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ABSTRACT

The stability of an infinitely long gravitaiing cyvlinder of incomprassibie,
inviscid fluid of infinite electrical conducti.ity in the presence of a magnetic field
having toroidal as well as poloidal components is discussed. The rtoroidal
component is a monotonic function of the radial coordinate. By employing the
energy principle and normal mode analvsis, we have compared the results
The resulls scem to be in good agreement. The general conclusion is that in
every case the magnetic field increases the stability of the cylinder.

1. INTRODUCTION

The stability of aun infinitely long cylinder of incompressible Inviscid
fiuid of infinite electrical conductivity in the presence of different types of
magnetic fleld configurations has been investigated by many authors"??%
They showed that the magnetic field has a stabilising effect on the cylinder.
Recently Auluck and Nayyar® have investigated the stability of such a system
in the presence of magnetic field having both toroidal and Poloidal compo-
nents. Their conclusion is that the field has a stabilising influence on the
system. Tn the present paper we have investigated the stability of an
infinitely long cylinder in the presence of a magnetic field having a toroidal
as well as poloidal component. The toroidal compcnent is a monotonic
function of the radial coordinate and the poloidal component is uniform.
The ficld we have postulated satisfies the well known equilibrium equations.
Recently Bobeldijk® has discussed the equilibrium of a plasma in a field
configuration of similar type with a constant pitch of the field.

We consider as an idealised model any cylindrically symmetrical and
infinitely long cosfiguration of plasma and magnetic field with the following
properties: (1) The plasma is infinitely conducting, incompressible and
inviscid. (2) The magnetic fleld has a toroidal and Poloidal Components
but no radial component. (3) The plasma tensor is 1solropic. (4) In the
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steady state the plasma pressure gradient is balanced by the electromagnetic
force and gravitational force. (3) The radius of the cylinder is R and is
surrounded by a vacuum region in which there is a uniform axial magnetic field.
Tn section 2, we have described the equilibrium state of the system.
In section 3, we have discussed the stability of the system by energy method?€
and in section 4. we have applied the normal mode method in order to make
a comparitive study of the stability of the system.

2. EQUILIBRIUM STATE

The magnetic field configuration in the various regions of the system in
dimentionless form is

B =10, M1+, 1] o=r<i
- (2.1
Bg=(0, ©, Hy), r>1

where we have taken R as the characteristic length and the uniform axial
magnetic field in the plasma as the characteristic magnetic field.

The pressure inside the plasma is given by

2
P0<‘)=—J‘_._A__._.i AT Narivpad, 22
T+, r? ar 1+ p,

where 4 is a constant of integration.

The gravitational potential is
¢=%(1—r") o=sr<l }

p=—Ini r>1

3. ENERGY PRINCIPLE

To investigate whether the above configuration is stable or unstable we
deform the cylinder in such a way that the boundary becomes

r=1+a coskz, [3.11

where @ < < 1. Since the plasma is incompressible, the volume per unit
length of the cylinder does not change and hence
"Ri=1+1da2, (3.2}

where R, is the radius after the deformation.
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Any arbitrary deformation of an incompressible fluid body can be
realised by applymg at each point of the body a displacement f €, &, &)
which is such that u = (ag 3t). Assuming the motion to be irrotational and
since the plasma is mcompresmble, we have

E-grad ¢, {3.3]
-
div £=0. [3.4]
From [3.3] and [3.4] we obtain
%9 fy " 2.0
.a-f »-_1.. 2y +i'f=0_

ke 3.5
art  r a3zt (331

Let
= (r) coskz, (36]

where i () is the amplitude of the axisymmetric distubance.

A solution of [3.5] which is regular at the axis of the deformed cylinder is

= ATy (kr) coskz 3.7
Since at r=1, £, =acoskz. 3.8}
Thus 4=a/lk Iy (kr)], [3.9]

where I, and , are modified Bessel functions of first kind.

Hence the displacement SE, which must be applied to increase the
amplitude @ to 44 8a is

8 &,=8ally (kn)/I, (k)] cos kz, 1
§&y=0,

[3.10}
$ & =~[8a/l; (k)] Iy(kr) sinkz }

The change in the potential energy § (A£2) per unit length of the cylinder
involved in the infinitesimal deformatiop [3.10] can be obtained by integrating
over the whole cylinder the work done by the displacement S_é in the force
field specified by gravitational potential. Following Chandrasekhar and
Fermi! we find that this is given by

S (AR =+2mY L (k) Ky(k)] ada, [3.11]
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where K (k) is a modified Bessel function of second kind.” TIntegrating {3.11]
from a=1{( to a the change n potential energy 1s

AQ=2n L1 (k) K, (k)] &2, [3.12]
where
yo T GPRY
u, HE

The change in magnetic energy per unit length of the cylinder can be
calculated as follows :

