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ABSTRACT

The twenty-one elastic constants of triclinic copper sulphate pentahydrate
have been determined at room temperature by the ultrasonic pulse echo method.
An iteration technique is used for solving the full cubic Christoffel equation exactly,
(J. Indian Inst. Sci., 50 (1968) 170) to obtain the elastic constants of crystals
from ultrasonic velocities along arbitrary directions. The stiffness coefficients are
obtained from measurements along eleven directions. The elastic constants
referred to the I.R.E. sysiem of axes are :
¢y=3.65;  €3=2.65; ¢;3=321; ¢,=-033; ¢,=-008; ¢ =-—039;
=433 3=3.47; ¢3=-007; Cs==021;  ,,=020: ¢33=5.69;
=044 035=—021; 3= —0.16; c4y=173; ¢4;5=0.09; ,,=0.03;
6s=1.22; 55— —0.26 and c¢g=1.00 in units of 10" N/m™.

The results are discussed in relation to other studies on CuSO, 5SH,0.

1. INTRODUCTION

In spite of the developments in the experimental techniques for deter-
mining the elastic constanis of crystalline solids, it is surprising to note that
not many crystals belonging to the less symmetric systems have been
investigated. Since 1946, after Mason’s! study on monoclinic dipotassium
tartrate, a handful of monoclinic crystals has been studied®. Copper sulphaie
pentahydrade CuSO, 5H,O is the first triclinic crystal to be studied for its
elastic constants.

In the case of a triclinic crystal the difficulties encountered in the deter-
mination of the elastic constants are two-fold. In order to determine the
twenty-one constants, one has to carry out a minimum of twenty-one non-
degenerate velocity measurements along different directions. Secondly, the
Christoffel equation describing the elastic wave propagation cannot be resolved
into pure modes for an arbitrary direction in an anisotropic material.
Consequently, one has to solve a set of simultaneous cubic equations to
obtain the elastic constants.
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It was with a view to study triclinic crystals that an interation technique?
to solve the Christoffel equation to connect the analytic expressions for the
velocities in terms of the elastic constants was developed. The evalution of
the elastic constants of CuSO,.5H,0 is now presented.

2. CHOICE OF CO-ORDINATE AXES

Large size crystals of CuSo,.5H,0 were grown by the slow evaporation
of the aqueous solution. The crystal belongs to triclinic T group with
a:bies 1 0.5721 1 1:0.5554 and a=82°5, B=107°8 and Y=102°4]" (Groth¥,
Among a large number of forms observed, most common is the one sketched
in Figure 1 with vertical zones a (100), m (110), u (1{0), = (130) and b (010)
with @'(1f1) as end faces. The interfacial angles in a large crystal can be
be measured by means of a contact goniometer.

X

FiGg. 1

Schematic view of Cu SO,, 5H.O, Crystal, Choice of Axes X'\, X,, X,. X, Axis is outward
Normali to o face. X, Axis is along a-p Bdge upwards
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Once the ‘e’ and ‘m’ faces are located their intersection immediately gives
the c-axis. In the original choice of the coordinate axes, identical to
Sreedhar’s® preference in his thermal expansion studies, the Xj-axis coincides
with the c-axis of the crystal. The ‘a’ face is taken as the X,X, plane,
the X;-axis being the outward normal to the ‘g’ face. The X,-axis
completes a right handed orthogonal system of coordinates. It lies on the
<g° face and points horizontally towards right in the direction of the *p°’

face.

Tt was noticed later that this original choice does not conform with the
LR.E. convention®. Even though the choice of X, ¥, Z axes in a triclinic
crystal for describing the elastic properties is arbitrary to some extent, the
LR.E. committee seeks to establish a convenient pattern for all crystal
systems. The crystallographic c-axis is chosen as the Z-axis. The Y-axis is
taken as the outward normal to the crystallographic ‘b’ face and is ortho-
gonal to Z. The X-axis is then obtained by completing the right handed
system of axes.

The present Xj-axis corresponds to the I.R.E. Z-axis; therefore a
rotation of the present system by -10°48" about X, will bring it into coinci-
dence with the I.R.E. system. Reference to Figure 2 clearly shows the
relative orientations of these sets in a plane perpendicular to the c¢-axis.

Fic. 2

Relative Disposition of the two sets of Axes. ¢-Axis (X;Z) Perpendicular to and outwatds
from paper. X,, X, present axes; X, ¥, LR.E. axes.

The original system of axes was chosen to facilitate comparison with the
work of late Sundara Rao’. He was the first person to attempt studies on a
triclinic specimen. However, there were some discrepancies in his results
and they were not published. Sundara Rao’s X-axis (denoted by X; to avoid
f:onfusion) is the inward normal to the ®a’ face and is thus—X,, where X,
1s the axis used originally in this study. The edge common to the ‘a’ and
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+ 4w’ faces was taken by Sundara Rao as the X, -axis and its positive direction
was outwards towards the ‘5’ face, from left to right. If the ‘a’ face is
taken as the Xi X plane, the X;-axis is taken normal to the X;-axis, its
positive direction being down into the crystal. The X,-axis then completes
a right handed orthogonal system. A rotation of his axes about X, brings
his system into line with the present choice.

