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ARSTRACT 

One of the m a k  goal; o f  studj, of engineerirag vibrations i.s to sirppres? or 
eliniinnte unrvanted vibrations Vibrations in mechanical systems ran be oppreriah& 
que~tchcii h.v the prorision of Dynamic Vibration Absorbers (0114).  A DVA differs 
from a datnper in that the motion .from  he main system is transferred to an 
auxiliary system, the total mer,qv being conseri-ed. On the other hand in tke caw 
of' u dampel a part of the ! ibrafional energy is ahstr,rcted and dissipated as ;;eat 
or other forms o f  energy therrhy lowering the ford energy qf the system. 

DVA are necessary to limit excessive vibration o f  a machine element 
sulpcted to steariy vibrating loads. A perfectly Elrned DVA carz be design~il for . a single degree of freedom system subjected to mono-frcquenc~' e.xitarion of a 
harmonic nature But when the frequency ,,arics tlze d e s i ~ n  of DVA becomes 
complicated owing to the introduction o f  damping, (introduced to extend rlie 
fiqzrenry range o f  o f  the DV.4). 61 some tahes a nonlinear spring cou.p/ing aids 
in extending the range o f  usefulness o f  the D V A .  

When a forcing funcriorz o f  an impulsive type acts on a system, vibration 
absorbers can be designed so that if ,failure occurs it will be ihat of the absorber 
(because i t  is made to bear the brunt o f  shock) and not that of the main system. 
(The main system is protected .from the ravages qf the slio(k). 'The DVA 
 function^ as a protection, against shock. 

In  this paper a srudy is undertaken on the design o f  DVA for voricus types of 
excitations, steady, transcient in nature, and it will br t h ~  purpose o f th i s  investi- 
gation to study h91r eBecient these D V A  are, in quenching tain~anted osciiiarionr. 

INTRODUCTION 

The possibi!ity of providing dynamic v~bration absorbers for mech:inical 
systems that can be idealised by undamped single degree of freedom Systems 
is investigated, when the system is subjected to  different types of excitations. 

In  all the cases considered the motion from the main system is trillls- 

ferred to some auxiliary system so that the main system is protecred fiom the 
harmful effects of vibration. 



11, secc,o!~ ( 1 )  i! is shown chat the main s y s t t ~ n  could be compietejy 
isfi:;~;cd froin the v!bmt:ons, by providing a d y n a m ~ c  vtbrxtion absorher, ollly 
:f ~ l ; e  euc,tat;on ir s~nuso~dd!.  Ti1 sectiov ( 2 )  the abovc probl:m is extsnded 
lo the case when  he systern is I-esling o n  a flexible mounting and subjected 
lo grouau excit::tion. Section (3) may hc con~idered  as  an extension of tile 
section ( I )  wherein two absorber units inatead of  one are used to eiinrin:,te 
the vjbrat~ons of the main mass. This scheme will be pxticuldrly usefui 
i f  the s:;e of single xbsorber unit becomes impracl~cai.  The case of  dynamic 
vibration absol-ber for a singlc degree of  freedom system subjected to harmonic 
excitations of two different frequencizs is dealt with in section (4). Section ( 5 )  
considers the case of Lhe same sys:em subjected to triple frequency excitation, 
Extension of thiz concept tu multiple frequency excitation is considered in  
section (6) wherc tile syslcrn is  assumed as being subjected t o  a train of pulses. 

Tn all  the abovc cases when more than one absorber has h e n  ur-d, the 
absorber units have been assumed to  bc altached to the mnrn system in series. 
The same syslern of  absorbers could also be alleched in pnr,+llel as indicated 
in section ( I )  and (8). 

Section (9) deals with the cRect of  providing dy:~amic nbsorbsr to a 
single degree of fi-eedom system subjected to  an impulsive input. Pt is shown 
that a reduction in the ampl~tude  of the main system by abour 204/,, i c ;  possible 
with an  absorber, whose mass is of the same order as the n a i n  mass. 
Section (lL) indicates a method to suppress the main mass vibration when 
subjected to trmsient ground motion. Section (11) deals with the provision 
of dynamic vibration ::bsorbers lo continuous systems. Two distinct c s e s  
are examined under this, viz., (a) Self-excited osci1l:~tions of a cutting tool, 
idealised by a c.tnldever ( h )  Aerodynamic oscillations of a tmnsmiss:on line 
span ideaiised by a beam with hinged ends. 

Section (12) deals with the provision of a nonlinear dynamic vibration 
absorher for n single degree of frecdom syslem subjected to step function 
transient. 

