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We kove consiaered the qffect o f  the variation of fluidproperties, such as 
tiwperatirrc dependence of the viscosity eor@rient, on the honndary layer solution. 
To  get over the di@~ulty of large compuralional work we have developed a series 
solution by splitfing up the $ow variabks into sets of universal functions which are 
indepe~rdort of tile law pwerning the viscosity-tempernture relation and also of  the 
surface andjbrc- stteam conditions. We have also given tables for the universal 

funrtfonr. and hare considered some examples. 

In th's p r IS;.. !..,vr. 11, r'& , ;  se.a<?y . . f  !he ff. . I-f  he variation of fluid 
properties on h e  buur.d:,iy 1t.ycr siilui,o~i, tt.king the flow over a semi-infinite 
flat plate a1 zero angle of incidence. The surfxe temperature of the plate 
has bcen assumed to be cons;ant a d ,  the effect of pressure-gradient is 
neglected. 
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If the product of viscosity and density (G ->) is not constant, thc vcloclty 
and temperature fields are  coupled and the solutions of the ey:~stions 
governing the flow depend on the  res scribed free-stream and surface conditions 
and on the parameter occurring in the viscosity-temperature relation. 
Hence, under such conditions, a large number of numerical solutions arc  
required to study the characteristics of the flow. 

In order to get over this difficulty of large computational work. we hnvc 
developed a GGrtler type series solution by splitting up the normdived stream 
function f and the cormalised temperature B into sets of universal fu~~cr ions  
which are independent of the law governing the viscosity-temperature relation 
and also of the surface and free stream conditions. The surface and 
free-stream parameters, and the parameter associated wit.h the viscosity- 
temperature relation appear as coetlicients of thc universal functions into 
which f and 0 have been split up. The equations for universal function? 
have been integrated for Prandtl number 0.7 and the flow characteristics cnn be 
easily computed for a fairly good range of surface and free-stream conditions 
and for the parameter occuring in the viscosity temperature ielation fro111 these 
solutions. To illustrate the procedure we have drawn graphs corresponding 
to a few sets of parameters. The tables of the universal functions are  given 
so that they might be used for computing the flow characteristics corresponding 
to other sets of parameters. 

2. EQUATIONS OF MOTION AND BOUNDARY COXDITIONS 

The non-dimensionalised equations governing the two-d'mensionat 
compressible steady boundary layer flow are 

and the equation of state for air obeying the perfect gas law is 



c,/c,- Y -constant, M- - free stream Mach number, 

R,  -- frca stream Reynolds number. o -Prandtl number, 

L..characteristic length ; and the variable with suffix - denotes 
its vnlue in free stresm. 

Thc boundary conditions are 
- - - - - 

(i) at y -0 ;  u 0, 0 .~0 .  and T -  T,-constant 

(ii) at;----. N- I. T i 1  f2.51 

Jn terms of the sin~ilarity variables defined by 

where the stream iunction +h is such that 

where dash denotes dil~erentiation with respect l o  7 .  

In terms of the norn~alised temperature 6 defined by - 
1'- 1 - - 

8---, i.e., T=(T,--I) 6+1=~8+l, 
r, - r 

- 
where <=(T,-l)#O, 12.91 

the equation [2.8] reduces to 



and the boundary conditions [2.5] now reduce to  

(i) f  (O)=f' (0)=0 ; 8 (0)= I ,  (ii) f '  (-1 = 1 ; H (w) 0 [7 1 1 1  
2 - - - 

We assume that P , u = l i - a ,  T+a ,  T' 

= A +  E  B 0 -i- E 2  LIZ B2, 

where A--=l+a,+a,, B-a, 1.2:a,, 

and the constants o, and a* can be determined hy fitt~n:! thc qtr:~dr:~tic 
expression [2.12] with either the power-law for viscosity-tcmpcrnturc re la ti or^ 
or with the Sutherland viscosity law. 

We expand f and B in powers of E as  follow^ : 

f = f a t € / ; + ~ ' f , - t  . - - , 

Substituting 12.121, [2.13] and [Z.I4] in [2.7] and [2.1!'] and by compuriscrn of 
coefficients of equal powers of 6 ,  we obtain the following rccursivc syatem crT 
equations, of which all but the first are linear: 

A f y + f o f ; ' = O ,  12 I ? ]  
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The boundary conditions t2.1 I ]  reduce to 

f,(O) - f i (O)  - 0 ,  ( j - 0 ,  1 ,  2 ,  .) 

