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ABSTRACT

One of the main goal. of study of engineering vibrations is to suppress or
dliminate unwanted vibrations  Vibrations in mechanical systems can be appreciably
quenched by the provision of Dynamic Vibration Absorbers (DVA). A DVA differs
Jrom a damper in that the motion from the main system is transferred to an
auxiliary system, the toral energy being conserved. On the other hand in the case
of u damper a part of the vibrational energy is abstracted and dissipated as heat
or other forms of energy thereby lowering the total energy of the system.

DVA are necessary to limit excessive vibration of a machine element
subjected to stealy vibrating loads. A perfectly tuned DVA can be designed for
,asingle degree of freedom system subjected to mono-frequency excitation of a
harmonic nature  But when the frequency varies the design of DVA becomes
complicated owing to the introauction of damping, (introduced to extend the
Jrequency range of of the DVA). In some cases a nonlinear spring coupling aids
in extending the range of usefulness of the DVA.

When a forcing function of an impulsive type acts on a system, vibration
absorbers can be designed so that if fuilure occurs it will be that of the absorber
(because it is made 1o bear the brunt of shock) and not that of the main system.
(The main system is protected from the ravages of the shock). The DVA
Junctions as a protection, against shock.

In this paper a study is undertaken on the design of DV A for varicus types of

excitations, steady, transcient in nature, and it will be the purpose of this investi-
gation to study how effiecient these DVA are, in quenching unwanted oscillations.

INTRODUCTION

The possibility of providing dynamic vibration absorbers for mechanical
systems that can be idealised by undamped single degree of freedom systems
is investigated, when the system is subjected to different types of excitations.

In all the cases considered the motion from the main system is trans-
ferred to some auxiliary system so that the main system is protected from the
harmful effects of vibration.
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In section (1) it is shown that the main sysiem could be completely
isplaied from the vibrations, by providing a dynamic vibration absorber, only
if the excitation s sinusoidal.  Tn section (2) the above probl:m is extended
to the case when the system is resting on a flexible mounting and subjected
1o ground excitation. Section (3) may be considered as an extension of the
section (1) wherein two ubsorber units instead of one are used to eliminate
the vibrations of the main mass. This scheme will be particularly usefyl
if the size of single absorber unit becomes impractical. The case of dynamic
vibration absorber for a single degree of freedom system subjected to harmonic
excitations of two different frequencies is dealt with in section (4). Section (5)
considers the case of the same system subjected to triple frequency excitation.
Extension of this concept to multiple freguency excitation is considered in
section (G) where the syslem is assumed as being subjected to a train of pulses.

Tn all the above cases when more than one absorber has been used, the
absorber units have been assumed to be attached to the main system in series.
The smme system of absorbers could also be attached in parallel as indicated
in section (7) and (8). :

Section (9) deals with the cffect of providing dynamic absorber to a
single degree of freedom system subjected to an impulsive input. It is shown
that a reduction in the amplitude of the main system by abou. 20%, is possible °
with an absorber, whose mass is of the same order as the main mass.
Section (10) indicates a method to suppress the main mass vibration when
subjected to transient ground motion. Section (11) deals with the provision
of dynamic vibration absorbers to continuous systems. Two distinct cuses
are examined under this, viz.,, (@) Self-excited oscillations of a cutting tool,
idealised by a cantiever (b) Aerodynamic oscillations of a transmission line
span idealised by a beam with hinged ends.

Section (12) deals with the provision of a nonlinear dynamic vibration
absorber for a single degree of frecdom system subjected to step function
transient.

1. Possibility of providing a dynamic vibration absorber for suppressing the
vibrations of an undarmped single degree of frecdom system subjected 1o o
Jorcing function F (1) :

Consider the system shown schematically in Fig. (I.1). The equations
of motion are
my (d* x, [de?) + &y xq +hy (x —x,) = F (8) {1.1]

1, (A% x,)dr?y +hey e, — Ky x, = 0 [1.2]

If the vibrations of the mass my are completely eliminated

then x;=90, dx,fdi=0, d%x[d*=0
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Fic. 1.1
Let -’i‘"Pnzxs-kg=P§xaﬁ=P§z;i=Fx
m, m, ™, m
~ From (1.1) and (1.2)
F" (1)) +p% Fy (1) =0 [1.3]

When this condition is satisfied by the excitation, a dynamic absorber
can be provided. It can be immediately seen from the solution of the
differential equation {1.3] that the forcing function will have to be sinusoidal.
The tuning condition will be given by

Pra=ky/my
where p,, is the frequency of the exciting force,
2. Vibration absorber for a system on a flexible mounting and subjected to
base excitation: Xy=B sin wt:

In the fig. shown (Fig. 2.1) (k,, m,) constitutes, the main system resting
on a flexible mounting. The absorber has a mass m, and stiffness ky.