1 .  Possibility of providilrg a dynamic vibration ahsoriier for supprrssing the 
vibrations o f  on umlumped single degree 01" fret [/om system subjected to a 
forcing f~inclion F ( 1 )  : 

Consider the iystem shown schematically in Fig. (1.1). The equations 
of motion are 

m, (d'x, /dl2) ; k1 x, + k2 ( x ,  -xJ = F ( I )  [ l .U 

If the vibratrons of the mass m, are completely e l rm~nated  

then x, = 0, dx,/dl-  0, d2x,/dt2= 0 
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Let 

:. From (1.1) and (1.2) 

F," ( 1 )  +p:,  F, ( 1 )  = 0 11.31 

When this condition is satisfied by the excitation, a dynamic absorber 
can be provided. It can be immediately seen from the solution of the 
differential equation [1.3] that the forcing function will have to be sinusoidal. 
The tuning condition will be given by 

where p,* is the frequency of the exciting force, 

2. Vibrnrion absorber for a system on n flexible mowlting and subjected to 
base excitation: X,- B sin wt : 

In the fig. shown (Fig. 2.1) (k,, m,) constitutes, the main system resting 
on a Aexible mounting. The absorber has a mass ms and stiffness k,. 

The equations of morion are 

m ,  ( d 2 x , / d t 2 )  ik, (x, -.yo) - rk ,  ( x ,  -x,) - 0  [2.1] 
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Therefore, wz-p:3=k, /m,  is the tuning condition. 
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3, Use of two r!vnmiic vibration absorbers in series wiih a single degree of 
freedom s.wem snhjr~rtrd lo harmonic exciiation : 

Fig. (3.1) shows the arrangement for this  scheme. (The subscript 1 
refers to the main system while the subscripts 2 and 3 refer ro the two 

systems). The equation of motion are 

m, (d' x, /d t2) i . (k ,  i - k2 )  X, -k2x2-B sin w t  13.11 

Putting x, =O, ( d 2  x,/iliZ) =0, 

from [3.11 
x2= -(B/m,p:,) sin wt 

FIG. 3.1 
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Therefore from [3.4] and [3.5], 

w4- ( ~ : 2  +p:2 f p:3) +pi2 p : 3  

Further letting 

5 = K, 2 - M, k = p ,  from [3.6j, 
k3 m3 0 

This straight line relationship i s  shown plotted in Fig. 3.2. 

Absorber parameter curves for sin@ degree of freedom 
system with single frquency excitation. 

4. Dynamic vibrariort absorber for a single degree of freedom system su6jectd.l 
to hi-frequency excitation, 

Fig. 4.1 shows the idealised system subjected to an excitation F(1 ) -  
b, sin wt +b, sin o t .  Two absorber units are-attached in series with the system. 
The equations of motion are 
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Tor complete Iso1:ltion of m,, x,= O, ~l~x,/dr'-O 
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From [4.2] and [4 41 

1 0  b 
xj = T.--l--=;- ( ~ ~ - p : ~ )  sin w f c  L ( 9 w 2   sin 3 ~ t  p 5 1  

P32 ''lp,, "'1 Pi I 

Substituting [45]  in  [4.3] and equating coeEisients of sinwr and s in3  w t  

separately to zero and rearranging, 

K -  ct [ I  -t d l ]  14.61 
where 

cr =i ; ' i [ lo- j ' ]  14.71 

For real systems K > 0, M > 0, therefore only pos~t ive  values of a are 
admissible. This implies 

05FsdTi3 
Eqn. [4.6] is plotted in Fig. 4 2 

FIG. 4.2 
Absorber parameter curves for single degree of freedom system 

subjected to hifrequency excitation. 
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5 .  Dynamic Vibration absorber for single degree of frredum system with tr@le 
frequency rxciialiorr. 

This 1s an extension of case (4) : Rere 

F( t )=-b ,  sin w t - t h s  sin 3 w r i  6, sin 5 wr 15.11 

The equations of motions will be 

m, (d2x,/ilt" i k,.~, 1 k2 (x, - x , ) = F  (r) 

m, (dzx21dtZ) --I kpx2 + k3x2 - k ? ~ ,  - k3x3 => 0 

For complelc  sola at ion of mi, x, =O, ( d 2 ~ , / d r 2 ) = 0 ,  

Eqn. IS.11 gives x,, Eqn. [5.2] gives x, and Eqn. 65-31 gives x,. Substituting 
these into Eqn. [5.4] and equating coeliicients of sin w t ,  sin 3wr,  rin jwt ,  
separately to zero, we find after considerable algebraic smplificalion 

In section (4) it was shown that for a bifrequency excitation 

If a,, and p, are chosen from fig. (4.2) then for a suitable 01,. 18, can be 
calculated from 15.51. 