O , ( O )  = I ;  O , ( O )  - 0, ( j  - 1 ,  2 ,  . . .) 

3.  SPLITTING OF f AND 6 INTO UNIVERSAL FUNCTIONS 

We find that the equations [2.15] to 12.201 contain coefficients which are 
dependent on the free stream and plate conditions and on the fluid properties. 
We split them into a set of recursive system of equations determining the 
universal functions which are independent of the surface and free-stream 
conditions and also of the law governing the viscosity-temperature relation. 

The equations [2.15] and [2.16] under the transformations [3.1] to [3.3] 
reduce to 

F:"+F,F','==o, (3.61 

where ' sd/dq , 

and the corresponding boundary conditions [2.21] become 

(i) F, (0) = FL (3) -= 0 ; O,, (0)  = 1, e,, (0) = 0, 

(ii) Fd (00) = I ; 0, (00) = 1)O, (00) - 0. 



The equations [2.17] and [2.18] under the transformations [3.1] to 13.51 
reduce to 

F:;' + F, F; + F;V~, - - (F;' e,, + F;' ek), 13.101 

and the correspondmg boundary conditions [2.21] become 

(iii) O,, (0) = 0 

(iv) O,, (-) = 0 

The equations I2.191 and [2.20], wirh the help of the relations [%I] to [3.5] 
and the relations 

and 
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and the corresponding boundary conditions [2.21] become 

(i) FZJ (0) - 0, F ; ~  (0) = 0 
j = o ,  I ,  2, 3, 4, 5 

(i i) F;, (00) = 0 

(iii) (0) = 0 

(iv) OZJ (00; = 0  

Using the solution of the equation [3.6] from [3], we have integrated the 
equations [3.7], [3.8], 13.101 to [3.14] under the boundary conditions [3.9], 
[3.15] and 13.161 for 6=0.7  on the Elliott 803 computer at Hindustan 
Aeronautics Ltd., Bangalore. In order to illustrate the application of the 
universal functions given in tables 1 to 7, we have determined the coefficients 
a, and a, occuring in the relation [2.12] by fitting it with the power-law 
connecting the viscosity and temperature for the exponent o=3.5  and the 
values for a, and o, so obtained are 

Using [4.1] we have drawn the profiles for different surface and free-stream 
conditions indicated in the figures 1 to 4. Figure 1 shows the velocity 
distribution for two sets of parameters 

We observe that the velocity corresponding to the set (ii) of [4.2j is gre.:ter 
than that corresponding to the set (i) of [4.2] at all points. Wc also find 
that the velocity corresponding to each of the set (I )  and (ii) of 14.21 is 
greater than that corresponding to Blasius solution. 



FIG. I 
Velocity ProRlcs 

Figure 2 shows the distribution of f" ('I) for the parameters 

The profile for f" 0 )  corresponding to the Blasius equation is also drawn 
for sake of comparison. We observe that corresponding to the set of 

parameters r4.31, f" (7) attains its maximum value at a point close to the 
plate and not on the plate itself as  in case of Blasius profile. This difference 
is attributed to the dependence off"  (1) on free-stream Mach number, free- 
stream temperature, plate temperature and coefficients occuring in viscosity- 
temperature relation. 

In Figure 3 we observe that the temperature 9 first rises, attains a maximum 
value close to the plate and then asymptotically attains its free s t m m  value 
near the baundary layer edge. 
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FIG. 4 
Temperature Gradient 

Figure I V  shows the distribution of temperature gradient 8' ( i) across the 

boundary layer. We find that 0' (y) is equal ro zero at ;-0.8 which is in 

conformity with the occurrence of the maximum value of 8 (;) at ti - 0.8 as 

shown in figure 3. 8' G) with its greatest positive value on the plate ..LO, 
gradually decreases, changes its sign on crossing ; -0.8, attains minimum 

value at ; -2  and finally asymptotically approaches zero near the boun 'ary 
layer edge. 

The tables 1 to 7 for the universal functions Boo, 8,, , FIo,  F,,, 8,,, O,, , 8,, 
can be easily utilised for computing the flow charactenstics upto first order 
approximation for a fairly good range of Cree-stream and surface conditions 
and for laws governing viscosity-temperature relation to  which the quadratic 
expression [2.12] can be fitted with. 
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