The equations of motion are

my (d? x jar?) + kg (x, —xg) +ky (¥ —xg) =0 {2.1]
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Zx:
X3
my
FLEXIBLE MOUNTHIG
Xt
ky
X =B Sinwse.
Fig. 2.1
iy (A2 xyfdt 2 +hey (30y — %))+ Ky (2 —%3) =0 22
11y (d2 %,/ i) ki (o3 —x0) =0 23
Putting x,—0, (d? x,/d?)=0,
k k. k
R T 2 R
my My 13
from [2.1]
_ P Bsinwt (2.4
T
From [2.2 and 2.4]
o = —p3 [ ph Bsinoer 25)
37 TR \ P pE 1R 2
P32 Pyt —w

Therefore, w?=pi;=ks/m; is the tuning condition.
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3. Use of two dynamic vibration absorbers in series with a single degree of
JSreedom sysiem subjected to harmonic excitation ;

Fig. (3.1) shows the arrangement for this scheme. (The subseript 1
refers to the main system while the subseripts 2 and 3 refer to the two
absorber systems). The equation of motion are

mg (43 xy/de?y 4 (ky-kg) xy —kyxy =B sin wr [3.1]
my (42 Xafdt By 4 (Ry  Kg) Xy — kX —kgty =0 3.2}
s (A x5/ dt%) +Kyxy —kyxy =0 3.3}

Putting x; =0, (d%x,/dr?) =0,
A . k., K

k. k.

3 _p2 3 .p2
2= p2 Pis —1=pl,
7y 1 2 3

22t T
ny

from {3.1]
Xy= ~{Bjm,p3) sin wi [3.4}

k
ta s wt

™, ooy
Xe
k
)
X2
k
my
X3

Fig. 3.1
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from [3.2] and [3.4]

xg= (Bm P3, Ph) (0 —ph—p}) sin ws
Therefore from [3.4] and {3.5],

wla? (Pl +2h+Ph) P Pl
Further letting

L VS "22 =p, from [3.6],
ks my

M=(Kp)+1/p*—1

This straight line relationship is shown plotted in Fig. 3.2.
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[¢] 2 4 K-—6 [) [*]
Fig. 3.2

Absorber parameter curves for single degree of freedom
system with single frequency excitation.

{3.51

[3.6]

137

4. Dynamic vibration absorber for a single degree of freedom system subjected

to bi-frequency excitation,

Fig. 4.1 shows the idealised system subjected to an excitation F ()=
b, sin wt+by sin wt. Two absorber units are attached in series with the system.

The equations of motion are
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my (d? 2, /de?) e - dey (6 —xy) =By sin wil by sin 3 wr

{4.1]
g (d el + (kg4 Kg) Xy —kyey —leyy =0 {421
1ty (@ 225/ i)+ hegy — hppy =0 [4.3]
For complete isolation of nyy, x,=9, d%xjdi*=0
k k k. k k
tet, Kop2 Ky R Ky e Ky s
oy Pia . P21 "y P22 _ P32 ” P3s
From [4.1]
. by
Xy= — Sin wf - sin 3 wt [4.4]
mp3, mpiy

OO NSRS NN NI NS,

k
by sinwl !
by Sin 3wt

™ —
Xy
ks
'1‘!\2 § rmemssconicy
Xz
ks
™y
X3

Fig. 4.1



320 V. ACHYUTA RAG BAPAT AND P. SkINIVSAN

From [4.2] and [4 4]

. b
Xy = _l . b‘_ (w?—p2,)sin wr+ ~———~—32 (9w?--p2.Yysin 3wf [4.5]
Pi; ml,gf2 WPy

Substituting [4.5] in [4.3] and equating coefficients of sinwt and sin3 o
separately to zero and rearranging,

K=o [1+M] [4.6)
where

& =p[10-77] 4
For real systems K> 0, M > 0, therefore only positive values of « arg
admissible, This implies

0sp=V10
Egn. [4:6] is plotted in Fig. 42

P2,

M —

Fic. 4.2

Absorber parameter curves for single degree of freedom system
subjected to bifrequency excitation.
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5. Dynamic Vibration absorber for single degree of freedom system with riple
Jrequency excitation.

This 15 an extension of case (4): Here

F(t)=by sin wt+by sin 3 wr+b; sin 5 et 15.13

‘The equations of motions will be

my (d2x,[di®) - kyxy vy (x,—x,)=F () 5.1
1y (A2, A1) -+ kyxy + gty — KXy — kiyrey = 0 15.2
g (20 di?) + (kg 4k g)xy — gy —hgx =0 15.31
my (d2x,)d) theg (3 —x,) =0 {5.4]

For complete solation of my, x,=0, (d%x/di?}=0,

ke

k, k k k k.
. M 2 2 ? 2 2 2
Let —' =ph, 2 =pi, -2 =ph, 2 ~p} 2 = phy. 2 = ply
m, m, 1y i, my ny
k
4 2
— = Pus
e
1 @ ky k . m
3 2 2 2
— =, My =TT, 0= T = == - ==
7 I A T A Py my B ny

