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ABSTRACT

In this papér we havé swmdied the heat fransfer in the flow of a power law
fluid in a curved pipe of circular cross-section.  Following Dean, we assumed the
curvature of the pipe to be small and evaluated the temperature distribution wpro
the first order in the parameter L, which i§ the ratio of the radius of pipe to that
of the coil. It is found that the fluid is heated throughout relaiive to the wall
upto a critical Prandtl number and for higher Prandtl numbers relatively cocled
and heatred regions develop. The physical reasons for such a behaviour are analysed.
By the study of the variation of this Prandtl number with the flow behaviour
index n, we conclude that dilatant fluids (n> 1) are suitable for more efficicnt
working of heat exchangers. The Nusselt number is not affected by curvatwe
upto the first order of L. ’

‘

1. INTRODUCTION

Owing to industrial applications, heat transfer phemomena in non-
Newtonian fluids are of great importance. Metzner' and Skelland? have
reviewed in detail the heat transfer problems and their applications. As
emphasised by Fraas and Ozisik® the heat transfer in curved pipes or helical
coils play a fundamental role in various heat exchangers, Leat engines and in
many processing industries. But only a few investigations~!® of heat transfer
phenomena of Newtonian fluids in curved pipes are available and this problem
for non-Newtonian fluids therefore needs thorough investigation. It has been
pointed out by Metzner!! that many of the fluids used in industry as well as
in biophysics sustain a power law stress of the form u, (e;)", where w, is the
apparent viscosity and e; is the rate of strain tensor and # is the flow behaviour
index. We concentrate on the heat transfer in power law fluids in this
paper. '

Hawes* has determined experimentally the behaviour of the velocity and
temperature profiles in a curved pipe for a Newtonian fluid, and a theoretical
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approach to this problem has been recently atiempted by Ozisik and
Topakoglu®.  From their analysis we find that there is a possibility that the
fuid is divided nto relatively heated aud cooled regions depending on the
magnitude of the Prandil numbess. Mori and Nekayama®~'® have studied the
problem theoretically and exper'mentally for large Deans numbers for
Newtonian fluids. Their simplified analysis shows that the flow field is
approximately divided into a shear-free core region and the boundaiy . layer
along the wall. Moreover, in all the above investigations, the dissipative
effects are neglecied in ithe heat transfer problem. But this is not justified
at higher Prandil numbers and this plays a dominant role in determining the
temperature profile as seen in §2.

Broadly, the procedwre is as flows: ihe velocily fields in the flow is
obtained first and then the varjatious of the temperature field due to convection
and dissipation are calculated.  We have already obtained'? the velocity field
due to pressure driven flow of a power law fluid in a curved pipe. Here
we evaluate the temperature profiles up to the first order of the curvature
ratio L, when the wall temperature around ihe periphery of any cross-section
is uniform. The isotherms and the variation of temperature for n=1
(Newtonian), n--0.8 (Psuedo-plastic) and n=1.2 (dilatant) are discussed in
detail in §4.  We find that irrespective of the nawure of the fluid, there exists
a critical Prandul number below which the fluid is uniformly heated and beyond
which there arc relatively cooled and heated regions owing to increased
convection. We have given a detailed explanation of the same phenomena.

The mean bulk temperature and the Nusseftsnumber are also evaluated.
As expected with the present approximation in L, they are not affected by the
curvature of the pipe, since the flow field is taken only up to rhe first order.

2. Basic EQUATIONS AND FORMULATION#OF THE PROBLEM

The constitutive equation for a power law fluid as given by Ostwald and
generalised by Tomita® is .

Ty==P8,+1,0E,, . : ,[2.1]

where T and E are the stress and the rate of strain tensors, p is the pressuré
#, 15 a constant and .

