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Abstract

The effect of resonant shunting on the vibration behaviour of a duralumin cantilever beam is experimentally
investigated with reference to the reduction of response amplitude and additive damping and the change in
resonance frequency. The overall reduction in tip amplitude is around 4% for a peizoceramic layer with
electromechanical coupling coefficient (k31) equal to 0.30. However, higher values (k31 = 0.36, typically applied
in beams and rods) of electromechanical coupling coefficient result in significantly higher levels of reduction of
vibration amplitude with a change in natural frequency from short circuit to open circuit value. A 20−30%
reduction in response amplitude and 8−10% change in natural frequency (open circuit to short circuit) is possible
when the planar electromechanical coupling coefficient (kp, typically applied in discs and plates) is 0.6−0.65.
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1. Introduction

Piezoceramics are transformers that convert mechanical energy into electrical energy and vice
versa. When they are bonded to a structure, the mechanical strain energy generated in the
piezoceramic is converted to electrical voltage in the poling direction of the piezoceramic device
(Fig. 1). This voltage or electrical energy can be dissipated or shunted to another frequency band
using electrical networks connected to the terminals of piezoceramic, thereby controlling the
mechanical energy of motion of the structure. If the electrical network contains electrical energy
sources, then we term it as an active network, and the control scheme as an active control one. If
there are no energy sources, then the network is known as a passive network, and the control
scheme is a passive control one. The present work will be concerned with the latter.

Passive vibration absorbers or controllers are well known in vibration engineering.1,2

Conventional passive controllers cannot be tuned to different operating regimes such as changes
in external excitation frequency or amplitude, and even change in system parameters and hence the
move towards active vibration control devices. However, piezoceramic materials with tunable
passive electrical networks can alleviate some of these shortcomings. The tunable passive electrical
networks connected to the piezoceramic can modify the frequency selective vibration transmission
properties of the structure itself.

Electrical passive shunting of piezoceramics has been investigated in the recent past.3−5 These
studies have focused on experimental investigation of the additive damping and change in resonance
*Author for correspondence.
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frequency. The analytic vibration models represent the damping and stiffness due to electrical
shunting of the piezoceramic as a complex frequency-dependent modulus similar to that used in
viscoelastic solids.3 The optimum shunting parameters for the piezoceramic vibration absorber is
also derived and experimentally verified.

The present work investigates experimentally the variation of damping with resonantly shunted
piezoceramics.

2. Modeling of shunted piezoelectric materials

The constitutive equations of a linear piezoelectric material can be written as:3

FIG. 1. (a) Physical model of uniaxial shunted piezo-
electric and its (b) network analog.
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The generalized compliance matrix in the upper left partition is diagonal and the elements of
this partition have the form,

           AiEi/////L i = Cpi (9)

where Cpi is the capacitance between the surfaces perpendicular to the i th direction at constant
stress. By grouping these into Cp, the constituent equation becomes,

Representing these equations in terms of voltage and current, whhich are defined as

vi = ∫0

Li
 Φidxi,         ii = ∫Ai qidai .      (6)

Assuming that the field within and electrical charge on the surface are uniform for the piezo-
electric material, the relations (6), in the Laplace domain, become :

                                                            v(s) = L. Φ (s),       i(s) = s A(s) (7)

where L  is a diagonal matrix of the lengths of the piezoceramic patch in the i th direction, A, the
diagonal matrix of the areas of surfaces perpendicular to the i th direction, and s, the Laplace
parameter. By taking the Laplace transform of eqn (1) and using eqns (7) to eliminate Φ and q, the
general equation for a piezoelectric in terms of the external current input and applied voltage is
obtained as:

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
 0  0  0 c55 0 0
 0  0  0 0 c55 0
 0  0  0 0 0 c66

C  = (5)

(8)
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   sAEL −1    sAD

   DTL−1       C

where YD(s) is the open circuit admittance of the piezoelectric (due to the inherent capacitance with
free mechanical boundary conditions). For shunted piezoelectric applications, a passive electrical
circuit is connected between the surface electrodes (Fig. 1). Since the circuit is placed across the
electrodes, it appears in parallel to the inherent piezoelectric capacitance in that direction. The
admittances add in parallel. Hence the governing constitutive equation (10) becomes,
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(13)

where
YEL = = = = = YD + YSU.    (12)

The externally applied current, i, is the sum of the currents flowing through the shunting impedance,
the inherent piezoelectric capacitance, and the piezoelectric transformer. The shunting admittance
matrix is assumed to be diagonal and frequency dependent with the form,