Eqn. {5.1] gives x,, Eqn. [5.2] gives x; and Eqn. [5.3] gives x,. Substituting
these into Egn. [5.4] and equating cocflicients of sin w!, sin 3wi, sin Sw?,
separately to zero, we find after considerable algebraic simplification

p? [ﬁﬂ_l—_ﬁ‘ +/_3LL}32] =35 [5.5]
Xy &y

In section (4) it was shown that for a bifrequency excitation

.{E _ {Mﬁ] . a =k P=M
P ay
If «,, and B, are chosen from fig. (4.2) then for a suitable &, S, can be
calcnlated from [5.5]

The same argument can be extended to multiple frequency excitations.
See Fig. 5.1.
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" [T rEADOIE EXRCITATION
'

" \'E’,Tepnm T

Fie. 5.1

6. Single degree of freedom system subjected 16 pulse train of unit height,
duration 2, and period T.

Referring to Fig. 6.1,
f(t)=(0, -T2 <t< =T
1, -7 <t< +T
1 0, +T <t < +T/2

bt 4 3

- o

Fic. 6.1
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Expressing as a Fourier Series

2, 2 t .
f() =2 a, cos T as F(r) is even [6.1}
n=g T
where
2 T2 2 T2 2 gent
a, = —— S dr, a,==-~ F(t) cos (r“ dt
° T Ji/z T —fT/z ( A

For narrow pulses «,~=4/T, and for impulses a;= 2/T), 0,2 (2/T) (area
under pulse is unity)

A good approximation may be obtained by taking a finite number of
terms in the fourier-expansion and providing an equal number of appropri-
ately tuned dynamic vibration absorbers.

7. Parallel vibration absorbers for bifrequency excitation

Fig. 7.1 shows the schematic arrangement, where F (f)=#, sin wi+

by sin 3 we.

AR L. T T SN

ke
E by 510 wb 4 by S0 3wt

The equations of motion are

g (d 2xg)di?) + by xp - (Ry +Ky) Xo— Ky Xy — Ky Xy = F (£} {7.13
my (dPxfdi®) 4 kg x; —ky % =0 17.23
[73]

1,y (A 2%, dt?) kg Xy — Ky Xg =0
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As before we put, xg=0, (d%xy/dt*)=0

ki ky 2 ky 2 ky 2 ky _ 2
——0'=P€m — =P = =P — =Pin =P
mg ™y Mg "y [

Assuming x;=4; sin w?, x3=4, sin 3wt

We get Aj=— L, Ay=~ 5

ky
and the tuning conditions will be  w?=p}, Sw?=ri, {741
Generatisation

¥f the excitation can be represented by
F(i) = 2 C, sin (n ot +¢y)
a=1

then n parallel absorbers can be provided with the n®" absciber tuned to the
#'" harmonic, viz., p2,=n? o?

The amplitude of the n* absorber mass would be | 4,,| =] C ik, |

8. Parallel dynamic vitration absorbers for torsional oscillutions

Consider a flywheel rotating at a constant speed of w,  Fig. 8.1, Lest a

n
steady disturbing torque of 2 M; sin / @ act on the flywhezl.

i=1
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We shall assume that the flywheel is provided with » spokes. Along
each spoke is mounted an absorber unit comprising of a spring and mass.
Let m;=mass mounted on the i spoke
k,=spring connecting m; to the hub.

The kinetic energy of the system 13 given by

T=4 I(w-+dpldi)*+ ?'JK% m, [(S;+x)? (@ -+ dip[diy? + (dx, et Y] 18.1]

Where / = mass moment of inertia of the flywheel
S;= equilibrium position of m,

x,= radial displacement coordinace of m;

The potential energy is

b{:

V-

[(S;—a, +x)*~ (8, —a)¥] (8.2

i=1

U

a, being the free length of the spring k;

The differential equations of motion are given in the Lagrangian form

Af BT A 2T 3V for coordinate x, i=1,2,3, - -  n (8.3]
dt\ 3 (ux /dt) 2

and

—i B»T~ — 51 -+ e V-: 0, for coordinate ¢ 8.4
dr\ 34 d¢p 2

n ” "
T+ 2Z2m, S ¢+ Z nwm S, (ax/d) = 2 M;siniwt
1 i 1

2.«

and m, (d7x,)drt) = m w? (S;+x) —Im, @ S, ¢k, (S;-a,+x)—0, i=1,2

[% 6]

The equilibrium configuration is defined by
m; w2 S =k (S, —a) 1871
Lo (d ) 4 k—m, o) X - 2m @ S é=0 [8.8]

If the torsional vibrations of the flywheel are to be completely suppressed

P, (j’.*r‘o‘ ('/;==0
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This yields from [§ 5] and {§ 8]

S nwm S {dxdy=2 M, Sin{ w1 [9.9)
=1 1]
and (3 fdi?) + (K /my~ @] x,=0, i=1,2,«+-n 1310

18.10] vields the tuning condition
(K [m)={(2+1) »* [811)

for the :** absorber unit from [8.10]

X,=a cos iwi 18.12]

o from [8 9] and [8.12]
a,=| — M f4m; S, 1 &? ] and phase 180° [8.13]
gives the amplitude of the 1" absorber mass.
9. Vibration ab:orber for a single degree of freedom spstem subjected to an
impulsive excitation.

