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~n case of any singular or near singular leading submatrix or submatrices 
LR algorithm for finding eigenvakres of a matrix fails or produces inaccurate 

In chi& context presented in this paper is the RL algorithm which, 
though of exactly some eficiency as t h l  of LR algorithm, usually succeeds 
in those aforesaid cascs. A few numeric01 examples have been wo&ed out as 
illustrations. 

Four possible triangular matrices may be thought of for any square 
matrix. These triangular decompositions spring from the fact that any 
square matrix has two and only two diagonals, left and right. In any 
triangular decomposition, the diagonal elements of any of the two triangular 
matrices must be specified in order to determine them uniquely from a given 
square matrix. I t  is convenient here to define a few matrix terms. 

(a) Triangular matrix is a square matrix having either a left or a right 
diagonal below o r  above which all elements are zeros, thus presenting a form 
of a bilateral triangle of elements, normally non-zero in nature. 

(b) Lower triangular marrix of left diagonal (L,) is a square matrix, 
all the elements of which above the left diagonal are zeros. 

(c )  Upper triangular matrix of left diagonal (R,) is a square matrix, 
all the elements of which below the left diagonal are zeros. 

( d )  Lower triangular matrix of right diagonal (L,) is a square matrix, 
all the elements of which above the right diagonal are zeros. 

( e )  Upper triangular matrix of right diagonal (R,)  is a square matrix, 
all the elements of which below the right diagonal are zeros. 

Since the conventional malrix multiplication is not commutative, the 
four triangular matrices L,, Rl, L, and R, have twelve different product 
combinations taking any two at  a time. Out of these, only five product 



can represent a given square matrix uniq~sely, they are L R  I I ,  

R,L,, L,R,, L,L, and R,R,. The rest of the possible combinations R,L,, L,L 
R,R,, R,L,, L,R,, R,L, and L,R, only give rise to triangular matrices and ard: 
therefore, of no use in presentation of a given square matrix uniquely. 

~t can be seen tbat of the five decompositions cited above, the first two 
can also represent a square matrik uniquely even if they are multiplied in the 
reverse way. The last three of these, since they fail in this respect, cannot 
be used for finding eigenvalues of a matrix. Such reverse multiplication of 
triangular matrices preserve the properties of similarity transformation1, thus 
keeping eigen values invariant. These three decompositions (L,R,. L,L, and 
R,RI) as also the R,LI (i e, RL) decomposition, have the advanlage over the 
conventional LIRl ( i . e .  LR)Ie6 decomposition in that for any singular or 
near siugular' leading submatrix o r  submatrices they usually succced lo 
complete deconpositions. Consequently. they can be used safely for the 
solution of a linear system where the matrix is having one leading submatr~x 
o r  more singular. I t  can be mentioned here that the inverse of a triangular 
matrix can always be determined easily by working out simple recurrence 
relations using its known elements. Furthermore the R,L, decomposition 
succeeds in finding eigenvalues of a matrix having one o r  more leading 
submatrices singular o r  near singular accurately, where the L,Rl decomposition 
fails or produces inaccurate results. Thus R,Ll decomposition retains its 
stability even for non-positive definite matrices while L,Rl may become 
unsuccessful. The convergence properties1 of R L  algorithm are  exactly the 
same as those of LR algorithm. These properties can also be analysed in the 
same fashion as that of LR algorithm for those matrices where L R  decom- 
position fails9. 

This paper presents the complete computational recurrence relations for 
RILl decomposition while those of LiRI decomposition find a description in 
reference2. It, moreover, discusses a few examples for illustrations. 

Simple recurrence relations for finding R, and Ll (from the symbolic 
relation A=RILI) have been derived explicitly from a given square matrix 
using conventional matrix multiplicltion rules (i.e. defining unit matrix as a 
left diagonal matrix with its left diagoual elements unity). Consider the 
square matrix 

and the triangular matrices 
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~t can be seen that the sequence of v a l ~ e s  of  the subscripts i and j (to 
represent matrix elements) carries the following meaning all throughout, 
though a brief note will be added for  easy and quick access to the recurrence 
relations. The sequence of subscripts i and j in 

indicate that i is to be  taken a s  1 (fixed) first and j is to be varied from 1 to 
at an interval of 1. Then i = 2  (fixed) and j= I ,  2, 3, . . . , n. Next i - 3  
(fixed), j=  I ,  2,  3, . . . , n and so on. 

The square matrix A when expressed as the product of RI and Ll matrices 
(i r.  A = R ,  L,) with the left diagonal elcments of L, specified as  unity, results 
in the follow~ng recurrence relations. 

We first take i=n (fixed) and go on varying j from n to I at an interval 
of I. As a result, we get r,, from the first relation and-  1 ,,,_, , I ,,,_,, 
I . . . , I,, from the second relation. Next we take i = n -  1 (fixed) and 
vary j = n  to 1 as  usual at an interval of 1 and find r ,_,,", r ,,_,,,_, ; I ,-,,,_,, 
ln-~.n-~. l n - 1 , n - 4 '  . . . , I,.,,, and so on. Lastly we take i= 1 (iixed) and 
vary j from n to I, and consequently, we get r,, , r ,,,_, , r ,,,_,, . . . , r , ,  . 

