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ABSTRACT

The problem of stress distribution resulting from the Shrink-fit applied on
an infinitely long cylinder has been analysed. Using Fourier integral method, the
problem is reduced to the solution of a pair of dual integral equarions, whieh are
reduced to series solution of a Fredhoim equation finally.  Bousinesq-Neuber three
Sunction theory has been employed for stress-analysis.

1. INTRODUCTION

Many boundary value problems connected with a solid cylinder have
heen solved using classical techniques. Sclutions for the infinite solid
elastic cylinder with the given tractions of various types have been given by
Filon', Focppl® and Freudenthal®. Tranter and Craggs* have given the solution
for an infinite solid cylinder subjected to a normal stress over half of its length
which is a fundamental problem in elasticity. In all the above problems
surface tractions are prescribed. Sparenberg® has recently solved a different
kind of problem-—a shrink-fit or indentation problem in which an infinite
cylinder is subjected to an unit displacement over half of its length and
traction-free over the remainder. It is the purpose of the present analysis to
present a solution for an infinite solid shaft, the surface of which s
traction free except for a band which is subjected to a prescribed radial
displacement.

2. THe PROBLEM

The coordinate system employed is shown in Fig. 1. According to the
Boussines-Neuber three function theorem [6.7], the displacements will satisfy
the equalibrium cond:iiions of elasticity theory if they are represented by the
potential fields ¢,, ¢, and ¢, as follows :

2Gu= —aF|az
2Gy=—(1/r) (3F|a0) —4 (1 — &) (¢, sin @ — ¢, cos 9)
2Gw = —dF/or+4 {1— ) (p, cos 0+ ¢, sin 0) m
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Fic. |
Geometry and co-ordinate axes

Fe=pyr {¢hy cos O+ ¢y s1n 6)
whete W2¢, =V p,=V?py=0
(u, v, w); Displacements in r, 8, z directions
4, G : Poisson’s Ratic & Shear modulus

The stress field associated with Eqs. 1 & 2 1s of the form
o, =4 V2F—(22F/3r%) +4 (1 — w) [(d ¢4/37) cos B + (B ¢,y/ar) sin 6]
og=i VEF—~(1/r) (QF/3r) +[4 (1~ w)/r] (¢ cos 0+ ¢, sin 0)
0,=h V2 F—(3? Ffaz?)

T,,= — (32 Flaraz)+2 (1— 4) [(3¢,/32) cos 0 +(3 ¢3/32) sinb) {31
. On the the curved boundary, r=g, throughout the length, it is assumed
hat

T 0 {41

w=3, a constants for |z|=/ and o,=0 for |z|>] 151

Le., the curved boundary has a shrink-fit type axisymmetric radial displace-
ment for a length 27.

3. THE SOLUTION

The three-functions ¢y, ¢, ¢, are considered in the following form:

pi= [ () A(a) L (xcosazda
[+
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b= f_(ljoz) B(a) I, (arycos azcos 8 da
°

Giy= fm(]/c&) B(a) T (awr)cos xzsnfdu
0

16]

in which 4 (@), B («) are functions of &, and Jy(a7), {, (¢ #) are Modified

Bessel functions of first kind and order zero and one respectively.
expressions for stresses and displacements, using Egs. [6], [1] and [3] are :

1

The

o, = [LA(@){~I(ar) + I(ar o} — B(a) {(4 1= afar+ ar) I, (ar)
[V

(1 +2T=w) 1, (a”}lcos azda

<
i

[

)
t

c= J 1A () L(ar)+B(a) {ark (or)+2u Ty (xr)}] cos azdax

©

oy = J [A (a) { ~I (oer)/ar} + B (@) {4 (1—-w)/ar I (ar)
+QRu~DIh(an}lcos @ zda

2Gu= [ (/o) [4 (@) [i(ar) +B(a) ar [, (ar)]sin xzda ;
é

2Gw= f(ila) [-A () Iy (ary+B(a) {4 Q-n) L (an)
[
—arly(an}lcos azda
Substituting the boundary condition Eq. [4],
A()=B(a)[2(1-p)~a a- Ly (xa)[], (aa)]
Putting in tne boundary condition that
0, ],=a=0 for |z[>1Ione gets
5
[ €(a)cos azda=0 for |z|>1
o
where
§(a)=B(a) ({2(1 ~p) ~ aaly(xa) /I (ad)} {—T, (2a)
+I(aa)/aa} — {(4—4u/aa+ aa) I, (wa) ~(3-2u) T, (aa)}]
The remaining condition to be satisfied is

Whoe=8 for |z|=I

J A I (ar) =B (a) 2(1—w) I (ar) —ar (an}]sin e xda

gl

(8}
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Then upon substitution, one gets,
JfAx(ayé(aycos azda=5 for [z|=] nn
(1]
where
M) =(12Go) [T (aa) {21 ~p)—oa Jy(aa)/l, (xa)}
+{4(1-) I (o) —aaly (aay}t - [$2 (1 - )
—aaly (o)l (o)} { Iy (aa) + I, (aa)/aa} - {{{4—4u)/ xa
saay Iy (aay—(3=2u) Iy (aa)} ]

&

Hence the problem reduces 1o the solution of the pair of dual integral
Egs. [10] & [11]

3.1  SoLUTION OF THE DUAL INTEGRAL EQUATIONS

For simplicity a and [ are taken to be wunities. In Egs. 10 and 11 the
unknown is £ (o) or A (). Since the surface traction o,[,.; and not £ («)
is of direct interest, the former is expanded in series of Legendre Poly-
nomials® as follows® :

-3 a, P, (1-22% for |z|=|
=0

=0 for {z|>1 [121

Ty Ir:I

The problem is considered solved when the constants a,, are determined.
Eq. 12 identically satisfies the first integral equation 10. Then it follows'® that

E(a)= b5 a, (=1 J (aj2y J (of2) {13}
=0 (n-hH ~{atl)

The second integral equation then becomes

S == j,\(mfak(q)“ J (@) J (aj2) cos azdu for|z|< |1
x=0 (2+}) +4)

3 - (nt
[14]
Putting
A, (@D =f Alay (=0 J (aj2)y J (a/2) cos azda
0 [CRa3] (il
Eq. 14 becomes
2 a2, ()-8 (1]

n=0

The dual integral eqs, 10 and {1 have now bheen reduced to Eg. 15 in which
the @’s are the unknowns. Eq. 15 is identical in form with the sevies solution
of a Fredholm integral equation of the first kipd and Schmidt method can be
adopted for its solution.
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