The single degree of freedom sysiem shown in fig. 9 1 is subjecied to an
impulsive excitation I’ (#), where u' (¢) is the dirac-delta function. The
possibility of reducing the vibrations of the main mass, by adaching a smgle
absorber unit is invesiigated.

K, g J{ wu'cts

™

{; L.

x %
%ka
£

L=

X2

Fie. 9.1
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The equations of motion are

(@A) +pEy X +pEy x—pFy = Hyw (1) 19.1]

(dxy /i) +pd, (;—x)=0 [9.2]
it £ K, i
where pi,=-=t, p2, =22 pi w2, H =
my iy my ™,

Applying laplace traunsform to equation [9.1] and [9.2] and assuming initial
Conditions,
x, (0) =0, (dx/dr) (0), x, (0)=0, (dx,/dt) (0)=0

(4P} +rP30) ‘i;x ®-ri, )—(2 (s)=H, [9.3

3, X, 43, X, (=0 £9.4]

Solving for X ()
_ 22
X, (8)= 7 7rha) By [9.5]

s+s (pr dpd tply) epl, rh,

The denominator of (9.5) is

st45® (o}, tpd rpi) et Pl [9.6]

Since pyy > 0, p,y > 0, p,, > 0, and ;x (s) is even i.e. -;1 (—s)=;1 (s), the
denominator when ecquated to zero wiil have only two pair of complex
conjugate roots, but no real roots.

Let the roots be T Tl Sy oty —ipky l; (971

Sy= 0y il Sg7 Mg IMy

The roots will be purely imaginary because
Sy S8+ =0, 1 oagto,=0
i

Sy Sp 8 b8y 8y 8, T8y 83 5,05y 5, 5,=0

So(o 4 u?) oyt (o ud) oy =0
or  a, (at+uhy—(ai+ud=0

As the expression [9.6] is not a perfect square it will not have repeated roots

(o udy - (adEag). 4 0
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So a,~0and = a,=0.
s =T My, Sy Ay, Sy Mg, Se= =i Mg {9.8]
Inverse transform of [9.5] yields
x (1) (P — 43 (Pla—
A e = _-—sm Myt sin & 9.
uy (Mruz) 2t (91

H, (e
This gives the motion of m,. Next we determine u«; and u, in terms of,
the system parameters Py, Poy, Pre-  We have from [9.8],
51 82 93 8,11 P 19.167

Sy (53783 18 485 (83 8 +85 (5) =pf, +phy +ph = 6] + 0l [9.11)
Let EJ:K, =T
my
R i K«.‘ A+M*i My} , M
P ”‘ S ;‘/[( ) 4:4( K))L P2 = "Epfn [9.12]
[9.9] becomes,
(x, (Dpy/H)Y=Asinuy () ~Bsinpu,t {9 13}
Where
(K+ M+ 1/K \/f((K MK 74(’%/]\’

e Rl s e

(MIK) =3 ((K+ M+
l

VT

K
For physically real systems u,>0, uy>0

DK + A/ {[(K M< 1)/1< —4(M/K)} >___~_
4

/\/l Klﬂl+l

[9.15)

#,.  Eqn. [9.13] becomes

It can also be noted that for the case u,~
However from [9.12] for wu;=pu, we have

[(K - M -1/KP = 4 (M/K)
KA2M <1 -4KM

zero identically.

or K2 M242KM 12
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But this is not permissible in view of the fact that x, in[9 9] becomes
infinite. -
The coefficients 4 and B were calculated on a2 “FERRANTI-SIRIUS
digital computer, for the following range of K and M values
K 11t 10
M1 to 10
For the range of parameters investigated B was always < 0
s [ %y (g /H, ] can attain 2 max. value of | 4]+ B] when siniu, t=1
and sin u, t==1, simultaneously.
If sin py t= 1, then uy t=(4p+1) (7/2), p=0,1,2,
sin my =1 then u, 1=(4q+1) (=/2), ¢=0,1,2,
(uof ) ={Ap+1)[{4g-+1)=4, 1 < XA <7, for the range of parameters
investigated.
If we can find two positive integers p and ¢ such that the above condi-
tion is satisfied then x, (#) { py,/H,) will attain a maximuom value of 4+ B.
Next consider the table (9.1) where A is calculated for various values of

p and ¢.
Tasrg 9.1 Values of A

. - " Common
G 1 2 3 4 5 Diff.

v )=
1 1 5 9 13 17 21 4.0000

2 1 1.8 2.6 3.4 42 0.8000

3 i 1.444 1.889 2.334 0.4450

4 1 1.3077 1.6154 0.3077

5 1 1.2353 0.2363

The above table indicates that two integers p and ¢ can always be found
to cover the entire range of values, 1 < A < 7,

It is clear from table 9.2 that the minimum value of X occurs at K=0.1
and M =1, in the range investigated. This value is 0.798. For a single
degree of freedom system without absorber the maximum value of displace-

ment | x |ue=1.0.