O = | B} + B3+ Ef+ 2 B3 52 B 42 B} o,

'[2-2]

n being the flow behaviour index, n=1,n> landn <1 represent respectlvely
the Newtonian, dilatant and psuedoplastic finids. )

Let the axially symmetric flow in the curved pipe of C1rcular Cross-
section be generated by a constant applied pressure . gradient along the axis.
Let a and b denote the radii of cross-section and coil, .respectively and

=q/b, the curvature ratio. Following Dean’* we use the polar coordinate
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system (R, ) in the cross-section situated in a meridian plane with azimuthal
angle ¢. The eclement of arc length can be written in this coordinate

system as
(dS)2— (dR)? +(Rd 8)*+ {(b-- R sin 0) d $}2. [2.3]

LetU (R, 8), V (R, 8), W(R, 0) be the velocity components in the directions
of R, 0, ¢ and T (R, #) be the temperature at asy point.
We assume that the curvature of the pipe is small, so that L is small and
the simplified equatjons of the motion are
3U V aU Vv?* Wisinf 3 1 2 -
P U — - ———— + — 7
(aR R a0 R ) SRM™TR

L Tre—Tyy Ty sin 0

2.4
= i [2.4]
3V V. v Uy _W?cost > 1
U—— +- = + i 7,
p( 5k K 80 R b ) R MTR ae i
2 T,, cos 6
b T, — 20T 2.5
= Tro b [2.5)
DW ¥V 3 W) 3 1 T,
AW L LAWY 2 gt 2, v T
P( 3R R 3 ) dR ™R 387" TR
2Tpysin® 1 3P ’ 2.6
b 2
The equation of continuity is
U | U 1 aF
e e 2.7
B3R R R 28 127
and the energy equation is
2 2
pc, |vdL 4 L 2T R [T 1 ¥T 1 a7
3R R P dR* R* 36* R
in@ T 2]
st or ‘cos‘ﬂ [2.8]
b 3R bR 30

where C, is the specific heat, k is the thermal conductivity, @ is the dissipation
function given by

[ Ty E; . [2.91
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The stress components are given by

Tap=~P+24,0(3U)/3R,

1 ¥ U
Tgo =~ —P+2/J.p(') <F =0 Jh]?)’

Tyom P 12,0 (Usm@ _f[—)_Vcos@)’

1 aW Weos 0) i [2.10]

Ty = 14,0 Sreos?y
“H (R EX b

3W Wsinf)
T, w0 —_—
o <aR b )

g M O(——Z— -—-K + !
R R

3

[*7

(

o4
D

V >
We introduce the following nou-dimensional variables u, v, w, 7‘, 6)—, P
by substituting

G=(1/b) (3 P/a¢)~Constant axial force due to pressure gradient.

G\,
Kﬁ(gﬁmjp) ¥ [2.11]

p al*2in

=(eneralised R ids number 2.12
KT G rali cynolds n [2.12)

R,=

U=R, Kal*0n
V=R, Ka*imy,

- — _ L+ (t/n)

W=wy (wg+Lwy), where wy= nka
(n+1)

P=2-0J2 MPK"GP

R=ar

N
!
i [213)
O = 2a=DI1g n-1 ,(n~132 § ,.I
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and ’7’»(7’~TW)/T(,; T,—~T, ~ T,—difference between the inlet and outlet
temperatures, T,the constant wall temperature. The equations [2.4] 1o [2.8]
in non-dimensional form are solved for the velocity profile upto the first order
of the curvature ratio L in an earlier investigation®™. As in the case of
Newtonian fluids here also the main flow in curved pipes is accompanied by
the secondary flow, due to shear, curvature and non-Newtonian effects.
The velocity components are given by

w=LsinG[A LB+ CrEntin_p e 3iing [2.14]
w2 4
p=Lcos@[A+s B + 3nt2 Crlwr s Ant3 Dy Bnr3im] {2.15%
u u
S S A R AT [2.16}
where
2 ) , R
wy=s.n & R r”"‘JBOA[l — i ¢ _ 05 (fpil)z—— [ — plms ¥
120n ] (as + 1) (s + 2 +n)
45 C[l _,.\3:;4»3;.%]_3 D[l _ruwwﬂ)/wl I -—(I _‘,)
5 ;
DEATar G vy SH SR A o) [2.17]
2n3n+1) 2n(B3n+1)
. nt1 +\/('\/]7n—])2+2)l 17-n
2m 2n ;

_ 7 {ns 21?4 538+ 38 n +8) — (601" + 185 1% +-2001% + 92 n + 153}
2@+ (- Qna+1) Bu+1) 4r*+9n+3) (nt+4n+1)