The same argument can be extended to multiple frequency excitations 
See Fig. 5.1. 



6.  Single degree of freedom system subjected ro pulse train of unit height, 
duration 2, and period T .  

Referring to Fig. 6.1, 

-7 c t < -t7 

i7 c t  < +TI2 



'&pressing ns a Fourier Serieq 

where 

For narrow pulses /r , ,=4/T,  and for impulses n 0 = ' 2 / T ) ,  o , , r ( ? l T )  (arm 
under pulse is unity) 

A good approximntion may be obtained by taking a finite number o f  
terms in the rourier-cxpdnsion and providing a n  equal nunlbcr of nppropri- 
ately t~rned dynamic vibration absorbers. 

7. Pardlei  ~fbi.irtio~ uhsorhers for hifrequency excirarion 

Fig. 7.1 shows the schu~iintic arrangement, where F (t) - b ,  sin w i t  

hj sin 3 wt .  

The cquations of rnotion are 

n?, (d2xo /d t2)  + kO xC + (k ,  - ! -k2) ~ ~ - h - ~  I ,  -k2  .x2= ii(f) 

m, (dZxl,'dta) i k ,  x I  - A 1  xo=O 

m2 (d2x, /dt2)  -kk2 x2 - k 2  so - 0 



As before we put, xo = 0, (d2xo/dta) = 0 

Assuming x, = A ,  sin wt ,  x 3 s A 3  sin i ~ t  

b b 
Wegei  A , = - > ,  A,- -  -2 

k, k2 

and the tuning conditions will be wZ-p:,, 9 ~ ~ - - : . : ~  

Generalisazion 

If the excitation can be represented by 

then n parallel absorbers can be provided with the nZh absorber tuned to the 
n"' harmonic, I,;;., pi ,  = n2 oZ 

The amplitude of the hf" a b ~ o r b c r  nmss v.'ould h2 1 A,, 1 =I CJlc, / 

8. Poiallei <y~iamic vii.mtion nbsorhers for fofsionoi osri/!,~tions 

Consider a flywheel rotating at a constant speed of w ,  Fig. 8.1. Let a 

steady disturbing torque of Z Mi sin i w r  act on Lhe fiywhc-1. 
i=1 
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We shall assume that the flywheel is provided with i?  spoke^. Along 
each spoke is mounted a n  sbqorbcr unit comprising of a spring and m:iss. 

Let m,-mass mounted on [he i f h  spoke 

k,=spring connecting n7, to the hub 

The kinetic energy of the system IS given by 

T== $ I (w i-d$/dt)2f 2 m, [(ST t x j J 2  ( (0  :-di:)!i11)2 t (d2~,!dr)2j  
, = 1  

Where / = mass n ion~ent  of  inertin of rhc Rywhecl 

S,= equilibr,nm position of m, 

xi -  radial displacement coordin:ite of m,. 

The potential energy i z  

u;, being the  free length of the spring X, 

The differential equations o f  motion are given in the Lngrangirin form 

and 

and ;n, (d2xz/dt2)-mi m2 ( S + - ~ , . ) - 2 m ,  oS,+ ,-X, ( 5 - - 0 , ;  x,)-0, i-1,;. . . . 11 

[X  61 
The equ~libriuni  configuration is defined h y  

m,. w 2  Si-k,.(.Y,-a,) 18 71 

:. m, (d1 .~ , /< f i2 ) - t  (X-,-m, w f )  xi-  2 m ,  (r) S 4 - 0  [8.S] 

If the torsional vibrations of the flywheel are to be complztely suppressecl 

<I>. L, 4-0.  4-0  



This yields i'rom j S  i j  nnd [S S] 

lS.101 yields rht. tuning condition 

( K i / m j )  - ( i2  4 1)  w 2  

for the i'h absorber unit f~mln C8.101 

x, = a, cob i w t [X.l?] 

:, from [g 91 and [Y 121 

( 1 ,  - 1  -M,/4mj S, i w2 1 3 r d  phase I SO' 

gives the arnp!i~ude of the ~" 'absorbcr  naoss. 

9. Vibrntion abwbrr  fir a .sin,?/i, d q r r e  of./i.eedoni .?~stci i~ .suhj~~r?eil to an 
impul-ive P X C I ~ C I ~ ~ O I I .  

