JOURNAL OF

INDIAN INSTITUTE OF SCIENCE

VOLUME 52 APRIL \& JULY 1970 NUMBER 2 \& 3

ON GENERALISED SIMPSON'S RULE WITH END CORRECTIONS

By Syamal Kumar Sen
(Central Instruments and Services Laboratory, Indian Insitute of Science, Bangalore-12, Indfa)

[Received: September. 18, 1969]

1. Abstract

Presented in this note is an $0\left(\mathrm{~h}^{8}\right)$ generalised Simpson's rule with end corrections to evaluate

$$
\int_{a}^{b} f(x) d x
$$

assuming the existence of Riemanian integration. This highly accurate formula demands only the knowledge of lower derivatives of $f(x)$. For $0\left(h^{8}\right)$ method knowledge of first and second derlvatives of $\mathrm{f}(\mathrm{x})$ is needed. For still higher accuracy, say, for $0\left(\mathrm{~h}^{10}\right)$, we need upto third derivative; for $0\left(\mathrm{~h}^{12}\right)$ we require the calculation of fourth derivatives along with first, second and third and so on. Methods of higher order can be developed but we must 'be very careful in doing this. This is because higher derivatives tend to behave increasingly badly so that despitc the higher power of h, the error may not be less than that of even a fourth order method. A few numerical examples described in the subsequent pages illustrate this aspect. Also mentioned here are the bounds for truncatton error for a few methods.

2. Mathematics

We first choose a single interval of integration and then generalise it in the interval [a, b]. We assume

$$
\begin{align*}
& \int_{x_{0}-h}^{x_{0}+h} f(x) d x=h\left\lfloor a f\left(x_{0}-h\right)+b f^{\prime}\left(x_{0}\right)+a f\left(x_{0}+h\right)\right] \\
&+\sum_{i=1}^{m} h^{i+1} b_{i}\left\{f^{(l)}\left(x_{0}-h\right)+(-1)^{i} f^{(1)}\left(x_{0}+h\right)\right\} \tag{1}
\end{align*}
$$

where $a, b, b_{1}, b_{2}, \cdots, b_{m}$ are constants to be determined and m is any finite positive integer. In case $m=0$, the above assumption results in Simpson's rule for equidistant points without end correction. When $m=1$, the Simpson's rule is modified by an end corrcction term giving rise to $n\left(h^{6}\right)^{(1,2)}$ method. This is a particular case, usually in use, of our general assumption. When $m=2,3,4, \ldots$ etc. the accuracy of numerical integration shoots up very rapidly within the limit of the precision of the computer.

The correction term in [1] involves the calculation of the derivatives of $f(x)$ at the end points of the interval $\left[x_{0}-h, x_{0}+h\right]$. The form of the expression, moreover, can be very simply justified by noting that the L.H.S. and hence the R.H.S. is an odd function of h (i.e. changes sign under the transformation $h \rightarrow-h$).

Expansion of left hand side of [1] gives

$$
\int_{x_{0}-h}^{x_{0}+k} f(x) d x=F\left(x_{0}\right)+\sum_{i=1}^{\infty} \frac{h^{i}}{i!} f^{(i-1)}\left(x_{0}\right)-F\left(x_{0}\right)+\sum_{i=1}^{\infty}(-1)^{i-1} \frac{h^{!}}{i!} f^{(j-1)}\left(x_{0}\right)
$$

where

$$
f(x) \equiv d F(x) / d x
$$

On simplification

$$
\begin{equation*}
\int_{x_{0}-h}^{x_{0}+h} f(x) d x=2 \sum_{i=0}^{\infty} \frac{h^{2 i+1}}{(2 i+1)!} f^{(2 i)}\left(x_{0}\right) \tag{2}
\end{equation*}
$$

