ANALYTICAL SOLUTION FOR A SHRINK. FIT PROBLEM

By C. V. Yogananda
(Departmest of Mechanical Ensineering, Indian Inssitule of Science, Bangalore-12, India)

(Received: November 22, 1968)

Abstract

The problem of stress distribution resuliting from the Shrink-fit applied on an infinitely long cylinder has been analysed. Using Fourier integral method, the problem is reduced to the solution of a pair of dual integral equations, whieh are reduced to series solution of a Fredhoin equation finally. Bousinesq-Neuber three function theory has been employed for stress-analysis.

1. Introduction

Many boundary value problems connected with a solid cylinder have heen solved using elassical techniques. Solutions for the infinite solid elastic cylinder with the given tractions of various types have been given by Filon ${ }^{1}$, Focppl ${ }^{2}$ and Freudenthal ${ }^{3}$. Tranter and Craggs ${ }^{4}$ have given the solution for an infinite sohd cylinder subjected to a normal stress over half of its length which is a fundamental problem in elasticity. In all the above problems surface tractions are prescribed. Sparenbergs has recently solved a different kind of problem-a shrink-fit or indentation problem in which an infinite cylinder is subjected to an unit displacement over half of its length and traction-free over the remainder. It is the purpose of the present analysis to present a solution for an infinite solid shaft, the surface of which is traction free except for a band which is subjected to a prescribed radial displacement.

2. The Problem

The coordinate system employed is shown in Fig. 1. According to the Boussines-Neuber three function theorem [6.7], the displacements will satisfy the equalibrium condinons of elasticity theory if they are represented by the potential felds ϕ_{1}, ϕ_{2} and ϕ_{3} as follows:

$$
\begin{align*}
& 2 G u=-\partial F / \partial z \\
& 2 G v=-(1 / r)(\partial F / \partial \theta)-4(1-\mu)\left(\phi_{2} \sin \theta-\phi_{3} \cos \theta\right) \\
& 2 G w=-\partial F / \partial r+4(1-\mu)\left(\phi_{2} \cos \theta+\phi_{3} \sin \theta\right) \tag{1}
\end{align*}
$$

Fig. 1
Geometry and co-ordinate axes
$F=\phi_{1}+r\left(\phi_{2} \cos \theta+\phi_{3} \sin \theta\right)$
where $\nabla^{2} \phi_{1}=\nabla^{2} \phi_{2}=\nabla^{2} \phi_{3}=0$
(u, v, w) ; Displacements in r, θ, z directions
μ, G : Pussson's Ratio \& Shear modulus
The stress field associated with Eqs. $1 \& 2$ is of the form

$$
\begin{align*}
\sigma_{r} & =\mu \nabla^{2} F-\left(\partial^{2} F / \partial r^{2}\right)+4(1-\mu)\left[\left(\partial \phi_{2} / \partial r\right) \cos \theta+\left(\partial \phi_{3} / \partial r\right) \sin \theta\right] \\
\sigma_{\theta} & =\mu \nabla^{2} F-(1 / r)(\partial F / \partial r)+[4(1-\mu) / r]\left(\phi_{2} \cos \theta+\phi_{3} \sin \theta\right) \\
\sigma_{z} & =\mu \nabla^{2} F-\left(\partial^{2} F / \partial z^{2}\right) \\
\tau_{r z} & =-\left(\partial^{2} F / \partial r \partial z\right)+2(1-\mu)\left[\left(\partial \phi_{2} / \partial z\right) \cos \theta+\left(\partial \phi_{3} / \partial z\right) \sin \theta\right) \tag{3}
\end{align*}
$$

On the the curved boundary, $r=a$, throughout the length, it is assumed that

$$
\begin{align*}
& \tau_{r z}=0 \tag{4}\\
& w=\delta, a \text { constants for }|z| \leqslant l \text { and } \sigma_{r}=0 \text { for }|z|>l \tag{5}
\end{align*}
$$

i.e., the curved boundary has a shrink-fit type axisymmetric radial displacement for a length $2 l$.

