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1. ABSTRACT

Presented in this note is an 0(b%) generalised Simpson's rule with end

corrections to evaluate
5
J Sxdx
a

assuming the existence of Riemanian integration. This highly accurate formula
demands only the knowledge of lower derivatives of £ (x). For 0 (h®) method
knowledge of first and second’ derivatives of f (x) Is needed. For still higher
aceuracy, say, for 0(h'), we need upto third derivative; for 0 (h'*) we require
the calculation of fourth derivatives along with first, second and third and so on.
Methods of higher order can be developed but we must  be very careful in doing
this.  This is because higher derivatives tend to behave increasingly badly so that
despitc the higher power of h, the error may not be less than that of even a fourth
order method. A few numerical examples described in the subsequent pages
illustrate this aspect. Also mentioned here gre the bounds for truncation error for

a few methods.
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2, MATHEMATICS

We first choose a single interval of integration and them generalise it iy
the interval [a, b]. We assume

ff(x)dx hlaf(xg—h)+bf{xg) +af (xg+h)]

+ Epm b {FD (xo=B) +(~1)'f P (x4 1)} D]
il

where @, b, b, by, ++ -, b, are constants to be determined and m is any
finite positive integer. In case m=0, the above assumption results in
Simpson’s rule for equidistant points without end correction. When m=1,
the Simpson’s rule is modified by an end correction term giving rise to
0 (45 0:2) method. This is a particular case, usually in use, of our general
assumption. When m=2, 3, 4, » - - etc. the accuracy of numerical integra-
tion shoots up very rapidly within the limit of the precision of the computer.

The correction term in 1] involves the calculation of the derivatives
of f(x) at the end points of the interval [xg—h, Xg+h]. The form of the
expression, moreover, can be very simply justified by noting that the L.H.S.
and hence the R.H.S. is an odd function of & (i.e. changes sign under the
transformation A — — k).

Expansion of left hand side of {1] gives
T oo de= Flg+ S ——f“ D ) -F ) + B(-1)- = L

Xo-k
where  f(x)=dF (x)[dx
On simpliﬁcation

xuj_‘ f(x) dx= 22 (21 o

T®x0) {2

Similarly expanding the right hand side of {{] for m=2, in series and equating
the co-efficients of f(xp), 1 (x,), - + + etc. with those of [2], we get
2a+b=2
a—2b,+2b,=1/3

a b, b ' (3

a _b 1:2 1
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On solving [3] we get
19 b 32 4 1

B, bmt, B
4= 33 EMRE RGN TIT 4
For m=1, the values of a, b and b, becomes
7 16 1
- b=, b=
T 57 s Bl

For m=3, we can determine a, b, b;, b, and b, in exactly the same way as
above. For m=4, 5, 6, « « . etc. the same procedure, however a lengthy
one, can be followed to determine the constants a, b, &,, b, - - . etc.

If these formulae are to be used for several adjacent intervals, the final
formula using the values of a, b, b, and [, in [4] is

ff(x) dx=(h{35) [19 £ (xo) +32 £ (x;) +38 f(3,) +32 F (%) +38 f (x) + « » -

+32f (g ) + 195 (¥p) 1+ (483/35) [ SV (x0) =D (x3,)]
+(RJ105) [P () + 2/ D () +2S D () + +o0 +2P (x5, )
7 G+ () [6)
and that using the value of 4, b, and b, in [5] is
3
[ f(x) dx=(R/15) [T F (xp) +16 f () + 14 f (%) +16 f (x3) + 14 F () + + + »
+16 1 (Rgn) + 7 F 61+ U15) LS (xg) =1 D (3, )]+ O(HS) [T
where b—a = 2nh and f(xg), f(x), f(x), »++, f(x;,) denote the ordi-
nates at the points
Xo=a, X, (=xy+h), X3 (=xy+h), » ¢+, Xg, (=Xp,. +h)=b

As an illustration of the Ffact that omission of the effect of even
order derivatives leads to greater inaccuracy in the results we may notice
approximating

xp+h

f(x) dx
A

Xa=

by
Blaf (g h) +Bfixg) +af(rg + WY1+ 3 H2 by, LSV (xg—h) ~f 4D (%o 4 B [8]
1=1



66 SyamaL KUMAR SEN

The actual difference between [8] and [1] lies in the absence of terms
involving odd degrees of k. The smmilar series expansion of both sides
produces, for m=2,

31 64 5 1
L S W I S S,
= b e BT e 9]

