J. Indian Inst. Sci., July-Aug. 2001, **81**, 483–484 © Indian Institute of Science.

Short Communication

Rearrangement products derived from β -patchoulene epoxide: Structure of a novel ketone having tricyclo[5.2.2.0^{4,8}]undecane skeleton[†]

S. K. PAKNIKAR^{*} AND JAYA SRINIVASN (NEE JAYA VEERAVALLI) Department of Chemistry, Goa University, Goa 403 206, India. email: param@csino.ren.nic.in; Phone: 91-832-220601.

Received on October 25, 2000.

Abstract

Structure of the unidentified ketone obtained by BF₃-catalyzed rearrangement of β -patchoulene epoxide (1) has been assigned as 4,8,9,9-tetramethyltricyclo[5.2.2.0^{4,8}]undecane-3-one (7).

Keywords: β -Patchoulene epoxide, BF₃-catalyzed multistep rearrangement, 4,8,9,9-tetramethytricyclo-[5.2.2.0^{4,8}]undecane-3-one.

Molecular rearrangement is one of the fascinating aspects of terpenoid chemistry. The structures of several rearrangement products **2**, **3**, **4**, **5** and **6** of β -patchoulene epoxide (**1**) with BF₃ and SnCl₄ under different solvent and experimental conditions have been elegantly explicated.^{1,2} We report here an unusual type of rearranged structure **7** for the uncharacterized crystalline ketone, C₁₅H₂₄O, m. p. 80°C obtained by treatment of **1** with BF₃ gas and using benzene as solvent.² The available spectral (v_{max} 1700 cm⁻¹, ¹H NMR: four methyl singlets at δ 0.81, 0.90, 3H each, 0.95, 6H) and analytical data indicate that the rearrangement product must be tricyclic with four tertiary methyl groups and most probably contains an α , α -disubstituted cyclohexanone functionality.

The mechanistic reasoning used by Ourisson and coworkers¹ to rationalize the formation of rearrangement products 2-6 gave us a clue to the structure of the unidentified ketone. We propose that this should be represented by 7, a compound with a tricyclo[5.2.2.0^{4,8}]undecane skeleton, so far not reported in terpenoids.

To explain the formation of the unidentified ketone 7 (Scheme 1), we invoke the same cationic intermediate $\mathbf{8}$, earlier proposed by Ourisson and coworkers^{1,2} which leads to products

[†] Dedicated to Prof. S. C. Bhattacharyya

* Author for correspondence.

Scheme 1.

4, **5** and **6**. Cation **8** gets transformed into enol ether intermediate **10**, via fragmentation of **9** (Scheme 1), in which the disposition of the double bonds is such as to about a facile overlap and interaction as shown in **10**. Protonation of the double bond and bond formation with participation of the oxygen function leads to the desired product possessing the four tertiary methyls and the saturated ketone on a six-membered ring. The simplicity of the reaction mechanism leading to the structure 4,8,9,9-tetramethyltricyclo[5.2.2.0^{4,8}]undecan-3-one (**7**) and its compatibility with other pathways leading to structures **2–6**^{1,2} argues for its correctness.

Though the carbon skeleton of **7** is unprecedented in terpenoid chemistry, there are previous reports describing the formation of tricyclo[5.2.2.0^{4,8}]undecane through an acid catalyzed multistep rearrangement of tricyclo[5.2.2.0^{2,6}]undecane.^{3,4} The basic hydrocarbontricyclo-[5.2.2.0^{4,8}]undecane has been synthesized.⁵

Acknowledgement

We express our deep gratitude to Prof. Guy Ourisson for critical evaluation of the results presented and also for valuable comments.

References

5.	AIGAMI, K., INAMOTO, Y. AND IKEDA, K.	Japan Patent, Jap. Kokai, Tokyo Koho, 78, 108, 958, Chem. Abstr., 1979, 90 , 103526.
4.	Osawa, E. et al.	J. Am. Chem. Soc., 1977, 99, 5361-5373.
3.	INAMOTO, Y. et al.	J. Org. Chem., 1977, 42, 3833-3839.
2.	BANG, L. AND GUEST, I. G.	Recherches, 1974, 97-118.
1.	BANG, L., GUEST, I. G. AND OURISSON, G.	Tetrahedron Lett., 1972, 2089–2092.