From magneti¢ induction equation

h=curl (£ x HO), [3.13]

where J is the induced field and #© js the equilibrium ficld inside the
plasma. From [3.1], [3.10] and [3.13] the total magnetic field after defor-

mation is

- eRLEn G,

r n ]
I, (k) {
2
Hy- Ar ;[H'~a coski I, (k) ,‘L,,r}, : [3.14]
Ltpr (L, r®y I (k)
H,=1 —ak&gfi)— cos k=
1y (kr) J
The total current density after deformation is
-y 2 \
J = 2Aak Hpl” 1y (er) sin kz, i
RPN ATS) !
Jy=0 . [3.15]
l
__a 2 u,acoskz 3 I (kry P I
(1+um,r%) r 1y (k) ar \ (I+ a2,/

The work done by the electromagnetic force Jw H

56 (J % H) {3.16]
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The change in the magnetic energy per unit length of the cylinder is
- 1+acosk z
5AM1=—2’:‘\£J8§ . (JxH)rdr}, {317
Average

o

where the averaging is done with respect to z. From [3.10], [3.14], [3.15] and
{3.17] we obiain
1

A M, T (k) J 3/’,1 (kry + kr 1) (k7
0
6 u,r? )
Tru,s O T

Azup az[ J Q
ERASLARr Rl ~ I, (kry 1y (kry dr
TS (s, k

; kr)y 3 r’f,(@ )d 12 12 (kr) &
*J[T Oy ((H@ﬂ)”, . J(lw e G1e]
9 [

In order to find the work dome by surface currents induced by the
deformation of the cylinder, we have to calculate the field outside the cylinder,
after deformation. Thetotal field in the vacuum

H = - kal, 5 (k')) sin kz, ‘[
Hy=0 ; [5.19]
H, - H, [1% Ko (1) o5 kz | |
K, (k) J
and the surface current
J: = ak sinkz |
(- +MP)
Iy (k) Ky (k)
J*m—H—IJ‘rakcoskz{J’_..-pH o } ‘
P- | L® TR ® | G201
P A [1 . 2mpacoskzl | AQ :ﬁ‘;‘)acoskz
1+u, 1+ p, 1+ u,
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_The work done per unit length of the cylinder against the surface forces
- -
J»H when the amplitude is changed from a to a+3a is

SAM= -2 [JxH, 827 yuomger [3.21]

where H is the average field on the surface. Integrating [3.21] from =0 to a,
we obtain the change in the surface energy as

2 2 * ;
A M= a? [Hgk Bl o B 3 ¥ (HZ*l)k 1; (k)

K, (k) 2Lk 4 (1+m) 4 1, (k)
LNk LR k[olk)((H%_’)#ﬁ__l\z ) Hi-t
4(l~/~l) I(k) 47, (/")1 B (l+“p)2; 4
[3.221

If we include the surface tension 7, the work done by this surface force is

AM, _na T/»[] [ Z‘L(Q]

g [3.23]
27 Lk T, U

‘Thus the total change in the energy, per unit length of the cylinder is
AW=A2+-AM -+ AM+ AM,

i
2 -
N [ A Jrz{zlﬂ(kr)-kkrlo(l}r)\ &

wat I (k) )\ (1 -+, r)
Q0

1 1
. ”szzkj' ol ey 1 (k) ZJ’ PRI

G (11, P23 (N, r)

0
YA ke 1 a

142 Ik 1} -

J (1,‘ y ,2)3 ¥ 2 ( L,u.p)z]

0

1 1
6u, A2 A2 A dr+ 42— Alj’ s (kr)
TR ) ra, A Jﬁ(k) 7 e, Ay
¢

_ k& ’0(")} AT
210K L) 2

- {%"Ia (ky K, (k) } ] . 13.24])
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3. DISCUSSION OF RESULTS

The criterion that the system is stable or unstable depends on the sigr
of A'W for various wave numbers and steady state parameters. We shal;
discuss the following cases:

(i) A=0, 7=0: when magnetic field and the gravitational force are absent.
In this case
aw=Lfuy Kl ,Jﬂ(ﬁ} +Lg2-n.
2 K (k) I, (k) 2

If Tis smalli A'W > 0 for all k> 0. This means that a sharp pinch is
stable.
In case 0 <k < 1, then

k : K ® L (k)} T (1-k%,

aw - R

which implies that the system is stable or unstable according as

K H?2 K (k) +’0 (k)[ - or <-7;(1—k2) .
20 PR L) 2

Hence for k=k*, A’W-=0 for a given H,and for large 7, then the
system is stable for k < k* and unstable for k > &k* where 0 < k* < 1,

(ii) m, =0, 7¥=0. The change in energy is

| X g Rk KB KK T e ]
i [T:(k)s‘ 2+2{H’ K,(k)*rl(k)} Rl 1)]’

1
where S,= [ rP* {21, (k") +kr Ty (kr) } dr > O.
9

Thus a diffuse linear pinch is stable or unstabie according as

X oo kg K@ L&
KB 1,

Lo T

] T a2 ’
} +»2_ (1) > or < (A2,
fork = 1.