3. The Solution

The three-functions $\phi_{1}, \phi_{2}, \phi_{3}$ are considered in the following form:

$$
\phi_{1}=\int_{0}^{\infty}\left(1 / \alpha^{2}\right) A(\alpha) I_{0}(\alpha r) \cos \alpha z d \alpha
$$

$$
\begin{align*}
& \phi_{2}=\int_{0}^{\infty}(1 / \alpha) B(\alpha) I_{1}(\alpha r) \cos \alpha z \cos \theta d \alpha \\
& \phi_{3}=\int_{0}^{\infty}(1 / \alpha) B(\alpha) I_{1}(\alpha) \cos \alpha z \sin \theta d \alpha \tag{6}
\end{align*}
$$

in which $A(\alpha), B(\alpha)$ are functions of α, and $I_{0}(\alpha r), f_{1}(\alpha r)$ are Modified Bessel functions of first kind and order zero and one respectively. The expressions for stresses and displacements, using Eqs. [6], [1] and [3] are:

$$
\begin{align*}
& \sigma_{r}= \int_{0}^{\infty}\left[A(\alpha)\left\{-I_{0}(\alpha r)+I_{1}(\alpha r) / \alpha r\right\}-B(\alpha)\left\{(4 \overline{1-\mu} / \alpha r+\alpha r) I_{1}(\alpha r)\right.\right. \\
&\left.\left.-(1+2 \overline{1-\mu}) I_{0}(\alpha r)\right\}\right] \cos \alpha z d \alpha \\
& \tau_{r z}= \int_{0}^{\infty}\left[A(\alpha) I_{1}(\alpha r)-B(\alpha)\left\{2(1-\mu) I_{1}(\alpha r)-\alpha r I_{0}(\alpha r)\right\}\right] \sin \alpha x d \alpha \\
& \sigma_{x}=\int_{0}^{\infty}\left[A(\alpha) I_{0}(\alpha r)+B(\alpha)\left\{\alpha r I_{1}(\alpha r)+2 \mu I_{0}(\alpha r)\right\}\right] \cos \alpha z d \alpha \\
& \sigma_{\theta}=\int_{0}^{\infty}\left[A(\alpha) \cdot\left\{-I_{1}(\alpha r) / \alpha r\right\}+B(\alpha)\left\{4(1-\mu) / \alpha r I_{1}(\alpha r)\right.\right. \\
&\left.\left.+(2 \mu-1) I_{0}(\alpha r)\right\}\right] \cos \alpha z d \alpha \tag{7}
\end{align*}
$$

$2 G u=\int_{0}^{\infty}(1 / \alpha)\left[A(\alpha) I_{0}(\alpha r)+B(\alpha) \alpha r I_{1}(\alpha r)\right] \sin \alpha z d \alpha ;$

$$
2 G w=\int_{0}^{\infty}(1 / \alpha)\left[-A(\alpha) I_{1}(\alpha r)+B(\alpha)\left\{4(1-\mu) I_{1}(\alpha r)\right.\right.
$$

$$
\begin{equation*}
\left.\left.-\alpha r I_{0}(\alpha r)\right\}\right] \cos \alpha z d \alpha \tag{8}
\end{equation*}
$$

Substituting the boundary condition Eq. [4],

$$
\begin{equation*}
A(\alpha)=B(\alpha)\left[2(1-\mu)-\alpha a \cdot I_{0}(\alpha a) / I_{1}(\alpha a)\right] \tag{9}
\end{equation*}
$$

Putting in the boundary condition that

$$
\begin{align*}
& \left.\sigma_{r}\right|_{r=a}=0 \text { for }|z|>l \text { one gets } \\
& \int_{0}^{8} \xi(\alpha) \cos \alpha z d \alpha=0 \text { for }|z|>l \tag{10}
\end{align*}
$$

where

$$
\begin{aligned}
& \xi(\alpha)=B(\alpha)\left[\{ 2 (1 - \mu \} - \alpha a I _ { 0 } (\alpha a) / I _ { 1 } (\alpha a) \} \left\{-I_{0}(\alpha a)\right.\right. \\
& \left.\left.\quad+I_{1}(\alpha a) / \alpha a\right\}-\left\{(4-4 \mu / \alpha a+\alpha a) I_{1}(\alpha a)-(3-2 \mu) I_{0}(\alpha a)\right\}\right]
\end{aligned}
$$