(11)
i

e
=

v

s

     YEL      sAD

    DTL−1      C

The voltage appearing across the electrodes can be estimated from eqn (11), which will be

                                                       v  =  (ZEL)i −−−−− (ZELsAD)s (14)

where ZEL  is the electrical impedance matrix and is equal to (YEL)−1. The strains in terms of stress
and input current can be obtained by substituting eqn (14) in eqn (11),

                                                                                                                                                                                    e  ===== [C − DTL −1ZELsAD] s  + [DTL −1ZEL] i                                        (15)

This governing equation for the shunted piezoelectric gives the strain for a given applied stress
and forcing current. The shunted piezoelectric compliance can be defined from eqn (15), as

CSU ===== [CE −−−−− DTL−1ZELsAD] (16)

It is to be noted that the short and open circuit electrical impedances with constant stress will
be ZE(s) ===== 0 and ZD(s) = (Cps)−1, respectively

         sL−1EA ===== Cps . (17)

With these, eqn (16) can be written as

         CSU ===== [CE −−−−− DT 
−
ZEL(eT)−1D], (18)

where the nondimensional electrical impedance matrix is defined as

 
−
ZEL  =====  ZEL(ZD)−1  =====  (sCp + YSU)−1sCP .  (19)

Since ZEL is diagonal, the electrical contribution to the compliance can be written as the
summation of electrical impedances,
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  (22)

(21)

where Di denotes the i th row of D and for piezoceramic M i have the form

The above equations constitute a general expression for the compliance matrix of a piezoelectric
element. Equation (20) can be simplified further, when the piezoelectric element is loaded uniaxially
with either a normal or shear stress and only one pair of electrodes is necessary to provide an
external electric field with components in only one direction. For loading in the jth direction and the
field in i th direction the term in the compliance matrix will be

cjj
SU= cj

E
j − Z

−
i
EL(dij  )

2 / eT
i . (23)

The electromechanical coupling coefficient is defined as the ratio of the peak energy stored in
the capacitor to the peak energy stored in the material strain with the piezoelectric electrodes open.
It represents the percentage of mechanical strain energy which is converted into electrical energy
and vice versa. The electromechanical coupling coefficient, kij, can be represented as
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3

Hence, the compliance Cjj
SU is obtained by substituting eqn (24) in eqn (23),

cjj
SU = cj

E
j  [1− k2

ij  Z
−
i
EL]. (25)

From eqn (25), it can be observed that the compliance of the shunted piezoelectric is equal to
the short-circuit compliance of the piezoelectric material modified by a nondimensional term which
depends on the electrical shunting circuit and the material’s electromechanical coupling coefficient.
Substituting  

−
ZEL = 1, for the open circuit case, to get the shunted mechanical compliance as

cj
D
j  = cj

E
j  [1− k2

ij ]. (26)

kij = dij/√cjj eT
i . (24)
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Equation (25) gives the change in mechanical properties of the piezoceramic as the boundary
conditions are changed from open circuit to short circuit. Similarly, an analogous expression can
be thought for the change in the inherent capacitance of the piezoelectric as the mechanical
boundary conditions are changed.

    cp
C
i
R  = cp

C
i
S  [1− k2

ij ]. (27)

The mechanical impedance of the shunted piezoceramic can be obtained in the nondimensional
form by using eqns (25) and (26). For uniaxial loading in the j th direction, the mechanical impedance
of the piezoelectric can be expressed as a function of Laplace parameter, s, as

The final expression for the nondimensional mechanical impedance, which is defined as the
ratio of the shunted mechanical impedance to the open circuit impedance, for the shunted
piezoelectric can be derived using eqns (28) and (26) as

(28)

(29)

When the shunted piezoelectric is coupled to the structure, the nondimensional mechanical
impedance,  

−
Zjj

ME can become complex and frequency dependent since it depends on the complex
frequency-dependent electrical impedance. Since impedance is primarily stiffness, it can be
represented as a complex modulus.

