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ABSTRACT

In this paper, transport processes in a fully ionized plasma, governed by the
kinetic equation proposed by Landau, have heen investigated hy expanding the distri-
bution functions of ions and elecironsin terms of generalized Hermite Polynomiaus,
Sfollowing Grad.  From the resulting transport equations, expressions for viscosity,
thermal conductivity, diffusivity, electrical conductivity und Townsend coefficients in
the presence of a constant, uniform, Strong mugnetic field, are aeduced. These
expressions have similar foims to those obtained earlier by the same procedure by
Devanuthan, Raghavachar and Ram Babu on the basis of Fokker-Planck equation.
This is as expected since Landau equation, in principle, is another version of the
Fokker-Planck equation, taking into auccount small simultanevus particle interactions.
Using the expression for electrical conductivity, the decuy length of disturhances
in the stellar photosphere, like regions of turbulence, is calculated and is found to
fncrease bot: with the decrease in number density and increasing temperarure, there-
by providing an efficient mechanism for coronal heating. Further, the rativ of
thermal conductivity to electrical conductivity has linear dependence on temperature
in agreement with the Wiedemann-Franz law, although the slopes in the rwo cases
are different. The other transport coefficients show the same behaviour as in earlier
investigations,
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1. INTROGDUCTION

The behaviour of iomized gases is described by a system of kinetic
equalions:
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where f,, ¥4, F, and m, are respectively the disiribution function, velocity,
external force and the mass of the «-th particle. With the collision term as
described by the B-G-K modei? of the Boltzmann collision integral, Devanathan,
Uberoi and Bhatnagar? have studied transport processes in a collision-dominated
multicomponent plasia, based on the procedure developed by Grad®. But, for
a fully ionized plasma, small simultaneous collisions dominate its behaviour
as pointed out in detail by Jeans® and Spitzer ef al®>. Devanathan, Raghavachar
and Ram Babu® have studied smail random fluctuations by using the Fokker-
Planck equation. To simplify the extreme mathematical complexity of the
Fokker-Planck equation, various models for it have been proposed™. Recently,
we? investigated the model given by Dougherty and Watson®. According to
this model we found that the ratio of the thermal conductivity to viscosity was
5k/3m as compared to the value 5k/2m of the B-G-K model, owing to the fact
that the diffusion term in the collision part is underestimated in the model.
Consequently, a better representation of small, simultaneous collision effects
is sought for through a relatively simple collision term first given by Landau'®:
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in Cartesian tensor notation. This equation has been used by Braginskii?’ to
calculate the transport properties for a two-component assembly using the
Chapman-Enskog-Hilbert method. Recently, Srivastava!? has applied Grad’s
method to electron component of Landau equation, neglecting ion dynamics,
in order to study viscosity and heat conductivity.
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In the present paper, the investigation of transport processes is generalized
to a two-component assembly of fully ionized gas on the basis of the Landau
equation, using the Grad’s method. The transport equations are obtained in §2.
And 1 the next article, the expressions for viscosity, thermal conductivity,
diffusivity, electrical conductivity and Townsend coeffictents, in the presence
of a constant and uniform strong magnetic field are derived.

2. TRANSPORT EQUATIONS FOR NON-EQUILIBRIUM PHENOMENA

The notations and the procedure of obtaining the closed form of transport
equations are the same as in the reference [6]. Since, we are interested only
in simple situations, we have derived equations for density, mean velocity,
stresses and heat flux only. Some of these are recorded below:
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3. SvaTionarRY NON-EQUILIBRIUM PROCESSES

In this section, some important non-equilibrium processes are considered
and the expressions for the various transport coefficients for macroscopically
neutral two-component plasma are deduced.

Considering the Lorentz problem, from the momentum equation [2.2] the
following expressions for the electrical conductivity ¢ and the generalized
diffusion coefficients o and o g arc easily derived:

o=(1/A) (eg Ng—e, N, ), [ERY
0, =(Ny/A) (g Ng—e, N,) s [3.2)
ag=(Ngl A) (e, Ny—eg Np) [3.3]
where
32 my N, Ng Ay ( ~ )“ . 34
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Because of the density dependence of ¢, as suggested by Lighthill’®,
it is of great importance to study the variation with number density of the
characteristic decay distance Zy, as given by Alfven’:

Zu=(ﬂ). o, [3.5]
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The values of Z:
Z=gp-Y%, p—m,N,+m,N,, {3.6}

corresponding to fully jonized hydrogen piasma, with electron and proton
species at equal temperature and equal number density, are tabulated in Table I.
Also, the variation of ¢ with N and T is shown in Table II.