Thc single degree of Creedom sysrem shown in  fig. 9 1 is subjccizd to an 
impulsive excitation Ifu'fi). where 11' ( t )  is the  dirac-delta func i~on .  The 
possibilrty o f  reducing the vibrai~ons of the m:un mass,  by a.iachiug :i single 
absorber unit is invesiigatcd. 
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Applying laplace transform to equation 19.11 and [9.2] and assuming initiaX 
Conditions, 

xl (0) =0, (dx,/clt) (0). x, (0) - 0 ,  (dx,/ilr) (0) ))-0 

The denominator of (9.5) is 

.s4+s2 ( P : ~  tp;iI +P:~) + P : ~  P : ~  

- - - 
Since p,, > 0, p , ,  > 0, p , ,  > 0, and r, (s) is even i.e. xt (-s) = x ,  (s), the 
denominator when cquated to zero will have only two pair of complex 
conjugate roots, but no real roots. 

AS the expression [9.6] is not  a perfect square it will not hive repeated roots 

:. (a?+) -(a;+-,+;) # 0 



Inverse transform of i9.51 yields 

(2 =. (d2-,+ sin ,u, 22 2 

8, P ;  (u;-& 
( p 2  - "' sin ,u2 r 

4 2  (P :  - 93 P 91 

This gives the motion of n7,. Next we  determine N, and ,u, in terms of, 

the system parameters p a l ,  p2 , ,  pZ1. We have from L9.81, 

(9.91 becomes, 

Where 

For  physically real systems i i , z O ,  1~,>0. 

It can also be noted that  for the case p ,  -p,. Eqn. [9.13] becomes 
zero identically. However from [9.12] for P ,  -= fiz we have 

[(K M !- 1)/KI2 - 4 ( M / K )  

or K2 :- M 2  i~\ILZi , 2K - 2 M  ; 1 - 4 K M  
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~ u t  :his is not per~nissiblc in view of the  k t  that x,  in [9  91 heconies 
infinite. 

The coeficienis A and B wore calculated on a " FERRANTr-SrKIIrS " 
digiial computer, for the following range of K and M v Jues  

K 1 lo  i O  

M 1 to 10 

Foi the iange o f  parameters invesiig:tted B was aisgays < 9 

:. [x l  ( t ) p I I ! H I ]  can attain a m7x. value of / A !  J - IRI  when sin iu, t = = ?  
and sin p2 r -  1, simultaneously. 

If sin P ,  t = -  1, then @, t=;(4p-t  1)  (.rr/2), p=0,1,2, 

sin ,a2 t I= 1 the11 ,up 1 -- (44 f 1) ( 7 ~ / 2 ) ,  q -= 0,1,2, 

( , ~ J , U , )  - (4p  -1- 1)/(4 4 - 1 -  I )  -- A, 1 < A < 7, for the raiipe o r  para~neters 
iiwesiigated. 

I f  we can find two positive integers p and q such thar the above condi- 
tion is s:~:isficd then x, ( t )  ; / , , , / H I )  wi l l  attam a maximum vniue of A +  B. 

Next consider the cable (9.1) where h is calculated for various values of 
p and q. 

TABLE 9.1 Values of h 

1 1 5 9  13 17 21 4.0000 

2 ... 1 1.8 2.6 3.4 4.2 0.8000 

3 . . . . . .  1 1.444 1.1189 2.334 0.4450 

4 . . . . . .  ... 1 1.3077 1.6154 0.3077 

... 5 . . . . . .  ... 1 I 2353 0.2363 
- - -- . .- - - - -- .. . - .- - - - - - 

The above i;3hle indicates that two intepera p and q can always be found 
to cover the entirc range of values, I < h -z 7. 

It is clear irom table 9.2 that the minimum value of X occurs at  Z:=O.i 
and  M -  I. in the range investignied. This vdue  in 0.795. For a single 
degree of freedom system without absorber rhc maximum value of displace- 
ment I x \,,, = 1 .@. 

Hence a reduction of nearly 2!1,, in thc amplitude of the main mass 
could be attained by attaching the ituxiliary system whose pxameter  values 
are K - 0 . 1  and M = l .  

Further reduction is possible theoreiically, but the size o f  the absorber 
m:tss relative Lo the main mass makes further i inprovc~nrr~t pri~li ihi~ive.  
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10. Vibration Absorber for Transient or Random Base Excitafion of a si,,g[e 
Degree of Freedom System. See Fig. 10.1. 