−
Zjj

ME (s) =   −Ejj  (w ) [1 + iηjj (w ) ] (30)

where  
−
E is the ratio of shunted stiffness to open circuit stiffness of the piezoelectric and η the

material loss factor. This leads to frequency-dependent equations for the complex modulus of the
shunted piezoelectric. The loss factor  η and modulus  

−
E can be expressed as

The above two equations give us the indication of damping and stiffness variation with electrical
shunting, respectively. In the case of electrical shunting of the piezoceramic, a resonant circuit is
created by shunting the inherent capacitance of the piezoelectric with a resistor and inductor in
series forming an RLC circuit. A resonant circuit connected in parallel with the piezoceramic is
shown in Fig. 2. The mechanical analog of an inductor, capacitor, and a resistor is a mass, spring,
and damper, respectively. Thus the resonant electrical circuit behaves very similar to a classical
tuned mass vibration absorber. However, one has to keep in mind that the effectiveness of
connecting a resonantly shunted piezoceramic to a vibrating system with the intent of controlling
its vibration will be limited by the electromechanical efficiency of the piezoceramic, kij. A high
value of kij would imply a more effective resonantly shunted piezoceramic tuned vibration absorber.
With an inductor and a resistor in parallel with the piezoelectric’s inherent capacitance, the total
electrical impedance can be written as

(31)
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where Li is the shunting inductance and Ri, the shunting resistance. Substituting this relation in
eqn (29), and simplifying to get nondimensional impedance of a resonantly shunted piezoelectric,

FIG. 3. Single-degree-of-freedom of system model with
shunted piezoelectric element in parallel with the
system modal mass.

FIG. 2. Resonantly shunted piezoelectric.

The above equation gives the effective mechanical impedance of a piezoelectric element shunted
by a resonant circuit. Frequency tuning parameter, d, refers to the frequency to which the electrical
circuit is tuned, and the damping parameter, r, is indicative of the damping in the shunting circuit.

As the stiffness of the piezoelectric material is frequency-dependent, maximizing the loss
factor of the piezoelectric material does not necessarily maximize the loss factor of the total structural
system of which the piezoelectric patch is a part. In order to accurately model the system, modal
damping as a function of frequency or shunting parameters (such as resistance), this frequency-
dependent stiffness must be carried through the calculations. In order to achieve this, the dynamics
of the host structure is modeled by a single vibration mode. The piezoceramic is then coupled in
parallel to this one degree-of-freedom (DOF) system as shown in Fig. 3.

Following the 1-DOF system modeling techinque, the modal velocity of the vibrating system
with resonantly shunted piezoelectric can be expressed in the Laplace domain as,

(33)

Ms + (K/s ) + Zjj
RSP(s)

F(s)
v(s) =   (34)

−
Zjj

RSP(s) = 1 − k2
ij ( )d2

g2 + d2rg + d2

(32)Zi
SU (s) = Li s + Ri,     

−
Zi

EL(s)  =
Li Cp

C
i
S s2 + Ri Cp

C
i
S  s

Li Cp
C
i
S s2 + Ri Cp

C
i
S  s + 1

K-modal stiffness

where we = 1 / √(LiCp
C
i
R) = electrical resonant frequency, and d = we/wn = nondimensional tuning

ratio.

where MS and K/s are, respectively, the impedance associated with the modal mass and stiffness of
the host vibrating system and Zjj

RSP, the modal impedance associated with the resonantly shunted
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piezoelectric. After reduction and nondimensionalization, an expression for the position transfer
function of a mechanical system with RLC in parallel with the base stiffness and a force acting on
the mass can be found from the above equation as:

and for r = ∞

(37)

The generalized electromechanical coupling coefficient, Kij, is defined as :

(36)Kpzt

K + Kpzt

kij
2

1 − kij
2(  )Κij

2  =            .

The optimal tuning parameters for the transfer function are to be found by identifying the
magnitudes of the transfer functions that correspond to r=0 (short circuit) and r=∞ (open circuit).
From eqn (35), for r = 0, we have

= ,
(d2 − g2)

(1 − g2) (d2 − g2) − Κij
2 g2

x
xST

The two transfer functions (eqns (37) and (38)) are equated and a quadratic expression is
obtained, which can be used to get the invariant frequency points.

g4 − g2 [(1 + Κij
2) + d2] + [(d2/2) (2 + Κij

2)]  =  0 . (39)

The solution and simplification of the above equation gives the optimum tuning parameter δopt

and the optimal circuit damping ropt as :

The effect of various circuit resistor values at optimal  tuning is shown in Fig. 4. The response
is similar to that of a vibration absorber. As the damping parameter is increased, the two distinct
system modes coalesce into a single mode that converges to the system response with open-
circuit piezoelectric as the damping parameter approaches infinity.