In case 0 < k < 1, the system is stable or unstable according as

A2 k 2 Ko(k) Iy (k) 2
T T K, (k)+i,—(k—)} > or < (WD I (-
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We note that the magnetic field as well as surface tension add to the stability
of the system for k> 1, whereas for 0 < & <1 the surface tension has a
destabilising influence on the system, but the magnetic field tends to stabilise
the system.

(ili) A=0, T-=0, 7=0. Then

v K Ko (k) T (0))
AW=. H? 0 + 9 N
20K L)

which is positive for all ¥ > 0. Thus the system is stable for all k > 0.
We conclude that the ring surface currents have a stabilising influence on the
system.

{ivy When u, = 0.

From the numerical computations done on Elliot 803, digital computer
for the expression AW we arrive at the following conclusions.

For choosen values of H,, A, T, 7, k and for any value of 1, whether
small or large it is seen that the system is always stable. Further it is
seen from results that as the wave nummber & increases the value of A'W also
increases -and the effect of surface tension 7 and ¥ is to support for the
stability of the system. The numerical values choosen and the value obtained
are not reproduced here.

4. NORMAL MODE ANALYSIS

In this section we shall discuss the stability of the system against
axi-symmetric disturbances by the normal mode analysis. Thus we shall take
all perturbed quantities to vary as

X=X (@) expikz +twp),

where w is the frequency, & is the wave number and X (r) is the amplitude
of the perturbation. Using cylinderical co-ordinates s, 8, 2%, the linearised
set of equations is

AY
wow - H ik + 2N = H,
7 (L4 wy, %)

ar Ar aHy, g2 ( Ar_) + ‘”{‘J + 7 ‘:lf [4.1)

T [717 T u, D “dr P\ 11w, dr r

wpw - H, LM Nomw- Ao, [4.2)
dr \ 1+ u,r O
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T Ar . .
u, w = — ik il’ (r + T ‘u;‘rfz H&} ik Y, [4.31
v My ik =0, 4.4
dr ¥
H, oo —u,(iky ~ 0, (4 5]
. [ a Ar A o
Hyg o —ug (ik) + lE 'ﬁﬁ? — i—Tu? =0, [4.6]
Hyw —u,ik=0, 14.71
1
‘_]_2 E L ,@, - kg =0, [4.5]
ds? roodr

where velocity = (u;, u,, u), Pressure = ¥, gravitational potential = ¢
induced magnetic field = (H,, Hy, H3. . In Passing we note that we have
used the following characteristic quantities. !

Lenth=R, Magnetic field=H,, Velocity = Alfven Velocity (37,)

y 2
Pressure = #e H) , Surface current density = E‘_, .
4 4 R

Solving [4.1]—[4.7] for u,, u,, H,, Hy, H,, P interms of u,, we have

2ik A
[ L N A — Ly s . '4A
Ug (1 J,r,uprl) (‘o2+k2) Uy L 9]
i ldu,  u,
we |5 7} : 119
SR [4.11]
(3]
y 2 2 .2 _ 2
Hpm = o A GEmeh) | AU 4R [4.121
w (1+p,r%) (w*+ k) (I +u,rh
H- L {ﬂ‘: _“L] ) [4.13]
w L dr F

P= 2 [i’.‘L + u,] + Aru, lh(kzﬁ“’g) + ’\(l—l_teri)} +Y .

o (T s, Y (02 1w, ) ,
[4.14]
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From {4.8] we obtain
¢ = CLkr),
where I (kr) is a modified bessel function of first kind and C is an arbitrary
. [4.16]

L m} v =0

constant of integration
Substituting [4.9}—{4.15] in [4.1], we oblain
Au, - i du, X 1
dr rodr " (@R (1 4 DR
We seck a perturbation solution for [4.16} owing to its complexity in solving
Lei us assume u, as small and expand », and « in powers of u, as
U= g+ Mty T O(4D), [4.17]
w = wy -t ,U-P wy -+ 0(#2) [4.18]
[4.19]

Substituting [4.17] and [4.18] in [4.16], the zeroth and first order equations

1 454 A2 } u o
5 YT
o k532

solution as

By d

for u,q and u,, are
.{I_z_u'" _{-_1_. ﬂ'«" e -
dr* rodr  (w
and
d2u,, du,y s 1 4 k427
™ L vl
dr® v dr £ (wg kD
232 |
- AEA 4oy g KR35 P wl] v, [4.20]
(w2t k5| (wl +k2)
Putting o =k~ (4 4* A2/ (w?+k%? in [4.19] and solving we have its regular
o= AT (ar) [4.21]
where A is an arbitrary constant of integration and 7, (ar) is a modified