Frc .  LO 1 

( k , ,  m , )  represents a spring mass system subjected to an arbitrary base 
excitation ,Y , ( t ) .  ( k t ,  m, )  constitutes an absorber system attached to the 
mam system. The equation of motion of the mass m ,  is 

m2 (dax, /dr ' )  )+ Kl ( X ,  - X,) -i- K,X,  - K, X, ( t )  

If the vibrations of m ,  are completely suppressed then X, -0, (d2x,ldt')=0 

.'. XI - (K2/KI) Xg (0 [12.1] 

The equation of motion of the mass m, will be 

m, (r12x,/dz') 4 -  K, (x, - x , ) = F ( t )  

where F ( f )  is an external force to be applied to m,. From (12.1) and (12.2) 

-mt (K2/KI) ( d 2 ~ g l d f 2 )  ( t ) - K Z  XO ( O = F  ( f )  l12.31 

Thus [12.3] represents the force to be applied to the main mass so that the 
mass m ,  remains stationary. 

This force can be applied in the following way. The base excitation 

and its acceleration picked up by an accelerometer and an integrating circuit 
are properly amplified as required by equation [12.3] and applied to the mass 
m, through an electro-mechanical transducer. 



(a) Loterol ~'ihrntions qf a Contilever: This type of  vibration is very 
coj11mon iii metal cutting tools with considerable overhang as in the case of boring 
hnrs. The self excited vibration ( m o r e  commonly known as  ' *  Tooi Chatter" ) 
iq caused hy the negative damping effect produced by  ha variation of frictional 
force with relatzve velocity, between the rubbihg surfaces. F o r  small rel:!tive 
velocities the Ericlional force aids any lateral moiion o f  the tool while for 
large relative velocities the frictional force oppose thc tool vib~ation.  
This results in the tool vibrating a t  the " limit cycle " a m p l ~ t u d e  and marring 
the surface finish of  the work. The  energy needed to  excite the bar iuto 
v~bra t ion  is drawn from thc steadily rotating wotkpiece. 

Considc: the cutting tool idealised by a cantilever as in Fig. 11.1. Thc 
llalurai freqi~ency of the cantilever with an a!tnciied mxss and spring is iirst 
determined by  the method followed in (I)*. Ncxl a n  aux~l inry  m;iss is 
attached to the lowcr cnd  of  the spring and  Lhe tuning condition IS derived. 

Let L- length of  the cantilever heam 

M=Mass,  nttachcd  rigidly t o  the bcam, at a distance ' f a '  from Bxcd cnd. 

K= s p  ing constant of the absorber spring 

The rxquencics of  free vibration of  t h e  canlilever, without the mass and 
springs are de te~m:ned by the method of  normal niodes a s  Collows. The 
equation of motion is, 

EI  (a4j$3x-4)+~ A (a2y/at'j =0 111 11 

wliere E l  flexural rigidity of the cantilever 

A --area of' c.s. of the bar 

The end conditions are 

(i) ( J L ~ = O ,  ti;) (a j~/ad,=,=O,~ 

(iii) (a'y/axl) ,=,=O (iv) (a3.~I&x3),_,- nj 

The general solution i s  assumed in the form 

y=C, ( c ~ s ~ s + c o s h ~ x ) + C ~ ( c o ~ ~ ~ - c o ~ h ~ ~ )  

-+ C, (sin ,8 x  t s i n h  x )  4- C, (sin x-sinh p .c) 

where P'= ( m o 2 / ~ I L ) ,  rn - p A 

(1)' Vibrations of a beam with concentrated mass, sprlng and dashpot 
gp. 65, Jan. 1968, V. 15. 

[11.3] 

by D. Young, 
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1 Equation [ I  1.21-(i) glves Cl -0, -(ii) gives C,-0, -(iii) gives, 

C,(cospL-tcosh/3L)+C4(sin/3L+sinhBL)=3;  

C, (sin p L-I sirih !: L)-I-Cq (cos /3 L I cosb /3 L) = = O  [ I  1.41 

Eliminating C, and C, the frequency ecpztion is obteined as 

I ; C O S ! : L C . ~ S ~ ~ L = O  [ I  I .s] 

:. the normal function for the  n-lh mode becomes, 

j;,= - C ,  [cosh p , ,x-cosP, ,x-  E,, (sinh p,, x-sin fi, x) 111.61 

where 

The constant C, is al-bitrary and i b r  the sake of convcnisnce can be Fet 
qua!  o - 1 .  :. [I 1.61 can be rewritlcri in the nornialised fo~-m as 

P,,-cash fi,, x - C O S  pnu- a,, (sinli /3,,x-sin P,, x) [I 1.81 

Next we consider the niass hf as being attached to  the cantilever beam by a 
~igid link. When the  system is vibrating freely, there will be a force F i n  
the link joining the mass M and the beam which may be expressed as 
F=F, sin w t ,  where "=undetermined naturai frequency of the composite 
system shown iir fig. ( 1 1 . 1 ) .  