Hence a reduction of nearly 219, in the amplitude of the main mass
could be attained by attaching the auxiliary system whose parameter values
are K-=0.1 and M=1.

Further reduction is possible theoretically, but the size of the absorber
mass relative to the main mass makes further improvement prohibiiive.
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10. Vibration Absorber for Transient or Random Base Excitation of a Single
Degree of Freedom System. See Fig, 10.1.

Ect:
™y
Xy
ki
™y
x,
2 kz Ayt
Fic. 101

(k,, m,) represents a spring mass system subjected 1o an arbitrary base
excitation Xj(f). (ky, m;) constitutes an absorber system attached to the
main system. The equation of motion of the mass m, is

my (4%, [d3) + Ky (X, — X0 + K, X, = K, X ()

If the vibrations of m, are completely suppressed then X, =0, (d%x,/d?) =0
L X = - (KK X, (1) [12.1]

The equation of motion of the mass m, will be
my (d3x,/d3) + K, (x; —x)=F ()

where F(f) is an external force to be applied to m,. From (12.1) and (12.2)
—my (KpfRy) (d%xp/dt?) (N —K, Xo (=F (1) f12.3]

[12.2}

Thus [12.3] represents the force to be applied to the main mass so that the
mass m, Temains stationary.

This force can be applied in the following way.
and its acceleration picked up by an accelerometer and an integrating circuit
are properly amplified as required by equation [12.3] and applied to the mass
my through an electro-mechanical transducer.

The base excitation
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11, Vibration Absorber for Self Excited Vibrations of Contimwus Systems.

(ay Lateral Vibrations of a Cantilever: This type of vibration is very
common in metal cutting tools with considerable overhangas inthe case of boring
bars. The self excited vibration ( more commonly known as ** Tool Chatter” )
is caused by the negative damping effect produced by the variation of frictional
force with relative velocity, between the rubbihg aurfaces. For small relative
velocities the friclional force aids any lateral motion of the tool while for
large relative velocities the frictional force oppose the tool vibiation.
This results in the tool vibrating at the ** limit cycle ” amplitude and marring
the surface finish of the work. The energy needed to excite the bar iuto
vibration is drawn from the steadily rotating wotkpiece.

Consider the cutting tool idealised by a cantilever as in Fig. 11.1. The
naturai frequency of the cantilever with an attached mass and spring is first
determined by the method followed in (1)*. Next an auxiliary mass is
attached to the lower end of the spring and the tuning condition is derived.
Let L=length of the cantilever beam
M =Mass, attached rigidly to the beam, at a distance ‘4’ from fixed cnd.
K=spring constant of the absorber spring.

The frequencies of free vibration of the cantitever, without the mass and
springs are determined by the method of mormal modes as follows. The
equation of motion is,

EI(3*y/ox%)y+p A (D% p/at)=0 [ty

where Ff—flexural rigidity of the cantilever
p =rass density of the beam
A=area of c.s. of the bar
The end conditions are
() Pyno=0, (i) (> ¥fx)s0=0,

(i) @Ipfaxt, =0 (V) (3 yfaxd)yy=0) 12l
The general solution is assumed in the form
y=C; (cos B x+cos h B x)+C, (cos B x—cosh B x)
+Cy(sin Bx+sinh Bx)+Cy (sin B x—sinh f x) [311.3]

where B*=(me?*/EIL), m=p 4

(1)* Vibrations of a beam with concentrated mass, sprin d dash
p. 65, Jan. 1968, V. 15, pring and dashpot by D. Young,
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{ Equation {11.2]— (i) gives C; =0, —(ii) gives Cy=0, —(iii) gives,
Cy(cos B L+cosh B Ly+C, (sinf L+sinh BL)=0;
C, (sin B L+sinh 8 L)-+C, (cos B L +cosh § L)==0 [11.4]

Fliminating C, and C, the frequency equation is obteined as
1rcos B LeushBL=0 [11.5]

« the normal function for the n-th mode becomes,

Yp= —Cy[cosh B, x —cos B, x— «,, (sinh B, x—sin B, x) [11.6]
e
where o= Co st By Lircos B, L [11.7]
C, smhf,Ltsmf, L

The constant 7, is arburary and for the sake of convenience can be set
equal to 1. .. [11.6] can be rewritten in the normalised form as

¢,—=cosh B, x—cos B, x—o, (sinh §, x—sin S, x) [11.8]

Next we consider the mass M as being attached to the cantilever beam by a
rigid link.  When the system is vibrating freely, there will be a force F in
the link joining the mass M and the beam which may be expressed as
F=Fysin wf, where w=1undetermined natural frequency of the composite
system shown in fig. (11.1).