Similarly expanding the right hand side of [1] for $m=2$, in series and equating the confficients of $f\left(x_{0}\right), f^{(2)}\left(x_{0}\right), \cdots$ etc. with those of [2], we get

$$
\begin{align*}
& 2 a+b=2 \\
& a-2 b_{1}+2 b_{2}=1 / 3 \\
& \frac{a}{12}-\frac{b_{1}}{3}+b_{2}=\frac{1}{60} \tag{3}\\
& \frac{a}{36 J}-\frac{b_{1}}{60}+\frac{b_{2}}{12}=\frac{1}{2520}
\end{align*}
$$

On solving [3] we get

$$
\begin{equation*}
a=\frac{19}{35}, \quad b=\frac{32}{35}, \quad b_{1}=\frac{4}{35}, \quad b_{2}=\frac{1}{105} \tag{4}
\end{equation*}
$$

For $m=1$, the values of a, b and b_{1} becomes

$$
\begin{equation*}
a=\frac{7}{15}, \quad b=\frac{16}{15}, \quad b_{1}=\frac{1}{15} \tag{5}
\end{equation*}
$$

For $m=3$, we can determine a, b, b_{1}, b_{2} and b_{3} in exactly the same way as above. For $m=4,5,6, \ldots$ etc. the same procedure, however a lengthy one, can be followed to determine the constants $a, b, b_{1}, b_{2}, \ldots$ etc.

If these formulae are to be used for several adjacent intervals, the final formula using the values of a, b, b_{1} and b_{2} in [4] is

$$
\begin{align*}
\int_{a}^{b} f(x) d x= & (h / 35)\left[19 f\left(x_{0}\right)+32 f\left(x_{1}\right)+38 f\left(x_{2}\right)+32 f\left(x_{3}\right)+38 f\left(x_{4}\right)+\cdots\right. \\
& \left.+32 f\left(x_{2 n-1}\right)+19 f\left(x_{2 n}\right)\right]+\left(4 h^{2} / 35\right)\left[f^{(1)}\left(x_{0}\right)-f^{(1)}\left(x_{2 n}\right)\right] \\
& +\left(h^{3} / 105\right)\left[f^{(2)}\left(x_{0}\right)+2 f^{(2)}\left(x_{0}\right)+2 f^{(2)}\left(x_{4}\right)+\cdots+2 f^{(2)}\left(x_{2 n-2}\right)\right. \\
& \left.+f^{(2)}\left(x_{2 n}\right)\right]+\because\left(h^{8}\right) \tag{6}
\end{align*}
$$

and that using the value of a, b, and b_{1} in [5] is

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & (h / 15)\left[7 f\left(x_{0}\right)+16 f\left(x_{1}\right)+14 f\left(x_{2}\right)+16 f\left(x_{3}\right)+14 f\left(x_{4}\right)+\cdots\right. \\
& \left.+16 f\left(x_{2 n-1}\right)+7 f\left(x_{2 n}\right)\right]+\left(h^{2} / 15\right)\left[f^{(1)}\left(x_{0}\right)-f^{(1)}\left(x_{2 n}\right)\right]+0\left(h^{6}\right)
\end{aligned}
$$

where $b-a=2 n h$ and $f\left(x_{0}\right), f\left(x_{1}\right), f\left(x_{2}\right), \cdots, f\left(x_{2 n}\right)$ denote the ordinates at the points

$$
x_{0}=a, x_{1}\left(=x_{0}+h\right), x_{2}\left(=x_{1}+h\right), \cdots, x_{2 n}\left(=x_{2 n-1}+h\right)=b
$$

As an illustration of the fact that omission of the effect of even order derivatives leads to greater inaccuracy in the results we may notice approximating

$$
\int_{x_{0}-h}^{x_{0}+h} f(x) d x
$$

by

$$
\begin{equation*}
h\left[a f\left(x_{0}-h\right)+b f\left(x_{0}\right)+a f\left(x_{0}+h\right)\right]+\sum_{i=1}^{m} h^{2 i} b_{2 i-1}\left[f^{(2 i-1)}\left(x_{0}-h\right)-f^{(2 i-1)}\left(x_{0}+h\right)\right] \tag{8}
\end{equation*}
$$