TABLE 1
Values of Log ;o 2
Tkg\cmd 108 106 100 1012 j013

102 19.6371 18.2796 16.9783
10% 21.0422 19.6371 18.2796 16.9783
10¢ 22.4597 21.0422 19.6371 18.2796 19.9783
108 23.8888 22 4597 21.0422 19.6371 18.27%6
106 25.3342 23.8964 22.4686 21.0531 19.6608

TasLe II

Values of Logy @

N\Nem-? 108 10¢ 10° 101 100
TR
10? 9.2587 9.3896 9 5898
10° 10.6537 10.7587 10.8514 11.0899
10% 12.0712 12.1533 12 2586 12.3896 12.5899
10° 13.5004 13.5713 13.6537 13.7597 13.8914

168 14 9460 15.0076 15.0792 15.1644 15.2723

It is found that the value of Z increases with decreasing number density and
also with increasing temperature. Thus one can conclude that the dependence
of the electrical conductivity on number density helps efficient heating in the
Coronal region. This result is analogous to the one found by Howe's on the
basis of o derived for the B-G-K model.

The first Townsend coefficien.!é corresponding to the electron ccmponent is

A=a, kT, /N, ¢ (37
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and rhus depends linearly on temperature, and is inversely proportional to
number dens.ty. This corresponds to the expression obtained by Druyvesteyn!7,
The Townsend coefficient associated with temperature gradients is given by

ke, jo [3.8]

and is hence independent of both the temperature and the number density.
The values of 4 are given in Table III.

TaBLe 111

Values of Logo 4

Tkmm“’ T e 108 10° 10 10
102 —5.8425 —2.8425 0.1575 3.1575 6,1_3“'75
10® —6.8425 —3.8425 —0.8425 2.1575 5.1575
164 —7.8425 —4.8425 —1.8425 1.1575 4.1575
10° —8.8425 —5.8425 —2.8425 0.1575 3.1575
168 —9.8425 -6.8425 —3.8425 —0.8425 2.1575

In order to study the coefficients of viscosity, diffusivity and thermal
conductivity, choose z-axis to be in the direction of the primitive magnetic
field. Replacing the heat flux tensors by its equivalent lower order moments
in the stress equations [2.3] and {2.4], and concentrating on the gradient
dependence of the stresses, we obtain :
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with similar expression for P,,,. The diagonal terms of the stress tensor
depend also on the dilatation terms, in agreement with references [6, 9, 13]
Also, the stresses in the plane contaming the magnetic field are coupled by
the field and [3.15] gives the viscosity in this plane as:

2k Ty <Iw 4 Af+9wi>

329
my Ay 16 A2 + 9wl (3291

The viscosity coefficients corresponding to P,;, Pgy and P, are given by

2k Toe f 4 (D) AT+ 3wh 3.30]
m, O A2+ 32 '
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my Ay A+ 3wl

Thus the anisotropy due to the magnetic field is evident. The coefficients of
viscosity in the plane perpendicular to the magnetic field are less than those in
the plane containing the field.

Concentrating on the temperature and density gradients of the heat flux
vector, we obtain

18 Tea

Sy =~ KY _kl W [3.32]
X3 Axy
where
2
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he thermal conductivity coefficient K of the binary mizture is approXximately
iven by

K=m, Ny KO +myz Ng K[F . [3.42]
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The ratio K/o becomes completely independent of the number density owing
to the fact that the plasma is macroscopically neutral. Tn general, K/o depends
on the temperatures of both the species. However, when both the species are
at the same iemperature, K/o depends linearly on temperature, in agreement
with the Wiedemann-Franz law's, although the slopes in the two cases are
different. This indicates that plasma hasg, even in this simple model, more
complicated cquation of state.

Finally, eguations [3.10] and [3.33] show thal the ratic of thermal con-
ductivity to viscosity along the magnetic field is no longer a constant, thus
indicating that the relatively simple Landau equation is a very good repre-
sentation of the small, simultaneous collisional effects than any other model
Fokker-Planck equation.
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