The system is next imagined to be cut through the link so that we have
two parts (a) a beam acted upon by a hormonically varying force
F=Fysin wr (b) a spring supported mass subjected to an equal but opposite
force as in fig. (11.2).

The deflection of the beam at the location of the force fe. at x=h is
given by

(Neen = Weoy, sin wf
Fysinet 3 [p, T

2
Mot =1 @i wl— 0ol

[11.91

The equation of motion of the mass is
M (d?Z,jd1¥) + KZ = —F, sin ot,

the steady state solution of which
Z, = —F, sin wt/(K— M %) [11.101
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for any position x=h, (M/m) Vs. (k/Ky), Ko=(3EI/L%), can be plotted for
values of the parameter (w/w,). This has been done for the cases
(i) h/L=0.78, (i) A/L=0.50. (Fig. 11.8) (11.10},
Next consider the auxiiiary mass M,, attached to the initially fixed end
of the spring. (Fig. 11.3)
The equations of motion are
MA(A*Z,jdt Y+ K(Z,~Zy) = — F, sin wt

. s [11.11]
M (d* Zy[dr?) + K (Z,~Z}) =0
which for Z;=0=(d*Z,/dr %) gives the tuning condition
w?=(K/M,) [11.12]

Thus for a given K the absorber mass M, required to suppress the lateral
vibrations of the cantilever can be found.

Calculations for plotting
Roots of frequeucy equation 1-+cos 8L cosh BL=0, are
B, L=1.87510, B,L=4.69409, B,L=7.85476, B,L—10.99554, B;L=14.13717
m=(ky/e, o), €=3/(B; L)*=0.24267
(0}l =1, (0}/w})=39.2739, (v}/fw})=307.914, (o}/w})=1182.40,
(0¥ wl)=3231.08, (wl/w})=T210, («}/w?)=14,070.

1

1

* F, sin ot

LLLLLLLS

z

AARMAARA,
VWA~
.

"
My

Fig. 11.3
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Tasie 11.1
(Mlmy=AKk/K,~ B

R =078 AL =030
/e, ~ 3 N —_ s
2 0.06067 —0.38633 0.06057 —2.6000
3 0.02760 =0.467504 0.02700 13.1800
4 0.01520 —0.504110 0.01520 1.1430
5 2.00970 —0.52747 0.00970 0.3260
6 0.00674 - 0.56121 0.00674 0.0470
7 0.00495 —0.58343 0.00495 —0 1010
3 0.003791 —0.1953
5 0.002996 -0 2320
w 0.0024267 —0.2980

11 (b) Analysis: The span of a transmission line is idcalised by a beam
with hinged ends. The unstable cross section is provided by means of a
semicircular cylindrical wooden piece running throughout the length of the
beam (Fig. 11 4). The ends of the wooden piece however are free so that it
will only act as an additional UDL on the beam, without in any way affecting
the flexural rigidity of the main beam. The analysis is first done by assuming
a concentrated mass to be rigidly attached to the beam at mid-span, the
other end of the mass being tied to the ground through a spring. The
composite frequency of the system is calculated by the method adopted in (1)*.
The fixed end of the spring is next released, and an additional mass is
attached and the tuning condition derived. Since the system oscillates
almost at its natuual frequency during self excited osciliation, we see from
the tuning condition, that, when the auxiliary mass-spring system is tuned to
this frequency, the vibrations of the main beam wili be suppressed. (Refer-
ring to Fig. 11.5).

ATty
[ RN | =

CIRECTION OF AR FLOW

Y

Fig. 114
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Let A8 be the beam with hunged ends, carrying a UDL of w/unit length
due to the unstable section, m addition 1o 1ts self weight of A ¥ unit lengih,
where A= Area of c.s. ol beam alone and ¥ =specific weight of beam mutert].
The lateral vibrations of the beam are referred to the coordinales (x, »).

The equation of small lateral vibrations of the beam are given by
(neglecting the effects of rotutory nertia and shear deflection).

%y 2 { % Y Elg
<E—t2_>+“ i =0, where @ = e [11.13]

The solution can be assmed in the form

r=X (A cos pt4 B sin p1), [1i.14)

when the beam 1s performing a normal mode of vibration Substiwting in

{11.13]
(d4X/)dx%y = p¥/a*) X [11.15]

the general solution of which is
X=C; (cos kx+cosh kx) + C, (cos kx —cosh kx} + C; (sin &kx -+sinh kx)
+C, (sin kx—sinh kx)=9 [11.16]

where K4=(p2/a®) =(p*Elg) [AY+w] where Cy, C,, C;, Cq are arbitrary
constants to be determined from the end conditions.