The actual difference between [8] and [1] lies in the absence of terms involving odd degrees of h. The similar series expansion of both sides produces, for $m=2$,

$$
\begin{equation*}
a=\frac{31}{63}, b=\frac{64}{63}, \quad b_{1}=\frac{5}{63}, \quad b_{3}=-\frac{1}{945} \tag{9}
\end{equation*}
$$

For $m=1$, the values of a, b and b_{1} remain the same as in [5]. For several adjacent intervals, the final formula from the values of a, b, b_{1} and b_{3} in [9] is

$$
\begin{align*}
\int_{\Delta}^{b} f(\dot{x}) d x= & \frac{h}{63}\left[31 f\left(x_{0}\right)+64 f\left(x_{1}\right)+62 f\left(x_{2}\right)+64 f\left(x_{3}\right)+62 f\left(x_{4}\right)+\cdots\right. \\
& \left.+64 f\left(x_{2 n-1}\right)+31 f\left(x_{2 n}\right)\right]+\frac{5}{63} h^{2}\left[f^{(1)}\left(x_{0}\right)-f^{(1)}\left(x_{2 n}\right)\right] \\
& -\frac{1}{945} h^{4}\left[f^{(3)}\left(x_{0}\right)-f^{(3)}\left(x_{2 n}\right)\right]+0\left(h^{8}\right) \tag{10}
\end{align*}
$$

3. Bounds for Truncation Error

For $m=1$, the truncation error bound determined by using Taylor's series expansion of both sides of [1] and then subtracting right hand side from left hand side is given by

$$
E \simeq\left(\frac{2}{7!}-\frac{2}{6!} \cdot \frac{7}{15}+\frac{2}{5!} \cdot \frac{1}{15}\right) h^{7}(\xi) f^{(6)}(\xi), \quad x_{0}-h \approx \xi \leq x_{0}+h
$$

For n adjacent intervals

$$
E \simeq(b-a) \cdot \frac{1}{360 \times 15} h^{6} f^{(6)}(\xi), \quad a \geqslant \xi \leqslant b
$$

For $m=2$ (formula 6), we give similarly the truncation error bound

$$
E \simeq\left(\frac{2}{9!}-\frac{2}{8!} \cdot \frac{19}{35}+\frac{2}{7!} \cdot \frac{4}{35}-\frac{2}{6!} \cdot \frac{1}{105}\right) h^{9} f^{(8)}(\xi), \quad x_{0}-h \approx \xi \approx x_{0}+h
$$

For $m=2$ (formula 10), it becomes

$$
E \simeq\left(\frac{2}{9!}-\frac{31}{63} \cdot \frac{2}{8!}+\frac{5}{63} \cdot \frac{2}{7!}-\frac{1}{945} \cdot \frac{2}{5!}\right) h^{9} f^{(8)}(\xi), \quad x_{0}-h \leqslant \xi \leqslant x_{0}+h
$$

4. Numerical Examples

Calculations are carried out with 8 dit floating point arithmetic and the results are retained correct up to 7 significant figures. Because of the limited computational facility available to us, we could not carry out numerical experiments with higher precision Rounding error depending on the nature of the integrand thus becomes dominant over the truncation error in most of the examples. These numerical examples, however, can still be noted for a rough comparative sudy for different end corrections. We have always taken h as .5 only.

Example 1.

$$
\int_{1}^{2}\left(a^{2}-x^{2}\right)^{3 / 2} d x
$$

a	Simpson	Simpson with end corrections			Exact soln.
		Formula [7]	Formula [6]	Formula [10]	
3	$.1732597 \times 10^{2}$	$.1732374 \times 10^{2}$	$.1732376 \times 10^{2}$	$.1733059 \times 10^{2}$	$.1732376 \times 10^{2}$
5	$.1079753 \times 10^{3}$	$.1079745 \times 10^{3}$	$.1079745 \times 10^{3}$	$.1079768 \times 10^{3}$	$.1079745 \times 10^{3}$
10	$.9652340 \times 10^{3}$	$.9652336 \times 10^{4}$	$.9652336 \times 10^{3}$	$.9652346 \times 10^{3}$	$.9652336 \times 10^{3}$
50	$.1248250 \times 10^{6}$				