B n* (13723152423 5 5)
41-DQ2a+ DB+ DE +4n+ (At 4+ 9n+3)

n*

-

L=
4+ CBu+ (@ +4nt1)y 7

and

n*

D= .
2a+1) 2r+l) (@n*+9n+3)

{2.18]
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The non-dimensional form of ihe cnergy equation is

3T v oT 11327 I arT 1 a?T . 3T
et [ = e i e s o L sin 620
R {uar * r 59] Pl art roar o362 m or

o8 ) BT>] 44 (ne 1) B [,.(mmn - Lo (%}_‘_1 ~ wysin 9)] (2.19]

n ar

r 286

where T now stands for 7. Here,

P= %‘l K a?" 0 o the generalised Prandt] number

{
2.2 4 (2fn) 2.20
= _.K_"_. 4 . the generalised Eckert number | (2201

1} e, T, ’

ﬂ - Ec/Rp 4

The boundary conditions being

T 0onr- 1. [2.21]

3. SOLUTION OF THE ENERGY EQUATION

Upto first order of L, taking

T- Tyir, 8) = LTy (r, 8), [3.1]

substituting for velocity components from [2,14}—{2.18] and separating the
various order terms, [2.19] reduces to

R}, 1 3T, LLen (1 . _l_)/gP pLram 3.2]
r n

art | F e B
and
B'T, 1 BT, 1 B 7, 3Ty, v 3T,
Sy o9l L% v r e + 2 220
art rroae rooar © T\ or r a8
b amr)BE {2~ ysin@) — sing 2o (3.3]
ar ar

with boundary conditions

To=0; T;=0 on r=1 [3.4]
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Solving we obtain

4 ,8’ Pon(n+1) (1 —pBn £ 100y

To=

T @nra)?
while
7= 28T gy sing,
3a+l)
where

F(r) - Al 1§ __,(n-H)/n) + ‘42 (l __r(2n+2)/lr) - A? (I __r(jn H)/n)
. A4 Qa ﬁ).(4n+4)/'n) 4 A5 « _r(5n+3)/n) + AS (l _r(5n+5)/n)

+ A (1 —pléntiiny As (1 . pénsd n+2)/n) e A9 (1 _ plns !*271{»—1)/11)7

and the constants A;, 4,, -+, A, are given by

Grid) (vl _ R

Ay =
23n+l) 120
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5
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Ay= -
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[3.7)
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Tt is to be noted that the cocflicients 4, A5, A4, and 4, depend on Pr and
consequently represent convective contribution to temperature and the rest on
dissipative contribution.  This fact plays an important role later in the
discussion.

4. DiISCUSSION OF THE RESULT

The solution of the energy cquation {2.19] consists of two parts. T, gives
the temperature profile on neglecting the curvature, while T; is the contribution
to the temperature distribution due to the curvature of the pipe. We note
that for the Newtonian case, T, reduces to the solution obtained by
Schlichting®®.

(6) Newtonian fluid (n- 1) : The isotherms for a Newtonian fluid (n=1)
are plotted in figure 1. Taking Re »63.3, Lm} (same #s used by Dean),
Pr=10%, we notice that the isotherms are similar to the ones given by Hawes*
based on his experimental investigations.  The curve ?‘««O divides the cross-
section into two domains in each of which the isotherms form closed curves.
The domain towards the inner side of the curvature represents cooled region,
the maximum relative drop in temperature being 0.3729, while the off side
represents the heated region, the maximum rise in temperature being 1.275.
This asymmetry is due to the centrifugal force which tends to push the fluid
elements to the off side. Sccondly, the separating isotherm T=0 occurs
almost in the same domain where the fluid elements detach from the off side
boundary and flow into the interior.