The end conditions are

(1) (Mx=e=0 (i) (Pyap=0 } (17
(i) (d%/dx?),.q=0 (iv) (d%/dx?) =0

I n. .
[T,

Fie. 11.5
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[11.17]— (i) yields C,=0
— (i) yields C,=0
— (iii) yields Cy (sin kL +sinh kL) +C, (sin kL —sinh kL)=2
— (iv) yields C; (—sin kL +sinh kL) +C, (—sim kL —sinh kL)=0
Eliminating, C; and C,, sin KL sinh KL.~0
since KL=0, ..sinh kL=0. So sin kL =0 is the frequency equation [1118)
The roots of the frequency equations are
KL=im, i=1,2,3,....
The frequencies of the natural modes are given by
PR=a®KA=(* m*/LY [(Elg/(A Y +w)] [11.19]

The normal function for the n-th mode is

sin k,L +sinh k, L
sin k,L —sinh k,L

X,=C; { (sin K, x+sinh K,x) - [ ] (sink,x —snh K"x);).
[11.20)

Substituting [11,18] in [11.20] and putting Cy=1 for convenience (alternately
this constant can be absorbed in the part ““Acospt+B sinpt” of the
solution) we get

X, =2sinK x [11.21]

Beam with mass (My) and spring (k) attaehed at mid-span  (Ref. Fig. 11.6).

# Fo SN Wi

l t»r‘,sin w

Fie. (1.6
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We assume that the rigid link conpecting the beam and the mass M, is
cut through so that there is an alternating force Fy Sin wf acting on the beam,
as well as the mass-spring system (M,, K). We determine the displacement
of each of the two systems at this point and determine the frequency w of the
composite system. (This ensures compatibility of displacements),

The response of the beam at x=L/2 is

Fysi % X2 Y oL
yapy - Lot el Sl Falesn | ppere - AT0W [11.22]
mpl wsu\p,Hpt o2l z
The response of the spring mass system is
~ Fy sin w!
b losim el [11.23]

Kl—leZ

Equating [11.22] and {11.23] and rearranging, we get, the equation for com-
posite frequency w, as,

2w
1 1 wf 5 {( X,,)z;;/z ; [11.24]

(M,/m—K,/mw’J PE ot {pni/pf~wvz7pyﬂ

Again K/mw?=(EIK, p}/Bt «? B-Eigen value in the frequency equation
(formerly 4). But f{=m*and putting K,=stiffness of beam due to a con-
centrated load at midspan=(384 EI/5 L)

ky ks Pf ~
=€yt =L where €; = — =0.7880
mw? lkh ot i 3 ﬁ? [

Also p2pi=nt[l*=n?

(X)i2=2 X sin (nr[2) =0 if # is even
=42 ifnisodd, +2ifn=4m+l m—012

2 i n=4m—-1 m=1,2,
in any case (X, *),,—4, forn odd .. equation [11.24] becomes
1 YA i ___1._,,;;
{(M,[m) —¢, (K/k;) (P} aet, 3,5 inf - wdfpt}

The right hand sides is convergent for all wjp, except when wl/p} =n* in
which case it is infinite.

A plot of (M;/m) Vs. (K/KY) for various parameter values ((u//’i) is
shown (Fig. 11.8)
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These plots are maade according to the following equations :
Myfm=A (KJK,)+ B

w/py A AR

0.50 3.15200 +0.74300
2.00 .19700 -0 19630
3.00 0.08756 —0 25550
4.00 0.04925 ~-0.31990

5.00 0.03125 ~0.46920
Tuning condition :
Let M,=absorber mass. The cquation of motion of M, and M, are
My E,+ Ky &= &= —Fysin wf
My B+ (E,-6) =0
To suppress the motion of M; and hence of the beam £,-0,
£,=0, &= (FysinwiK))
w =4/ (K;/M,), is the tuning condition.
The procedure for the selection of the absorber may he briefly summarised as
follows .

1. Choose the convenient values of M, and &, (the possibility of ;=0
is not absolutely ruled out, 1t is possible as long as the lines in Fig. 11.8 cut
the abscissa). Obtain (w/p;) from Fig. 11.8.

2. Then M,=k, *
12.  Nonlinear Dynamic Vibration Absorber for an Undamped Single Degree of
Freedom Subjecied to Step Function Excitation.

Consider the smgle degree of freedom shown in Fig. 12.1. TLet m, =
mass, k, =stiffness of spring. Let the system be subjected to a step function
excitation F, (). Then the equation of motion becomes

my (d3x,fdt?) + K x, = F [12.11
Dividing throughout by m, aund putting (K,/my) =p};, (Fy/m)=Fy;

(d*x, /df?y +phy v = Fyy {12.2
Assuming initial conditions x, (0) =0, (dx,/dr) (0) =0, the solution of (2} will be

Xy = (Fy/pi) (I =cos pyy 1) [12.3]
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The maximum values of x; will be (x,),=(2F,,/p%)=25, where
3="Fy,/r}; {12.4]
Next consider the two degree of freedom nonlinear system shown in fig. (12.2).