Now we form the reverse product S Z L , R , ,  the results of which will 
constitute the first iteration step. The matrix S which is a square one, does 
not demand any separate storage, the locations of A serve the purpose. In 
\he left hand side of the following recurrence relations we, therefore, write 
ail and not so. This procedure has double advantage. (a )  nZ locations 
are saved thus keeping provisions, in the computer memory, for handling 
bigger matrices. (b)  Efficiency is increased due to reduction of computer 
tima, thus rendering the program more automatic. 

I 
a - X l r , ,  ( j > i )  

I J  - 

The subscripts i and j in the above formulae can be varied in any manner we 
llke. 



In the second iteration the transformed matrix {ut j ]  will be treated in 
the same fashion as it has been done for the first iteration with the original 
matrix {a, ,] .  This process will continue till the continuously transformed 
matrix {aLj) becomes almost an upper triangular matrix or L, matrix becomes 
nearly an identity matrix. 

Calculations in all the examples are carried out in 8 dit floating point 
arithmetic. Due to non-availability of higher precision computer and limited 
computational facilities available to us numerical calculations with larger 
precision and with larger order of the matrix could not be carried out. 
Results are retained correct upto 6 significant figures all throughout. Trace 
check has been performed to delerminc the accuracy of the eigenvalues occured 
in the diagonal of the transformed matrix. 

Example 1. A matrix having a leading submatrix of order 2 singular. 

The above matrix fails to oblige LR algorithm, since in course of decomposi- 
tion r,, turns out to be zero, and as a result I,, and I,, cannot be determined. 
But according to RL algorithm 

A+( -.290119x lo-' ,392781 x 10' -.201269.; 10' .200000x 10' 1 

2 1 7 0 0 4 ~  lo-'' .I48215 x 10' -.874429x 1O0 ,285631 x 10' , 16 

.851964x ,212549 x 10-lo ,798597 x 10' ,177384 x loP passes 
1 .613817 x lo-" .262017 x 10-l4 ,196926 x ,145609 x j 

The result is correct at  least upto 5 decimal places. 

Example 2 A matrix o f  order 4 having leading submatrices of order 2 
and 3 singular. This is another case where LR algorithm fails. 

( 4  5 14 1 4 ,  
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I 
The result is correct at least upto 4 decimal places. 

Exnmple 3 .  A singular matrix o f  order 4 (the elements of the 4th row 
are just double the corresponding elements uf the 1st row) 

The result is correct at least upto 4 decimal places 

Example 4. A near singular matrix of order 4. All the elements in 
this matrix are seme as those o f  the previous example save for the (4,2)th 
element which is here 9 99. 

3 7 '  

1 4 9.99 6 14 j 

The result is correct at least upto 5 decimal places. 

Example 5 .  Hilbert's matrix o f  order 3 (elements fed correct upto 8 
decimal places). Hilbert's matrices are  excellent examples of near singularS 
matrices of positive definite nature. The singularity is more pronouneed as 
we increase the order. 
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A =  '.268734 x l ow2  .258623 x lo-' .333333 x 10' ) 
! 

1.658049 * lo-" .I22127 r 10' ,211368 x 10' i .  17 passes 
I 

[.I15379 r .287538 x .I40832 \. 10' i 

The result is correct at least upto 5 decimal places. 

The result is correct at least upto 5 decimal places 

Example 6. Hilbert's matrix of order 4 (elements fed correct upto 8 
decimal places). 

A =  :.966976 x 10-4 ,932890 x lo-' .I36802 x 10-I .250000 :( loo '  

In both the above Hilberl's matrices L R  algorithm als produces the 
identical results. In fact the L R  algorithm is always stable for positive 
definite matrices. 

,826989 x ,673827 x lo-' ,148315 x 1 Oo ,301496 ..: 10' 

,547841 x .670001 x ,169141 x 10' ,463292 x 10' 

We also worked out other typical examples like real matrices with one 
pair of complex roots, stochastic matrices, Hilbert's matrices of higher order, 
matrices having double latent roots and disorder of latent roots. In all these 
cases the results of the RL algorithm did not differ from those of the LR 
algorithm. 

We can, in fact, deduce the relationship between L R  and R L  algorithams 
as follows : 

' 

Let J be a matrix with unity in the right diagonal, above and below 
which the elernenis are zeros and let 

A=R'L' 
then R1=JLJ 

L ' -JRJ  

.263925 x .359048 x .I22134 x ,150021 s lo1,  
L 

where JAJ=LR is the standard triangular factorization of  JAJ 
Proof: JAJ=JR'L'J - (JR'J)  (JL'J) - L R  by uniqueness. 

We can thus, conclude that the R L  algorithm, though immune to some 
vanishing leading minors, fails when some trailing minors vanish. 

The aulhor wishes to express his gratitude to Prof. P. L. Bhatnagar and 
to Dr. S. Dhawan, Director for constant encouragement. 
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