sccond relation and so on. Lastly we take j=n  (fixed) 
and vary i from 1 to n a1 an interval of 1 and consequently we get r,,, r,,, 
'I", . . ' , rnn. 

Det A - II r,, [1.31 - 1 



We replace the system of equations A s -  ) by 

L,R , .x -h ,  hence R,r=E; 'h=c(say)  

The elements of L; ' rnhlrix are 

This recurrence relation has the unique feature of demanding no separate 
storage for its elements and it  moreover, converts L, matrix to L;' matrix 
in the same locations as those of L,, with maximurn possible automaiion. 
All the above elements li, are but the elements of L;' matrix: the elements 
of L, matrix get destroyed. 'In all  the subsequent presentation of the inverse 
trialgular matrix, the same property and nniure can be observed except at those 
places where different lelters have been used. 

The elements of the column vector are 

The roots are 
x, = q'r, ,  i = n 

This evaluation of the roots are evidowLly carried out by back substiturion 
method. 

If A = R ,  L,, then [?I 

i -n ,  1 7 - 1 ,  1 1 - 2 ,  . . , 2, 1 

Det A =  -n r ,  
1-1 



On the related Computational Recurrence Relatiom 

The equations A x  = b are written as 

R,L,x=b, i . e . ,  L , x = R - 9 = c  (say) 

The elements of the Xi' matrix are 

It can be seen here that extra n ( n f  1)/2 locations have been used for the 
R;' matrix. Since the diagonal elements of R, matrix are not unity, exactly 
similar recurrence relations as in (1.31 are nor feasible. It can be noted that 
q,, 's are to be taken zer >s for ir j. 

The elements of c are, therefore, 

and the roots are 

If A =  L, R, , then I31 

where Int n/2 is the integral part of n/2. 



The elements of the column vector c, then, are 

c , = ; i : r  17 j - 1 ,  2, 3, . . . n 
p _ ,  JP 

13.41 

and the roots are 
I -  1 

n,= Ii,,-i+l- 2 ~ ' , , - ~ + l ,  p ~ l / r ' , - , + I ,  i [3.5] 
@ = I  

l j , = ( o n - j * l , i -  5 ~ ' n - j + , , p l p r ~ / ~ , f l - , ~ , , J  
p=l~tl  

j = n - q S 1 ;  i = l ,  2, 3 , .  - .  , j - I .  

We first find for q= 1, I:,, I:,, I;,,, . , f', , ; then I,,, I,,,, 4,. . . 
I ,n,..,. 

Next for q = 2 ,  we find I;, , . ,;  I:.,-,; I;., - , ; . . . I : , , - , ;  then , ; I , ;  1 ; - - ; I ,  - a d  so on. Lastly for q-n, 
we find l',,,. 

Dot A = = ( - I )  TT 
$ = I  

[4 21 

The equations A x = b  can be writ ten as L,L,x-b i.e. L, x- L-f h = c  (say) 
The elements of L;'matrix are 

1 
qij = 7- when i-I j > n 

4-HI, i 

otherwise 

i = n , n - 1 ,  n--2,  . .  . , 1; j = l ,  2, 3 , .  - . , n - i - t l  



On the related Compu2ntional Recurrence R e l a t h s  275 

we first take i-n, j = l and find q,. , from the first relation. Next we take 
i S n - I ,  j=  l and find q,-,. , from the second relation. Then we take i -n -  1, 
j=2 and calculate q,?,,  from the first and SO on, 

The elements of the column vector c are 

m - J + l  
c,= 2 q j ,bp ,  j - 1 ,  2, 3, 9 It 

D - 1  

Roots are then given by 

If A = R,R,, tren 

i = n - j t l ,  n - j ,  n-j-1, . . . , 1 

From these recurrence formulae we find first (For j - 1) r',, ; r',-,- 1 ; 
T i - , .  , . - - , r ; ,  in a sequence; next we fin ' (for j=2)  r , , ;  followed by 

pi-,, ; r,,+, ; r' , -3 , ,  ; . - . ; r',,. Next (for j=3) ,  we find r,,  ; r,, ; 

followed by r:.,. ; r;- , .  ; ; . . . , rllJ and SO on. Proceeding in this 
, r ,-,,, ; followed by r',,. way we find a t  the end (for j = 71)  r , ,  ; r,,; r,, ; . . . . 