[_f_ I, (ar) Il(ar)] [4.22]

Bessel function of first kind.
Solving {4.20] on using [4.21] by the method of variation of Parameters

we have
3
N [géifo(df) —I(W)]
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where
;- B8y LS ) i 16wy wokt A .
B = ﬁn—@;wﬁk’fwé) ; ﬁr-_((-ju;—"W-—o [4.23;
From [4.13] and {4.21] and [4.23] we obtain
H,= —(d/wy) {a L{an) + u, {—(w/wy) aly(ar) +8 & art I (ar)
~(20]3) I, (ar) +{a?P6) Iy (ar)] +{(Bar/2) I (ar})- [4.24]

Simillarly we can find uy, u,, H, H, and P from [4.9]—{4.12], [4.14] upto
first order indu,.

5. SOLUTIONS IN VACUUM

These are
H,= — Bk K, (kr), (5.1
Hy=0, 15.21
H,=ik BXg (kr). [5.31
¢ =DKq (kr), [5.41

where B and D are constants. The linearised set of boundary conditions is

U=wdr, {5.5Y
P=H,Hqo~H~BY Hy+ T8 (- 1), [5 6}
Heo=Haikdr, {s.7%
$=¢g; (R du/3N=(3¢/dr) +28r, (5.8

where the subscripts 7 and o stand for inside and outside quantities. The
boundary conditions [5.5}—{5.7] have to be applied at r=1.

6. DISPERSION RELATIONS AND DISCUSSION

We shall now obtain the zeroth and frst order dispersion relations for
wg and @, as follows :

From boundary conditions [5.7], {5.8] we obtain
B=—iH,8r/K,(ky, [6.11

C=238rK, (k). [6.2}
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Applying the boundary condition [5 6] we obtain
[k + 11 H, + Y ¢, =H, Hyg - T8 r (k2 1), [6 3]
which gives us with [6.1} and [6 2] as
—{(Afewg) [1 + 0 K] (o Ty (@) 4ty {—(oy/wg) o Iy (o) + By [% @ Ty ()
—2 4, (@) (036) T, () T+ By I ()} ) +(2 7 Iy () Ky ()
~kP3[K () Ky () =T (k2 = 1)] §r =0 [6.4]
From |5.5] we obtamn
AL (@) 4, 18, {(2/6) Iy (@) ~ 11, (@)}
F(Byf oy (a2 K () =1, ()} 1) — (wo + 4, w0,) 87 =0 [6.5)

Equatic;ns [6.4] and [6.5} are two simultaneous homogeneous equations
in 4 and 3». The condition for the existence of a non-trivial solution gives
us the following zeroth and first order dispersion relations respectively':

I (@) {27 K5 (k) |y (k) — K H3 {K, (R)/K, ()]~ T (k2 1)}

~ o g (@) [I +wl/k] =0, [6.6]
and
2wy Bwgkt AT (1) 16w A2i I (@)} e
PRy ]‘ 0 0 1 — o LT | T
‘[ %o ) = (wl+/h oc(wg—rk*)’{ o)== }
PR, L (3k2+m0){! INCIEE LG S AR
a(wo k) a 6 J
4k L)) o,
3kt w I (a) -1 2% 6.7
T M OEE R f6.7)
where

T = {210y (k) K (§) —KHE (K, () /K (0] - T (R* - 1)}
We shall write [6.6] in the form
%P luwg o, k, A)=0 [6.8]

This implies that either & =0 or ¢=0. In case a =0, 0 the system
is stable or unstable according as

k> or <2A. 6.9
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In case ¥ < 24 we can write [G.7} in the form

Ark) ME(FE-120)
3V 2Ak —k9)] (16A— 16A° k3 3Tk

wy =

16.10}

which implies that the corresponding first ovder effect 18 10 damp or enhance
the disturbance according as w; < or > 0. However, the system &s & whole 13
unstable.

Incase @ = 0, ¢=0, we find that the frequency of stable cscillations
is increased due to the form of the field we have chosen®. Further for
such modes we find that

(i For fixed values of A’ and * 7" as the wave number *k°’
increases
w=wgt A, @y Increases

(i1} For fixed * A’ and *&° the {requency increases as ° Y’ increases
and for fixed * 7%’ and ‘k’ the frequency increases us ‘X°
increases®.

Also we note that the system is stable in the absence of the gravitational
force and the azimuthal magnetic field. This result is in agreement with our
conclusions drawn in section (3) of the present paper  Further from the
conclusion drawn in section {(3) for small “w,” we note that our results
obtained by applying normal mode analysis are in good agreement.
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