The remaining condition to be satisfied is

$$
w]_{r=a}=\delta \quad \text { for } \quad|z| \leqslant l
$$

Then upon substitution, one gets,

$$
\begin{equation*}
\int_{0}^{\infty} \lambda(\alpha) \xi(\alpha) \cos \alpha z d \alpha=\delta \text { for }|z| \leqslant 1 \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda(\alpha)=(1 / 2 G a)\left[-I_{1}(\alpha a)\left\{2(1-\mu)-\alpha a J_{0}(\alpha a) / I_{1}(\alpha a)\right\}\right. \\
& \left.\quad+\left\{4(1-\mu) I_{1}(\alpha a)-\alpha a I_{0}(\alpha a)\right\}\right]-[\{2(1-\mu) \\
& \left.\quad-\alpha a I_{0}(\alpha a) / I_{1}(\alpha a)\right\}\left\{-I_{0}(\alpha a)+I_{2}(\alpha a) / \alpha a\right\}-\{(4-4 \mu) / \alpha a \\
& \left.\left.\quad\{\alpha a\rangle I_{1}(\alpha a)-\{3-2 \mu) I_{0}(\alpha a)\right\}\right]
\end{aligned}
$$

Hence the problem reduces to the solution of the pair of duad integrat Eqs. [10] \& [11]

3.1 Solution of the Dual Integral Equations

For simplicity a and l are taken to be unities. In Eqs. 10 and 11 the unknown is $\xi(\alpha)$ or $A(\alpha)$. Since the surface traction $\left.\sigma_{r=1}\right|_{r=1}$ and not $\xi(\alpha)$ is of direct interest, the former is expanded in series of Legendre Polynomials ${ }^{2}$ as follows ${ }^{9}$:

$$
\begin{align*}
\left.\sigma_{r}\right|_{r=1} & =\sum_{n=0}^{\infty} a_{n} P_{n}\left(1-2 z^{2}\right) & \text { for } & |z| \leqslant 1 \\
& =0 & & \text { for } \tag{12}
\end{align*}|z|>1 .
$$

The problem is considered solved when the constants $a_{p z}$ are determined. Eq. 12 identically satisfies the first integral equation 10. Then it follows ${ }^{10}$ that

$$
\begin{equation*}
\xi(\alpha)=\sum_{n=\infty}^{\infty} a_{n}(-1)^{n} \underset{(n+-\})}{J}(\alpha / 2) \underset{-(n+1)}{J}(\alpha / 2) \tag{13}
\end{equation*}
$$

The second integral equation then becomes

$$
\begin{equation*}
\delta=\int_{0}^{\infty} \lambda(\alpha) \sum_{n=0}^{\infty} a_{z z}(-1)^{z t} \underset{(n-1)}{J}(\alpha / 2) \underset{-(n+3)}{J}(\alpha / 2) \cos \alpha z d \alpha \text { for }|z| \leqslant 11 \tag{14}
\end{equation*}
$$

Pufting

$$
\lambda_{w}(z)=\int_{0}^{\infty} \lambda(\alpha)(-1)^{n} \underset{(n+z)}{J}(\alpha / 2) \underset{(n: z)}{J}(\alpha / 2) \cos \alpha z d \alpha
$$

Eq. 14 becomes

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n 1} \lambda_{n}(z)-8 \tag{15}
\end{equation*}
$$

The dual integrat eqs, 10 and II have now been reduced to Eq. 15 in which the a 's are the unknowns. Eq. 15 is identical in form with the series solution of a Fredholm integral equation of the first kind and Schmidt method can be adopted for its solution.

4. Acknowledgement

The author is thankful to Prof. M. A. Tirunarayanan, Head of the Dept. of Mechanical Engineering for his continuous encouragement.

5. References

1. Filon, A Phil. Trans. Roy. Soe. A, 1902
2. Foepp1, A and L . . . Drang und Zwang, 1928, 2, 172
3. Freudenthal, A. M. . Verbundestutzen fuhole Casten, 1923, 15.
4. Tranter, C.J. and Craggs, J.W. . The stress distribution in a long circular cylinder when a discontinuous pressure is applred to the curved surface, Phil. Mag, 1945, 36, 241-250.
5. Sparenberg, J. A. On a shrink fit problem, Appl, Sci, Res., 1958, 109-120.
6. Boussinesq, J. Application des porentials, 1885 .
7. Neuber, $\stackrel{H}{H}$. . Theory of notch stresses, Springer-Verlag, Germany, 1937
8. Erdeiyi, A Higher transcendental functions, Mcgraw Hill, 1953, 2, 178.
9. Courant, R and Hilbert, $D \quad$. Methods of Matnematical Physics, Interscience Publ , 1953, 85.
10. Erdelyi, A.

Tables of Integral Transforms, McGraw Hill, 1954, 38.

