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In this paper we have studied the heat h a n ~ f e r  in the floiv of a power law 
fluid in n ctirvedp@e o f  c?ircular dross-section. Follor ing Dean, we assumed the 

curvature of the p&e to be'small and evaluated the temperature dis~ribution upro 
the first order in the parameter L, tvhich idi the rorio of the radius of pipe to  that 
of the coil. It is folind that the fluid is heated fhrotighout relalive to  the wall 
upta a critical Prandtl number and for higher Prandtl numbers relatively cooled 
and heated regions develop. ?he reasons for such a behariour are analysed. 
By the study af  the variation of this Prandtl number with (he j o y  behaviour 
index n, we conclude that dilatant fluids ( n  > 1) are suitable for more ejffcit nt  
working of hear exchangers. , The Nusselt number is not affected by curvatu e 
upto the first order o f  L. 

Owing to industrial applications, heat transfer phenomena in non- 
Newtonian fluids are of great importance. Metzner' and Skelland2 have 
reviewed in detail the heat transfer problems and their applications. As 
emphasised by Fraas and Ozisik' the heat transfer in curved pipes or helical 
coils play a fundamental role in various hear exchangers, heat engines and in 
many processing industries. But only a few investigations'-lo of heat transfer 
phenomena of Newtonian fluids in curved pipes are available and this problem 
for non-Newtonian fluids therefore needs thorough investigation. I t  has been 
pointed out by Metzner" that many of the fluids used in industry as well as 
in biophysics sustain a power law stress of the form pp where 0, is the 
apparent viscosity and e,j is the rate of strain tensor and n is the flow behaviour 
index. We concentrate on the heat transfer in power law fluids in this 
paper. 

Hawe$ has determined experimentally the behaviour of the velocity and 
temperature profiles in a curved pipe for a Newtonian fluid, and a theoretical 



~ e o t  Tronfer Jor the Flon o f  a Power-Law Fluid in a Curved Pipe 35 

approach to this problem has bcen recently attempted by Ozisik and 
Topakoglu5, From their analysis we find that there is a possibility that the 
fluid is div~ded mto relatively heated aud cooled regions depending on the 

of the Prandtl numbels. Mori and N 2 k a ~ e r n a ~ " ~  have studied the 
problem theoretically nlld expermentally for large Deans numbers for 
Newtonian fluids. Their simplified analycis shows that the flow field is 
approximately divided into a shear-free core region and the bounda~y laym 
alotlg Lhe wall. Moreover, in all the abovc investigations, the dissipative 
effects are neglcctrd in tile heat transfer pruble~n. But this is not justified 
at higher Prandil nunibcrs iind this plays ;I dominant rule in determining the 
temperature profile as seen in $2. 

Broadly, the procedule is as flnws : the vclocity fields in the .flow is 
obtained first and then fhe  variatious of the tenlperature field due to convection 
and dissipation :ire calculated. We have already obtained1' the velocity field 
due to pressure driven flow of a power law fluid in a curved pipe. Here 
we evaluate the temperalure profiles up to the first order of the curvature 
ratio L, when the wall temperature around the periphery of any cross-section 
is uniform. The isolherrns and the variation of +rnperature for n =  1 
(Newtonian), n - 0.8 (Psuedo-plastic) and n =  1.2 (dilalant) are dkcussed in 
detail in $4.  We find that irrespective of the naiure of the fluid, there exists 
a critical Prand~l  number below which thefluid i s  uniformly heated and beyond 
which there arc relalively cooled and heated regions owing to increased 
convection. We have given n detailed explanation of the same phenomena. 

The mean bulk temperature and the Nusselt.number are also evaluated. 
As expected with the present approximation in L, they are not affected'by the 
curvature of the pipe, since the flow field is taken'only up to \he  first order. 