The system i s  next imagined lo he cut through the link so that we have 
two parts (a) a beam acted upon by s hormonica!ly varyins force 
F-F, sin w t  ( h )  a spring supported mass snbjecled to a n  equ:ii hut  opposite 
forcc as in fig. (11.2). 

The deflection of  the beam at the location of the  force i.e. at x = h  is 
gtven by 

Tbc equation of motion of the ntass is 

M ( ~ ~ Z , ! ~ ~ ~ ) + K Z , = - F ,  s i n o t ,  

the steady state solution of which 

2, = -F, sin w t / ( K -  M w2) 
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for any position x - h ,  (Mlm)  Vs. (kiK,,K,), KO-(3EI/L3), can be plotted for 
values of the parameter (w/w, ) .  This has been done for the cases 
(i) h/L=0.78,  ( i l)  h / L =  0.50. (Fig. 11 .8)  ( I  I .lo), 

Next consider the auxiiiary mass M I ,  attached to  the initially fixed end 
of the spring. (Fig. 11.3) 

The equations of motion are  

which for Zl =0=  (dZZ1/dt  ') gives the tuning condition 

oz= (KIM,) [11.12] 

Thus for a given K the absorber mass M, required t o  suppress the lateral 
vibrations of  the cantilever can be found. 

Calculations for ploffing 

Roots of frequeucy equation 1 f cos PL cosh BL=O, are 

,B! L =  1.S75i0, Pz L=4.69409,  & L=7.85476, L= 10.99554, 8, L- 14.13717 
m = (k,/cl w:), E = 3/(p1 L)4= 0.24267 

(wi/w:) = 1 ,  (w;/w:) =39.2739, (w://w:) =307.914, (o:/w!)= 1182.40, 
(W$'W:) =3231.08, (wi/w:) =7210, (w:/w:) = 14,070. 
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- - 
2 0,06067 -0.38933 0.06067 -2.6000 
3 0.0'2700 = 0.467504 0.02700 13 1530 
4 3.01520 -0.504110 0.01520 1.1430 
5 3.00970 - 0.52747 0.00970 0.3260 
6 0.00674 - 0.56121 0.00074 0.0470 
7 0.00495 - 0.58343 0.00495 - 0  1010 

...... 8 ...... 0.003791 -0,1955 

...... 9 ...... 0.002996 - 0  2320 

...... 10 ...... 0 0024267 -0.7980 
-- 

l i  ( 6 )  Analysis : The span of a transmission line is ldesiised by a beain 
with hinged ends. The unstable cross section is prov:dcd by means of a 

semicircular cylindrical wooden piece running throughout the length of the 
beam (Flg. 11 4). The ends of  the wooden piece hoivever are free so that ~t 
wili only act as an  additional UDL o n  ?he beam, without in any way i!iTecting 
the %exural rigidity of the nmin beam. T h e  ana'lysis is first done by assuming 
a concentrated mass to  be rigidly attached to  the beam at mld-span, the 
other end of  the mass being tied lo the  g r o m d  through a spring. The 
composite frequency of the system is calculated by the method adopted in (1)". 
The fixed end of rhe spring is next released, and an  additional mass is 
attached and the tuning condition derived. Since the system oscillates 
almost at its natuual frequency during self e x i t e d  osciiiation, we see from 
the rui!ing condition, that, when the auxiliary mass-spring system is tuned Zo 
this frequency. the vibrations of the main beam villi be suppressed. (Refer- 
ring to F,g.  11.5). 
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Let A 8  be the beam w ~ t h  lunged ends, carrying :t UDL of n./unit length 
due to [he unstable iecrio;l, IJI  add~uoi l  lo  ils s r l f  w e i g h t  of  A i unit I e n i h .  
where A -  Area oF c. s. oi' beam alone arid Y -specific weight of bssm materll. 
The lateral v ~ b r a t ~ o n s  o f  [he benm are referred to the coordinaler (.r, g). 

The equation of sniol! lateral vibrat~ons of the beam are riben by 
(negiectirig the eiTzc~s O F  rotatory inci-(ia n113 shear dcflect~orl). 