3. Experimental set-up

In order to investigate the properties of the resonantly shunted piezoceramic, dynamic tests were
conducted on a duralumin cantilever beam specimen with surface-bonded piezoceramic devices.
The cantilever beam was 166 mm long, 30.5 mm wide and 0.9 mm thick. The schematic diagram of
the beam and piezoceramic is shown in Fig. 5. The top and bottom piezoceramic devices were

(35)=         .x
xST

(d2 + g2) + d2rg
(1 + g2) (d2 + g2 + d2rg) + Κij

2 (g2 + d2rg  )

ropt =       2                       .
(1 + Kij

2 )

Kij

dopt  = 1 + K ij
2  ;

(41)

(40)

 (38)
1

(1 + Κij
2) – g2=             .x

xST
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QP20N of Active Control eXperts Inc., USA. The piezoceramic patches were attached to the beam
with a very thin layer of epoxy. The material properties of the beam and piezoceramic are listed in
Table I.

The top PZT was shorted for all the experiments, whereas the bottom PZT was used for passive
shunting experiments. The shunting inductance was varied between 0 and 200 H. The natural
frequencies of the beam were found using impulse excitation technique consisting of instrumented
impulse hammer PCB Piezotronics 208A03, B&K 4344 accelerometer, and B&K 2635 charge amplifier.
The experimental set-up is shown in Fig. 6. The beam was excited at its first resonance frequency
using Derritron VP2MM exciter, 25 W Derritron power amplifier and signal generator from AD 3525
analyzer. Input force is measured using B&K 8200 force transducer and amplified by B&K 2626
conditioning amplifier. The acceleration response of the beam was picked up at the tip by B&K
4344 accelerometer and amplified by B&K 2635 charge amplifier. These signals were acquired by
National Instruments ATMIO 16 data acquistion card in LabView (Ver. 5.0) software. Constant
input force level was ensured for each of the resonating shunting cases.

Damping was estimated from the energy dissipated in one cycle. This is given by the area
enclosed within the force versus displacement curve for the vibrating system with piezo bonded to
it, that is,

U = OIFdx = I0
2π/Ω Fvdt (42)

FIG. 4. Response of 1-DOF system containing LRC
(dopt = 1.1012).

FIG. 5. Beam with PZT.

Material Duralumin P Z T
Length (mm) 166 50.8
Width (mm) 30.5 25.4
Thickness (mm) 0.9 0.762
E (GPa) 70 69
Capacitance (mf) − 0.09
Density (kg/m3) 2700 7700
Coupling coefficent (k31) − 0.3

Table I
Material specifications
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FIG. 6. Experimental set-up.

where Ω is the excitation frequency and v the velocity. Velocity and displacement signals were
obtained by integrating successively the acceleration signal using a high-pass filter implemented
in Matlab/Simulink (Ver. 5.3 (R11)). A Butterworth filter of order 16 with cutoff frequency at 12.75
Hz was used. A high-pass filter is needed to eliminate the DC component in the integrated signal.
The cutoff frequency was selected on the basis that the phase and amplitude distortion in the
measured and filtered values of acceleration are minimal. To compare the damping performance of
shunted PZT, an equivalent damping coefficient Ceqv is determined for different cases.7 Thus,

(43)

where U is the energy dissipated given by eqn (42) and Xo the displacement amplitude. Ceqv is
evaluated for different inductive shunting values. The damping coefficient ζ is evaluated as:

U
pWX0

2Ceqv  =

z =   .
Ceqv

2wn

4. Discussion

The base damping for the first mode with and without PZT are 0.0162 and 0.0097, respectively. The
piezoceramic material, being brittle, has less effect in enhancing damping as an unconstrained
damping layer.8 In the present investigation, the base damping is referred to as the damping of the
beam with PZT shorted for all the cases. The inductive shunting experiments are done for the beam
with 0−200 H. The effect of inductance is studied. The enhancement of damping in the present
case is mainly attributed to the inherent resistance of the inductance coil and is not significant.