We shall denote m,=—absorber mass
k4= absorber spring.
The two masses are coupled by a nonlinear spring whose force displace~
ment characteristic is given by f{x) =K, x+X;x%

The equation of motion of the two masses become

my (d2x)drty 4 Kpx + Ky (g —xp) + K (3~ 2,2 = F, {12.5}
Fy
N
N —
N
N
~
\
N
k
N ?
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~
N
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N
N
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m, (%, dtY) + Ky (o —x) + Ky (7 —x )P +k, x,= 0 [12 6]

(K fm)=p}, Kafmp)=pi, (Ky/m)=uy, (F/m)~Fy
Eo/may =phy, (Ka/my) = sy, (Kolmy)=pl

(%o Jdy = (14 ph) %y =P Xt gy (Y~ 3’ =Fy (1271
(2°2,/di®) +( PRy + i) Xa =P Xyt By (3 =%, =0 [128]
my ity - KK — A =constant

Pr Koimy = pl A, PizjK:a/mz’}"ﬂ

gy = Kg/my o=ty A

S{12.7] becomes

@y [t 4 (pFy v pRy) Xy —ph ek My (X=X - Fyy [12.9]

A2yl dr?y (AT PR Xy P oy ity (32— ) =0 {12.10]

Adding (d3x,/d 4 A d¥xy)di®) +pF () -+ A 3y =Fy

Setting x,

+Ax, =€, £rph E=F, [12.11]

[12.9]-[12.8] give
(2 e = ¥y e} + Py Gty = 35 +pdy [(AF D/A] Gy = %)

g JE DAY (o —g)® =0 {12.12]
Let (xy—x))=7
diy 3, o2 A1 3
ZE'; + {/m P2 <~r) 7 } + /43,< A H) 73~0 ’ [12.13]
2 _
x - 21 - £ [12.14]

ETAT
(A1) YR}

We shall assume the initial conditions to be
x(0) =0, (dx,fdr) (=0, x,—(0), (dxyfary—~0
L E)=0=F (0)
7 () =0= 3 (9)

Consider

Equation [12.13]

Let /{p}, +p%, A+ DAL} - 1=y [12.15]
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. dz’l 4+ oy A My (AT (Ad I)/)‘ 3: - )
AR TR NN TR H)/’\] Pry [LH(PE PRy (A1 1)/A]
[12 16
Put
P fpdy =KofKy =, wa/pi — KRB
2 Ly
4y + ok B l)’?\ p3= 5
dr? U4 o (A 1)/ P (AE1)/A
Let 3 = ‘(5 MIA+ 2 (A+ D]} 7y
z/zvl /)(X‘I)B’P\Z 3
P AR R 112,
P AR WP 2.1
Let
B@A+F1ATS~B; T+a(A+D/A=4a [12.18]
Consider Eqn. [12.11].  Substituting [12 15]
([2§ 4 )\, _—— &= ___5.‘)5__
d DaArDlT DArade]
. §A
ihE = — T ¢ 12,19}
R T YL {1219
Cho LA e
dry At x (A1)
Substivuting {12.17]
ChL B 112.20}

aii A
The maximum value of &, from [12.20] is & (max)=24. Integrating [12.17],
putting 7, =7, (max), d g, /dr=0, and dividing throughout by »; max
|
Niax F (2 A/B) ya—4 (A4/B)=0
O 2(A/B)= §2uf(2 = 7 max) [i2.21}
s~ From (12.14)
() mar = (Evmax T AT 1) {1
=[3/A D] a2 7 s

~IBJA D)) {244 A yak [12.22]
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X ! Kimads = (24 1A 1) 24 (A4 D= 2 (1223

From (12.17) as >0 and A>0, and §2>0. A4 is always>0.

If we admit softening type of nonlinear spring then B<0 and B can
assume negative values.

Consider equations [12.23].
We are interested in values of £2 <1 for absorber purposes [12.23] can be
written as
24 [2 A+ ~11=2 7 max {12.24a}
Now £y I8 always>0.

(Ximax)w Will be greater than zero if 7,,, i8>0,  We shall therefore use
Mimex> 9 fOT 2 conservative estimate.

Then (A +1)—1>0, from (12.242)
or A>{(1-2)/82 (12.24b)

Further we are led to restrict Ato 0 < A <1 to have an absorber unit not
bulkier than the main unit.

> (1-2){2or 2> 05 {12 25)

Consistent with all the above requirements we can provide a reduction in
amplitude not greater than 50%,.

Even chis reduction would be very significant for practical purposes.
Eliminating 7., between [12.21] and [12.24]

A QAN (L A+D—1P
R 12.26
(3) BN [@arh-11 224
If the coupling spring is linear from [12.17} B=0
< From (12.18) 3;p=2
a8 24424 (D e f12.27]

yma)s AT 7 23

For the mnonlinear spring 7, <207 8> 0 ()i > (PDnontmenr 274
definite advantage results by using a ‘“herdening” type of nonlinear spring.