Example 2.

$$
\int_{i}^{2}\left(x^{2}+a^{2}\right)^{-1 / 2} d x
$$

a	Simpson	Simpson with end corrections			Exact soln.
		Formula [7]	Formula [6]	Formula [10]	
3	$.2976912 \times 10^{0}$	$.2976949 \times 10^{0}$	$.2976950 \times 10^{0}$	$.2976857 \times 10^{0}$	$.2976950 \times 10^{0}$
5	$.1913454 \times 10^{0}$	$.1913452 \times 10^{0}$	$.1913452 \times 10^{0}$	$.1913458 \times 10^{0}$	$.1913452 \times 10^{0}$
10	$.9885605 \times 10^{-1}$	$.9885603 \times 10^{-1}$	$.9885603 \times 10^{-1}$	$.9885610 \times 10^{-1}$	$.9885603 \times 10^{-1}$
50	$.1999067 \times 10^{-1}$	$.1999067 \times 10^{-1}$	$.1999067 \times 10^{-1}$	$.1999067 \times 10^{-1}$	$.1999068 \times 10^{-1}$

Example 3.

$$
\int_{1}^{2} x^{3} e^{a x} d x
$$

a Simpson
Simpson with end corrections
Exact soln.

Formula [7] Formula [6] Formula [10]

$3 \quad .7437912 \times 10^{3} \quad .6797358 \times 10^{3} \quad .6845516 \times 10^{3} \quad .9431624 \times 10^{3} \quad .6843475 \times 10^{3}$
$5 \quad .3346145 \times 10^{5} \quad .2533536 \times 10^{5} \quad .2668410 \times 10^{5} \quad .7233888 \times 10^{5} \quad .2655516 \times 10^{5}$
$10 \quad .6542460 \times 10^{9} \quad .1676159 \times 10^{9} \quad .3908840 \times 10^{9} \quad .6218249 \times 10^{10} \quad .3354416 \times 10^{9}$

Example 4. $\int_{1}^{2} \sin h x d x$

Simpson	Simpson with end corrections			Exact soln.
	Formula [7]	Formula [6]	Formula [10]	
$.2219863 \times 10^{1}$	$.2219111 \times 10^{1}$	$.2219115 \times 10^{1}$	$.2221317 \times 10^{1}$	$.2219115 \times 10^{1}$

Example 5.

$$
\int_{1}^{2} e^{-x} d x
$$

Simpson
Simpson with end corrections
Exact soln.
Formula [7] Formula [6] Formula [10]
$.2326226 \times 10^{0} \quad .2325438 \times 10^{0} \quad .2325442 \times 10^{0} \quad .2327749 \times 10^{0} \quad .2325442 \times 10^{0}$

It can be roughly noted that in all the above examples Formula [6] produces the best results of all. Formula [10], however, becomes worse than even Simpson's rule, thereby warning us to be very careful in developing high order method. Example 3 indicates the rounding error as a very dominant factor over the truncation error because of the use of low precision of 8 dit. Example 1, on the other hand, shows the stability for larger a. This is because of the fact that the variation in the value of the integrand over the specified interval is very small for greater a.

Acknowlidgement

The author wishes to express his sincere thanks and gratitude to Prof. P. L. Bhatnagar, Vice-Chancellor, University of Rajasthan and to Dr. S. Dhawan, Director, Indian Institute of Science for their constant encouragement.

References

1. Lanezos, C. Applied Analysis, (Prentice Hall, Inc.) 1956, 414.
2. Ralston, A. Mathematical Methods for Digital Compoters, edited by Ralston, A. and Wilf, H. S., (Jobn Wiley \& Sons, Inc.), 1965, 242.