(44)
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The value of the electromechanical coupling coefficient, kij, given by the manufacturer is equal
to 0.3. As stated in an earlier study,9 this value is quite small to observe a significant shift in the
frequencies between open- and short-circuit terminations of the PZT. The generalized
electromechanical coupling coefficient Kij, evaluated from eqn (36), and using the value of
Kij = 0.3, is 0.12. However, the experimentally evaluated9 value was found to be 0.035. This large
deviation is attributed to the effect of the bonding layer on the PZT’s ability to transform mechanical
energy into electrical energy. The optimal values of the inductance and resistance needed for the
resonant shunting (RLC circuit across beam), with this modified Kij, are listed in Table II. These are
basically calculated from eqns (38) and (39) with the corrected generalized electromechanical
coupling coefficient. Note that the optimal inductance needed would be 600 H and the optimal
resistance needed is 3800 Ω. These values differ significantly from those calculated using the
theoretically estimated value of Kij = 0.12. The analytically simulated frequency response of the
piezo-shunted duralumin beam with these theoretical values of optimal inductance and resistance is
shown in Fig. 4.

The experimental simulations confirm the discrepancy stated above. Only the inductance was
varied. There was no shift in the resonance frequency for different values of inductive shunting.
This too confirms the fact stated above, namely that Kij is quite low. The tip response amplitude,
shown in Fig. 7, reduces to an extent of 4%, is basically due to the addition of inductance (equivalent
to the addition of mass) and the damping is due to inherent resistance of the inductance coil which
is 110 Ω for every 10 henry.

5. Conclusions

The effect of resonant-shunting of a piezoceramic bonded to a duralumin cantilever beam is
investigated with reference to its vibration behaviour, namely, to its reduction of tip response
amplitude and additive damping, and change in its resonance frequency. The overall reduction in
tip amplitude is around 4% for a piezoceramic layer with electromechanical coupling coefficient
(k31) equal to 0.30. However, higher values (k31 = 0.36, typically applied in beams and rods) of
electromechanical coupling coefficient result in significantly higher levels of reduction of vibration
amplitude with a change in natural frequency from short- to open-circuit value. A reduction of

FIG. 7. Response of beam with PZT (inductive shunted).
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20−30% in response amplitude and a change in natural frequency of 8–10% (open and short-
circuit) are possible when the planar electromechanical coupling coefficient (kp, typically applied
in discs and plates) is 0.6−0.65.
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Nomenclature
q : electrical displacement (charge/area)
R : generic resistance
L : generic inductance

Table II
Experimental tuning parameters for resistor and resonant shunting

Cantilever beam
Natural frequencies without PZT (I, II modes) 16.8 and 115 Hz
Natural frequencies with PZT (I, II modes) 22.5 and 96 Hz
Natural frequency (shorted) 22.5 Hz
Natural frequency (open) 22.5 Hz
Damping ratio (without PZT) 0.0097
Damping ratio (with PZT, ref: short) 0.0162
Generalized coupling coefficient (estimated) Kij 0.12
Generalized coupling coefficient (measured) Kij 0.035
Inductance tuning
Optimal inductance L = 600 H
Optimal resistance R = 3800 Ω
Optimal frequency tuning 1.1012
Optimal dissipation tuning 0.05
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dij : piezoelectric material constant
ΦΦΦΦΦ : vector of electric fields (volts/meter)
i : vector of external applied current (amps)
ε : strain
v : voltage
C : compliance matrix
E : piezoceramic dielectric constant matrix
E : elastic modulus of the material
A : diagonal matrix of cross-sectional areas of piezoelectric bar
s : Laplace variable
Cpi : inherent capacitance of piezoelectric in the ith direction
Yc

D : open-circuit admittance of the piezoelectric
YSU : shunting admittance
Y  : electrical admittance of the piezoelectric
Z  : electrical impedance of piezoelectric (shunting impedance in parallel to the inherent

capacitance)
     −−−−−
Zjj

ME   : effective mechanical impedance of shunted piezoelectric
d  : we/wn, resonant shunted piezoelectric frequency parameter
h  : loss factor
s  : material stress
g  : complex nondimensional frequency, s/wn

r  : nondimensional resistance (or frequency)
wn  : natural frequency of the structure (rad/s)
we  : resonant shunted piezoelectric electrical resonant frequency (rad/s)
r  : dissipation tuning parameter (RCpiwn)
g  : w/wn, real nondimensional frequency ratio
d31 : piezoelectric constant (strain/field)
K  : modal stiffness of the beam
Kpzt : stiffeness due to PZT bonded to the structure.6

M  : modal mass of the beam

Subscripts
pi  : piezoelectric

Superscripts
E  : value taken at constant field (short circuit)
D  : value taken at constant electrical displacement (open circuit)
RSP: relates to resonant shunting
SU : shunted value
CR : value at constant strain
CS : value at constant stress
T  : transpose of a matrix or vector