Figure 2 gives the variation of temperature for a Newtonian fluid for
different Prandtl numbers. [t is noticed that for Prandtl numbers beyond
critical value, the isotherms divide the cross section into cooled and heated
regions, whereas for lower Prandtl numbers, the fluid is heated uniformly
throughout the cross-section. It is evident from the energy equation that the
increase of Prandtl number can be thought of as an apparent increase in
Reynolds number and hence that of Deans number. According to McConalogue
and Srivastava'®, it is scen that with the increase of Deans number the
secondary flow field can be broadly classified into shear free mid-region and
off side attached boundary layer region, and towards the inside the fluid
clements flow into the interior from the boundary. The axial velocity profiles
become more oval shaped with the centre shifiing towards the off side, upto a
critical position as the Deans number increases. The off side region is highly
sheared and almost negligible shear on the inside. Consequently, with the
increase of Prandtl number, the fluid eclements convect more heat from the
shear free mid-region and comparatively shear free inside region, thus
producing cooled region on the imside and heated region on the off sice.
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Fig. 1

Isotherms For Newtonian Fluids

This effect is due to the behaviour of the flow field and consequently needs a
critical Prandtl number. For lower Prandtl numbers the shear free region is

. very less and the convective effécts are smaller. Therefore the fluid is uniformly
heated throughout and no such separation takes place. The figure 1 confirms
this pattern and from numerical computations we find ihat the critical Prandtl
number is about 460. The order of magnitude of this Prandl number agrees
well with the experiments of [7] and as discussed in [5).
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~osl

FiG. 2

Variation of Temperature for Newtopian Fluid for different Prandtl Numbers,
Critical Prandt] Number Being 460

(b) Non-Newtonian fluids: A comparison of isotherms for Newtonian
fluids (#=1), dilatant fluids (n=1.2) and psuedoplastic fluids (n=0.8) is given
in figure 3. The general pattern of the isotherms for non-Newtonian fluids is
similar to that of Newtonian fluids.

The behavior of non-Newtonian power'law fluids can easily be understood
in terms of heat balance. Psuedoplastic fluids with # < 1 sustain less strain
and dilatant fluids with »> 1 sustain more strain than Newtonian fluids.
Consequently, for psuedoplestic fluids both heat generation as well as convective
effects are less and for dilatant fluids they are more. So one expects weaker
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Tt

Q

FiG. 3

Comparison of the isotherms for Newtonian (n=1-—), Dilatant (n=1,2— . -) and
Pseudoplastic Fluids (n=08§ ——)

separation of cooler and hotter regions for the former, while it is stronger for
the latter. This is confirmed in figure 3. As in the case of Newtonian fluids
discussed earlier, we can find the critical Prandtl numbers for non-Newtonian
fluids also. The following table gives relative maximum and minimum
temperatures and the critical Prandtl numbers for different values of n.

Maximum telative Maximum relative Critical

4 cooling, (Pr=10%) heating, (Pre=10% Prandtl number
Q.8 -0.20 L1 570
1.0 -0.37 1.28 460

1.5 -0.51 1.41 380
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Finally figure 4 gives the variation of temperatures for Newtonian and
pon-Newtonian fluids for a fixed Prandtl number, 10°. From these resulls we
conclude that the dilatant fluids should be a better material for the efficient

working of a heat exchanger.

= T
T o Lo
Be,

té

-0yl

~Q 8l

FiG. 4

Variation of Temperature for different values of n when f==:t7/2
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5. NuysseLt NUMBER

The non-dimensional mean bulk temperature using [3.5] and [3.6] with
[3.7] is given by

Fe 4B8Pra(n+1) @ntl) +T .

Gras):Gaty T,

[5.11

The mean heat flux per unmit length along the cross-section of the pipe in

dimensional form is
2m

-k (2T X 5.2
f 2«;1[(3}2)”9 G2

Q R=a

Then the Nusselt number is defined to be

Nu=1% . 15.3]

Using [5.1] and {5.2] along with [3.5], [3.6] and [3.7] the Nusselt number is
found to be

1
e e 54
A Gm+dH ()’ (54
where
G(,,):.lﬂ”iﬂ..., 3
G+ Gn+l) l
_Ba+1 L [5.5]
Ho=oh }
d=T,[4Bo T,.

It is evident that up to the first order of the L the Nusselt number is not
affected by the curvature as in the case of rate of flow discussed by Dean.
However, we find that Nusselt number increases with decreasing value of n,
which is qualitatively same as in the other investigations of heat transfer
phenomena'’.
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