The solulion can he assiurd in the form 

y=X ( A  cos pt I B s i n  pi), 

when the beam I S  performing n normal  nods of % ~ h r . ~ l i o n  Suhstiruting in 
[11.13] 

(d4X/rlx4) - ( p2/a2) A' [11.15] 

the general solution of which i$ 

X =  C, (cos k x + c o s h  kx) + C2 (COS kx-cosh kx)  -r C3 (sin kx-ksinh kx)  
+C,  (sin kx-sinh kx)=O [:i.lS] 

where K4 = (p2/a2) - (p'/EIg) [A7 ' w l  where C?, C,, C,, C4. are arbitrary 
constants to  be determined from the end conditions. 

The  end conditions are 

(9 ( Y ) , = O = ~  (iii) ( J ) ~ = ' - = Q  

(ii) (d'v/dxz),=o- 0 (iv) (d2.v/d$),=, - 0 



[11.17]- (i) yields C,-0 

- (ii) yields C,=O 

- (iii) yields C, (sin kL +sinh kL) I C ,  (sin kk-sin11 k L ) = j  

- (iv) yields C,  (-sin kL +smh kL)  t- C4 (-sin kL-sinh kL)=o 

El;minating, Cj and C4, sin KL sinh R1,-0 
since KLzO, .'.sinh k L f  0. So sin kL=O is the frequency equation [11 181 

The roots of the frequency eqllalions are 

KiL-in, i = l ,  2, 3, . . . - 
The frequencies of the natural modes are given by 

pz=a2K4,(i" , m"L4) [ E M A  Y +w)] [I 1.191 

The normal function for the n-th mode is 

i sin k,,L f sinh k,L (sin K,x+sinh K,,x) - 1 (s;n k7,x -s:nl~ K&! 
?in k,L - sinh k,E I 

[11.20) 

Substituting [11,18] in [11.20] and putting C,- 1 for convenience (:llternately 
this constant can be absorbed in the part " A cospt+B sinpt " of the 
solution) we get 

X, -2 sin K,x [11.21] 

Beam with mass (M, )  and spring (k) aftaehed a! mid-span (Ref. Fig. 11.6) 



We assume that the rigid link comecling the beam and the nuass M, is 
,,t through so that there is an alternating farce Fo sin b r  actiup on the beam, 
as well as the mass-spring system (M,, K). We determine the displacement 
of each of the two systems at this point and determine r h e  frequency iu of rhe 
composite system. (Thia ensures compatibility of displacements), 

The response of the bcmn at z - &/2 is 

The response of t h e  sprinz mass \ysrenl is 

Equating [I1221 and i11.231 aad rearranging, we get, the equation for com- 
posite frequency w,  as, 

1 0?,2 ' J l = - x  i ( x * ) 2 d  [11.24] 
iM,/m-K,!mw" pQ: . = I  { p , l / p : -  ~ ' / p : )  

Agam K/mw2= ( E I K ,  p:/,l3? w', P Elgen value in the frequency equation 
(formerly k )  But P:=& and puttmg K B = s t ~ f i e s s  of beam due to a con- 
centrated load a t  m~dspan =(384 E I / 5  L3) 

Also p,'/p: = #/I4 =-n4 

( X,),!, 2 X sin (tm/2) = 0 if n is even 

- * 2  if n is odd, I - ?  if n - 4 m  I- l nt ;0,1,2 

- -2  i T n - 4 m - I  m-12. 

In  'iny case (X,il)L,Z-4, for N odd .: r q u ~ i ~ o ~ t  [ I  1 741 becomes 

The right hand sides is convergent for all wlpl  except %'hell w'&T --I)' i n  
which case it is infinite. 

A plot of (M,/rn) Vs. (KIK") for various pwamerer values ( c d f i l ~ ~ )  i s  
shown [Fig. 11.8) 
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Absorber Paramrters for a vibrating cantilever. 



These plots are made  according to  the following equations:  

M , / m  = ,4 (K /K , , )  I B 
-~ ~ - ~ ~~ ~. .- 

~ / P I  A B 
-~ - -  ~ 

0.50 3.15200 +0.74300 

2.00 0.19700 -0 19650 

3.00 0.08756 -0 25550 

4.00 0.04925 -0.3 i9W 

5 00 0.03125 -6.46920 

To supprcss the motion of M I  and l~unce  o f  i11e beam $,-0 

$, -0, :. fZ= (Fa sin w l j K 1 )  

~ - ~ / ( K , / I M , ) ,  is the tuning condition. 