2.   SIC EQUATIONS A N D  FORMULATION~QF THE PROBLEM 

The constitutive equation for a power law fluid as given by Ostwald and 
generalked by Tomita" is 

7;,-  - P S , t u , O  E;,, . 12. I] 

where T and E tire the stress and the rate of strain tensors, p is the pr'essur*, 
P, is a constant and . - . -  , ' \ : 

0 - 1 El: + E2: + E3i 4- 2 :< 2 E2; -1.2 E; 1 (n:1)12i . . - \ ?.- '12.21 

n being the flow behaviour index, n =  1, n r 1 and n < 1 kepresent-respecti~ely 
the Newtonian, dilatant and psuedoplastic fluids. , 

- ' .  ... + -." .- 

Let the axially symmetric flow in the curved pipe of circular cross- 
seclion be generated by a constant applied pressure gradient a long~tbaakis .  
Let a and b denotc the radii of cross-section and coil..respctively and 
L=a/b, the curvature ratio. Following Deant4 we use the polar coordinate 



system (R. 8) in the cross-section situsled in 3 meridian plane with :~zimuthal 
angle $. The element o f  arc length can he written in this coordinate 
system as 

( I L ~ ) ~ -  (OR)' -t ( ~ d  0 ) 2 - ~ -  { ( h  -1. R sin 0) il +j2. [2.3] 

Let U (R, 8), V ( R ,  O), W ( R ,  0 )  be the velocity components in the directions 
of R, 8, q5 and T ( R ,  0) be the temperature at any point. 

We assume that the curvature of the pipe is small, so that L is small and 
the simphfied equations of the motion are 

2 T cos 8 + - T - o_ - 
R R O  h ' 

The equation of continuity is 

and the energy equation is 

a T  V a T  
PC, U- +- - a2T 1 a2T 1 a~  [ a R  R a e ]  -' [=+J 

where Cp is the specific heat, k is the thermal conductivity, @ 1s the dissipation 
function given by 

@ - T,, Eil . L2.91 
C 
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The stress components are given by 

T,,=- - P I  2 p , O ( a [ J ) / a ~ ,  

We introduce the following non-dimens;onal variables u, r, w, ?, 6, p 
by substituting 

G = ( l / b )  (a P/a$) -Constant axial force due to pressure gradient. 

p alr21n 
R,= = Generalised Reynolds number [2.121 

,up Kn-2  2(n-3)12 (n + 1) 



and j '  - (T-T,),/T, ; T, - T i  - T,=difference between the inlet and outTet 
tcmper:ttnres, T,tlie constant wall tempernlure. The equations r2.41 lo [2.8] 
in non-dnnensioniil fol-m are solved for the velocity profile uplothe first order 
of the curv:~lure ratio L in an earlier investig-atloll". As in the case of 
Newtonian fluids here a110 the main Row in curved pipes is accompanied by. 
the secondary flow, due to shear, curosti-rre and noo-Newtonian effects. 
The velocity components are given by 

where 



Heat Transf~~r for the F ~ w  of 0 Powr-Law Flzrid in a Curved Pipe 39 

l-he non-dimensional form of ihc cnergy equation is 

where T now stands for ?'. ]-]ere, 

p = p.2 Kir2'(""' = the generalkcd Prmdt l  nurnber 
k 

The boundary condlrinns bcinp 

T 0 o n  r 1 

3 SOI U'IION OF I H F  ENI KGY EQUATION 

Upto first order of L, t a k ~ n g  

T < ( r ,  0 )  L 7; ( r ,  e), [3 11 

substituting for velocity components from [2.14]-[2.18] and separating the 
various order terms, [2.19] reduces to 

and 

with boundary conditions 

T , - O ;  T , - 0  on  r - 1  



Solving we obtain 

while 

T, = X r  ~ ( r j  sin B , 
(3 n + 1) 

and the constants A , ,  A ? ,  . - . , Ag are given by 



j t  is to be noted that the cocfiicients A, ,  A,, A, and A9 depend on Pr and 
represent convective contribution to tempercliure and the rest on 

dissipative contribution. This fact plays an important roIe later in the 
discussion 

The solution of the energy cquation [2.19] consists of two parts. To gives 
the temperature profile on ncglccting the curvsfture, while TI is the contribution 
to the temperature distribution due to the curvature of the pipe. We note 
that for the Newtonim case. To reduces 10 the solution obtained by 
~chlichting". 