The equations ,..~=b can be written as R,R,x-h i.e. R ,x=R; 'b - c  (say) 
The elements of R;' matrix are 

qiJ=l/ri, ,  [ = . J ~ , I I - ] ,  ,>-& - . . , I ;  j= r i - [ -+I  



From the f r s l  recurrence relation we find q,,, ; ql,-r, ; ~j*, .~.  ; - - . ; ql,& in 
a sequence. tile11 w3 move on to second relation and find q",? ; qn_l , , ;  

9 ~ 2 ,  4 ;  " D ; q,, seque!~li:illy ; fol!olved by q,,3 ; 4n-1, ., ; q ,.Z, ; . . . 
(13% 

and so on. Proceeding i n  r h ~ s  way we find at t!?e cnd qd,,t. 

The elements of the coinnm vector c are 

and the roots are 

x; -r [c; -- 2 r>g x p p , ;  
p = i t l  

i -n ,  n- -1 ,  n-2, . . . . 1 

Well-conditioned with respect to  inverse and having a deterniinanl value of 
-5, the above matrix. however, fails t o  oblige L,R, decomposition, since in 
the course of decompvsit~on turns out to be zero, and as a result, 1, and 
I,, cannot be delerinincd. 

A can be writtcn as, when A =I?, L,, . 

When A = L ,  R,, the elements of  L, and R, are calculated rowwise as 
follows :- 



When A - L ,  L, and lip = 1 for all i, we can rewrite A as r4.2 ex] 



The motivation of such triangular decomposition Lies in the fact that, 
unlike a square matrix, the inverse o f  a triangular matrix can always be 
determined very easily. Furthermore computational recurrence relations can 
easily be formulated for trinngular matrices from the matrix operation rules, 
using simple expressions of double subscripts of the matrix elements and of 
the order of the matrix ; these computational relations actually mechanize the 
whole problem for computational purposes, irrespective of programmmg 
languages used. I t  can be seen that the last three decompositions i.e. L,R,, 
L,R, and R,L,,  in their reverse multiplication, give rise to a triangular 
matrix of  the right diagonal, and not o f  the  left diagonal. As a result, the 
possiblity of direct computation of eigen values which should be the left 
diagonal elements of a diagonal or a triangular matrix is remote. Further- 
more it may be noted that L;' matrix is an upper triangular matrix of right 
diagonal and R;' matrix is a lower triangular matrix of the right diagonal. 
This is unlike the L;' and R;' matrices, in which case, L i l  matrix is a lower 
triangular matrix of the left diagonal and R;' matrix is an upper trianqular 
matrix of left diagonal. 

It can be seen that all these triangular Algorithms along with those of 
Gaussian type produce the identical resultsa'' within the limitations of 
computing precission and rounding errors of arithmetic calculations, whenever 
all of them succeed well for an arbitrary matrix. The last four Algorithms 
(R ,  Lj, LIR,, L, L, and R, R,), however, usually succeed in those cases also 
where L, R, as well as Gaussian Algorithms fail. For a malrix having one or 
more leading submatrices singular, Gaussian Algorithms along with that of 
L,R! fail unless we use row intercharging technique5. Thus the importance of 
using triangular matrices of right diagonal along with that of left one need 
not be stressed. 

It can be, furthermore, seen that the last four Algorithms involve 
divisions in their computational recurrence relations. It is, therefore, a 
a problem to find the class of matrices where these denominators become zero. 
In this cIass of matrices, the L, R, as also Gaussian Algorithms probably will 
succeed. For example, the R, L, algorithm though suceeds when some leading 
principal minors vanish, fails when some trailing minors vanish. The L,R, 
algorithm is, on the other hand, immune to such some vanishing trailing 
minors. 

Lastly, the R,L, Algorithm is the one which can be u$ed not only for 
+ - + +  

finding the solution vector x of Ax=b,  but also for eigenvalues of an arbit- 
rary matrix having one or more leading submatrices singular or even the 
original matrix singular7. 
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