The procedure for Ihe seleclion o f  the absorber may hc hrieRy sunirn.?riced as  
follows 

1. Choose the convcnienl values of M, and k, (the pos.;ihilily of .MI-0 
is no1 ahsoluicly ruled out, 11 is possible as long as the lines in  Fig. 11.8 cur 
the abscissa). Obtaiii (alp,) from Fig. 11.8. 

2. 1-hen M, =XI wZ.  

12. Nonlineai Dynanric Y ihra f io~ i  Absnrbrrfor an Undrrmpcd S i n ~ l e  Deyrt je  of 
f i w d o m  Szrbjrcted i o  Step Fimr.iion Exritntion. 

Consider the anrglc degrce of  freedom 5how.n in Fig. 12.1. Let m, = 

mass, k,  =sL~ffness of spring. Let t h e  system he subjected LO a step function 
excitat~on F, (r). Then the equatlon of motion becomcs 

m, (d2x1/dt2) + R l x l  = Fl [12.1] 

Dividing throughout by m, and putting (IC,iml) =dl, ( t ; / m l )  - 4 ,  
((1 1 dt2) ' ,7:, y, r, I [11.2] 

Assuming mitial conditions rl (0) ==O. ( d u , / d t )  (0) =O, the solution of (3) will be 

S, ==(FT1,'p;,) ( I  -cds p l l  i )  :13.3] 



-0.61 
k/kb 

FIG. 11.9 
Absorber parameters for a xibraling cnntiicver 

c u b ,  2 

FIG. 11.10 
Dynamic ribmion absorber for cantilever, curve far choosing 

$heabsorber spring ( K J  
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The maximum values of xi will he (x,),- (2Fl,/p?,)=2 8, where 

8 =&'P?~ f12.41 

Next consider the two degree of freedom nonlinear s)Wem shown in fig. (12.2). 

We shall denote m, = absorber mass 

k,- absorber spring 

The two masses are coupled by a nonlinear spring whose force displsce- 
ment characteristic is given by f (x) = K ,  x-t K 3  XI. 

The equation of  motion of  the  two masses hecome 

int ( d Z ~ J d t ' ) i  Klxl+RZ(xI,-x2) t K g ( x l - ~ 2 ) 3 = F ,  [12.5j 

6 
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Let m,/~d, - K,/I<, - X -constant 

Adding ( d 2 x l / d r 2 ~ -  h d'x,/dt2) +p:,  (x, -I- h x,) =F,, 

Setting x, i- h s2 -J 5,  i i-p:, 5 =FjI 

Let (I] - s,) - 

We shall assume the initial conditio~is lo  be 

.I-, (0) - 0. (d.x,/dr) (0) = 0, x2- (0).  ( d ~ ~ / a r )  - 0 

.'. 5 (0) =: 0 - i (0 )  

7 )  (0)-o= il(0) 



Cons!der Eqn [1Z.l 11. Suhsiituiing [I? 151 

The maxiinurn value of [,, from [12.20] is El (max)-2A. Integrating [12.17], 
putting r,, - 9 (max), dt l , /dt=O, and  dividing throughout by r / I  rnax 

.I;,,+ ( 2 A / B )  qnIa,--4 (A IB)~~ 

0' 2 (A,'B) - 0;sx,/(2 - v m n x )  li2.211 



From (12 17) as x > 0 and A >  0, and s27 0. A is always> 0. 

If we admit softening iype of nonlinear spring then 1340 and B can 
assume negathe values 

Consider equations [12.23]. 

We are interested in values of Q < 1  for absorber purposes [12.23] can be 
written as 

2A [ Q  ( A & ] ) - l ] = A  q,,,, [ 12 24a] 

How f,,, is always> 0. 

(x,,,,), will be greater than zero if v,,,, i s 7  0. We shall therefore use 
?,mar> 3 for a conservative estimate. 

Then Q (A 4- 1) - 1 > 0, from (12.24a) 

or A>(l-B) /Q (12.24b) 

Further we are led to restrict .A to 0 < h < 1 to have an absorber unit not 
bulkier than the main unit. 

:. 1 z (1 -Q!Q or  $2 > 0.5 [12 251 

Consistent with all the above requirements we can provide a reduction in 
amplitude not greater than 50%. 

Even h i s  reduvt~on would be very significant for practical purposes. 
Eliminating T,,,, between [12.21] and I12.241 

If the coupling spring is linear from [12.17] B - 0  

:.From (12.18) 11,max=2 

For the nonlinear spring v,,,, < 2 for P > 0 (Q) > (Q)Non.l,ns.r and 
definite advantage results by using a " hqdening " type of nonlinear spring. 