For m=1, the values of 4, b and b, remain the same as in [5]. For several
adjacent intervals, the final formula from the values of a, b, b, and b, in [9] is

f F® dxgg;:—;- f31f(xu)+64f(xl)+62f(x2)+64f(x3)+62f(x4)+ e
a
647 (aen) + 317 ()] # o3 LA )= (i) ]
— s LG = Ga) 140 08 (101

3. BounNDs FOR TRUNCATION ERROR

For m=1, the truncation error bound determined by using Taylor’s
series expansion of both sides of {1] and then subtracting right hand side from
left hand side is given by

2 2 7,2
E:(f/_'—g_’.i_s. 1 )h7(£)f(‘”(£) Xo-h=¢ sx+h

For n adjacent intervals

1
Ex(b=a)- ‘36()‘—“—1—5h‘f(6)(£) a =

Uy
A
o

For m=2 (formula 6), we give similarly the truncation error bound

E,:(i_z 9.2 4 2

h9 (8) —he -
9t 8! 35 71 35 6‘ 105) J (S)» X0 h=¢ <x0+h

For m=2 (formula 10), it becomes

2 31 2. 5 2 1
E~ (-, +.2 A _hwt =
(91 6381 6 71 945 5') IR@, mmhsg=xth



a

a

3
5

10 9885605 x 10~!
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4. NUMERICAL EXAMPLES

67

Calculations are carried out with 8 dit floating point arithmetic and the
results are retained correct up to 7 significant figures. Because of the limited
computational facility available to us, we could not carry out numerical

experiments with higher precision

Rounding error depending on the nature

of the integrand thus becomes dominant over the truncation error in most of

the examples.

rough comparative study for different end corrections. We
taken & as .5 only.

Example 1.
Simpson
11732597 x 10?
1079753 % 10°
19652340 < 10°
.1248250 3 108
Example 2.
Simpson

.2976912 x 10°
1913454 x 100

50 .1999067 x 10!
Example 3.
a Simpson
37437912 % 10?
5 .3346145 % 10°
10 .6542460 x 10°

j (@ —x)22 dx
Simpson with end corrections
Formula [7] Formula [6] Formula [10]
1732374 10 11732376 < 107 1733059 x 102
1079745 x 10*  .1079745 < 10° 1079768 x 10%
9652336 % 10° 9652336 x 103 .9652346 % 103
1248250 < 105 .1248250 % 105 .1248250 x 10°

2
S (P +ah) 12 dx
1
Simpson with end corrections
Formula [7] Formula [6] Formula [10]
2976949 x 100 .2976950 x 10°  .2976857 x 10°
1913452 x 16°  .1913452 < 10° 1913458 x 10°

.9885603 x 10™! .9885603 x 10~ .9885610 x 10~*

1999067 » 10~ 1999067 x 1071 1999067 x 101

2
[ x e™dx
]

Simpson with end corrections
Formula [7} Formula [6] Formula [10)

6797358 x 10 .6845516 % 10° 9431624 » 10°

.2533536 % 105 2668410 105 7233888 x 10°

1676159 x 10°  .3908840 % 10° 6218249 x 10"

These numerical examples, however, can still be noted for a

have always

Exact soln.

.1732376 x 10*
1079745 x 103
9652336 x 10°
.1248250 % 10°

Exact soln.

.2976950 x 10°
.1913452 x 10°
9885603 x 1071
1999068 x 107!

Exact soln.

6843475 % 10°
2655516 x 10°
.3354416 % 10°
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2
Example 4. J sinhxdx
1

Simpson Simpson with end corrections Exact soln,
Formula [7}]  Formula [6] Formula [10]
2219863 x 10 2219111 x 10t .2219115 x 10t 2221317 100 2219115 x 19t

-2
Example 5. J e 7 dx
i

Simpson Simpson with end corrections Exact soln.
Formula [7]  Formula [6] Formula [10]

2326226 x 100 2323438 x 107 2325442 10° 2327749 x 10° 2325442 x 10°

Tt can be roughly noted that in all the above examples Formula [6] produces
the best results of all, Formula [10], however, becomes worse than even
Simpson’s rule, thereby warning us to be very careful in developing high order
method. Example 3 indicates the rounding error as a very dominant factor
over the truncation error because of the use of low precision of 8§ dit.
Example 1, on the other hand, shows the stability for larger a. This is
because of the fact that the variation in the value of the integrand over the
specified interval is very small for greater 4.
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