(a) Nrwtoriian flurii (n 1) : The isotherms for a Nestonlan f lu~d (n- I) 
are plotted In figure I,  'hklng 1k 63 3, L =  3 (same as used by Dean), 
pr=lOs, we notice rhal the rsothcs~ns .ire srmmlar to the ones glven by f.Iawes4 

based on his cxperin~ent:~l invcstig;itions. The curve ?-0 divides the cross- 
section into two domains in each of which the isotherms form closed curves. 
The domain towards the inner side of the curvature represents cooled region, 
the maximum relative drop in temperature bcing 0.3729, while the off side 
represents the heated region, the maxlmum rise in temperature bcing 1.275. 
This asymmetry is due to the centrifugal force which tends to push the fluid 

elements to the off sidc. Secondly, the separating isotherm T - 0  occurs 
almost in the same domain where the flnid elements detach from the off side 
boundary and flow inta the interior. 

Figure 2 gives the variation of temperature for a Newtonian fluid for 
different Prandtl numbers. It is noticed that for Prnndtl numbers beyond 
critical value, the isotherms divide the cross section into cooled and heated 
regions, whereas for lower Prandtl numbers, the fluid is heated uniformly 
throughout the cross-section. It is evident from the energy equation that the 
increase of Prandtl number can be thought of as an apparent increase in 
Reynolds number and hence that of Deans number. According to McConalogue 
and Srivastavax6, it is seen thsr with the increase of Deans number the 
secondary flow field can be broadly classified into shear free mid-region and 
off side attached boundary layer region, and towards the inside the fluid 
elements flow into the interior from the boundary. The axial velocity profiles 
become more oval shaped with the ccntre shihing towards the off side, upto a 
critical position as the Deans number increases. The off side region is h;ghly 
sheared and almost negligible shear on the ins:de. Consequently, with the 
increase of Prsndtl number, the fluid elements convect more heat from the 
shear free mid-region and comperatively shear free inside region, thus 
producing cooled region on the inside and herted region on tbe off site. 



FIG. 1 

Isotherms For Newtonian Fluids 

This effcct is due to  the behaviour of the flow field and consequently needs a 
critical Prandtl number. For lower Prandtl numbers the shear free region is 

. very less and the convective effects are smaller. Therefore the fluid is uniformly 
heated throughout and no such separation takes place. The figure 1 confirms 
this pattern and from numerical computations we find that the critical Prandtl 
number is about 460. The order of magnitude of this Prandf number agrees 
well with the experiments of [7] and as discussed in 151. 



 eat Transfer for the Flow of a Power Law Fluid in a Curved pipe 43 

Variation o f  Temperature Car Newtonian Fluid for different Prandtl Numbers, 
Critical Prandtl Number Being 460 

(b )  Non-Newtonian fluids : A comparison of isotherms for Newtonian 
fluids (n- I), dilatant fluids ( n -  1.2) and psuedoplastic fluids (n-0.8) is given 
in figure 3. The general pattern of the isotherms for non-Newtonian fluids is 
similar to  that of Newtonian fluids. 

The behavior of non-Newtonian power'law fluids can easily be understood 
terms of heat balance. Psuedoplastic fluids with n < 1 sustain less strain 

and dilatant fluids with n > 1 sustain more strain than Newtonian fluids. 
Consequently, for psuedoplastic f l ~ i d s  both heat generation as well as convective 
effects are less and for dilatant fluids they are more. So one expects weaker 



FIG. 3 
Comparison of  the i r o t h e n s  for Newtonian (n-1-), Dilatant (n31.2-  . -) and 

Pseudoplastic Fluids (n-0 8 --) 

separation of cooler and hotter regions for the former, while it is stronger for 
the latter. This is confirmed in figure 3. As in the case of Newtonian fluids 
discussed earlier, we can find the critical Prandtl numbers for non-Newtonian 
fluids also. The following table gives relative maximum and minimum 
temperatures and the critical Prandtl numbers for different values of n. 

n Maximum telativc Maximum relative Critical cooling, (Pr-10') heating, (Pr-10')  Prandtl number - 
0.8 -0.20 1.11 570 
1 .O -0.37 1.28 460 
1.5 -0.51 1.41 380 

------.-____-____. ._- 



Finally figure 4 gives thc v:triutiorl of temperatures for Newtonian and 
non-Newtonian fluids for 3 fixed Praadtl number, lo3. From these results we 
conclude that the dil:ttanl fluids should he a better material for the efficient 
working of a heat exchanger. 

- T 7. 2.- . 

p ' ~ ; .  

FIG. 4 

Variation of Temperature for difirent values of n wben @ - P I 2  



The non-dimensional mean bulk temperature using [3.5] and 13.61 with 
[3.7] is given by 

The mean heat flux per unit length along the cross-section of the pipe in 
dimensional form is 

Then the Nusselt number is defined to be 

Using [5.1] and 15.21 along with [3.5], [3.6] and [3.7] the Nusselt number is 
found to be 

1 Nu---  
G (n) + d H  (n) ' 

where 

n'(4n11) 
G (n) --- 

( 3 n + 1 ) ( 5 n + l ) '  

( 3 n f l )  
, 

H (n) =- 
4 (n-k I )  i 

I t  is evident that up to the first order of the L the Nusselt number is not 
affected by the curvature as in the case of rate of flow discussed by Dean. 
However, we find that Nusselt number increases with decreasing value of n, 
which is qualitatively same as in the other investigations of heat transfer 
phenomenal7. 

The authors wish to thank Prof. P. L. Bhatnagar and Dr. C. Devanathan 
for Ihe helpful d~scussions in the preparation of this paper. 



I .  A. B. Mctzner . . . . 

3. A. P. Frads and M N. O i i s i k  . . 
4. W. B. Hawcs . . . . 
5 .  M. N. Ozisik and W. C. Tupnkoglu 

6. V. Kubair and N. R. Kuloor . . 
7 .  R. A. Seban and E. F. McLaaghlin 

8. Y. Mori and W. Nakayama . . 
9. ------ . . . . . . 

10. - . - . . . . 
11. A .  B. Metzncr . . . . . . 
12. S. L. Rathna . . . . . , 
13. Y. Tomita . . . . . . 
14. W. R. Dean . . . . . . 
15. H. Schlichting . . . . 
16. D. J. McConalogue and R. S. Sri- 

vastava. 

17. M. 3. Shah, E. E. Petcrscn and 
A. Acrwos. 

' Advanccs in Heat transfer' Vol. 2 Ed. J.P. 
Wartnett and T. F. 1rvi;c Jr. Academic 
Press, 1965 

' Non-Newronian flow and heat transfer ' 
John Wiley ant: Sons, Inc, New York, 1967.' 

' Heat Exchanger Design '. John Wiley and 
Sons. Inc.. New York, 1965. 

'tians Irrrm.rhcnt,Engrs.. 1932, 10, 161. 

J.  )rent Tronrfw. 
1968, CHI, 313. 

1nc.J.lienr Muss Transfer. 1966, 9, 63. 

Ihid, 1963, 6, 387. 

fbid. 1965. 8. 67. 

Ibid, 1967, 10, 37. 

Ibld, 1967, 10. 681. 

tfnndhook o f  fluid dynamics ed.V.L.Streeter, 
MeOnwHil l  Book Co., N ~ W  York, 1961. 

Proceed~ngs o f  Conference on Fluid Mecha- 
nlca. Banmalore, 1967, 378. 

I l l 1  J.S.M.E., 1959. 2. 469. 

Phil. Mag. 1927, 4. 208. 

'Boundary Layer Theory ' McGraw Hill Book 
Co., New York, 1967. 

Proc. R. Soc., 1968. 307A. 37. 

AICHE JI., 1962, 8,  542, 