3. EXPERIMENTAL SAMPLES

To determine all the 21 constants at least 21 non-degenerate velocities
must be determined. Eleven specimens were used in all. Three of them
were axial cuts i.e., propagation along X;, X; and X,. Two each had
propagation direction in the X\ X,, XoX; and X,X; planes, while the two
remaining propagation directions were completely arbitrary.

The orientations of these blocks may be specified as follows: X is
taken as the direction of propagation, giving a quasi-longitudinal mode g,.
X, and X| aie the two perpendicular directions and ¢, and g, are the
quasi-transverse modes having vibration directions respectively along X, and
X/. The directions X are related to the crystal axes X; by the scheme
XY'=ay X; A specification of a;; now uniquely fixes the direction of
propagation X, and the two transverse directions X3 and X;. This is done
for all the eleven blocks in Table 1.

The longitudinal and transverse velocities are measured by the ultrasonic
pulse echo method®. The values of g,=Pv?, where P =228, kg/m® is assumed
are recorded in Table 2. All the velocities were determined for blooks
1, 3,7, 9and 10. For directions 2, 4, 5, 6 and 11, only the longitudinal
mode was excited. For Directions 8, the L and T, velocities were obtained.

For propagation along X, ~direction, the Christoffel equation is

| chay =8, P |=0 (1]

Here (]; are the constants in a rotated coordinate system and they can be
expressed in terms of the elastic constants c¢; and the direction cosines of the
rotated system %1011 For the sake of convenience this is given separately
in Appendix I.

The iteration procedure starts with equation (1], | ¢34;—8; P¥* |=0,
where if the off diagonal terms ¢33 are neglected, the ¢y are obtained as the
P! in the zero order approximation. Now, cy involves the linear combina-
tions of the elastic constants o3 S0 by solving a sufficient number of
simultaneous equations for c;”‘. along different directions the zero order
values of the elastic constants cy are obtained. These c¢{y are used to
calculate cg,gl. Then the corrections €,=pv2—cj;; are obtained by numeri-
c'ally solving the cubic equations fully. This gives the first order values of
¢y and ¢ff) are evaluated from them. The operations are continued until
the convergent limit is approached to the desired accuracy.
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TABLE 2

Effective Velocities for the Eleven Samples

g, =02 (100 N/mb)+
Direction Description \

s=g, =g, \ =g

1 | Xyent — ' 1.182 } 1.683 5749
2 Xy-out N I 4224
3| Xeow .| 0961 | 1495 | 5380
4| X (14028 Xy W 565
s X, (47°200 X3 L e e — 5.48)
6 X, (-52°52') X, S o I 6.190
LIS AC P . 1203 | 1451 | 4746
8 @, B, 7 (X)L to o face) .. | .. 1.134 5.674
9 Xy (23°6") X5 | 0964 1.468 | 5.468
10 X, (-48°55') X, e | 1,092 1.405 \ 6.172
IO G - 6081

® The third decimal is retainéd in the preliminary calcylations to avoid serious propagation
of errors,

4. ZEROTH APPROXIMATION TO THE VALUES OF cy

The zero order values of ¢ can be determined by neglecting the
expressions for ¢}, <}y and cjs in equation [1]. Directions 1, 2 and 3 furnish
the zeo order values

9 =5380 cP=4.224 A9 =5.749
) =1.683 @ =(1.182+1.495)/2=1.339 {9 =0.961

in units of 10" ¥/m?®. (From hereon the units 102 N/m? are dropped for
convenience). Directions 4 and 7 together yield,

P =3.186; P=-0491; V=0.393; {9=0.058

€45
Similarly,
e =3.301; fP=0.043; o= —-0.403; ol = —0.439

are obtained from directions 5 and 9 and
P =3355; ¢9=-0.107; €= —0.233; & = ~0.034
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from directions 6 and 10.

There now Temain ¢y, Cp5 and ¢ to be determined. It is worth
mentioning here that even if the three velocities for Direction 8 had been
determined, it would not have been possible to evaluate 9, P and 2.
The set of s‘multateous equations (for Direction 8) becomes

' 0.2772 ¢,,—0.1844 ¢,,~0.4316 c3=const.
0 . 0.1244 ¢,5+0.2912 ¢5=const.
g —0.2772 ¢, +0.0600 c,5+0.1404 c35=const.

and are hence not linearly independent. Therefore, the choice of another
direction viz , Direction 11 became unavoidable. Using the ¢4 and g, values
of Direction 8 and the g, value of direction 11, the cons.ants are evaluated as :

= -0.842; ¥ =-0646; cP=-0.329;

The complete set of zero order values are :

5.380 3186 3.355 —0.842 ~0.107 -0.491
4,224 3.301 0.043 —0.646 0.393

5.749 —0.403 —-0.233 —0.329

1.683 0.058 -0.034

1.339 —0.439

0.961

5. ITERATION PROCEDURE

The zero order values are evidently the results of neglecting the off
diagonal elements in ¢j;,; and they serve as the starting point for the iterations.
Using cf?, the numerical values of ¢}y, chs, Chs, Css. Chq and ci; for all the
crystal blocks are written down. The numerical corrections are calculated

from the expressions,
3 2 N ’ ’ ? ’ ’ ! g2 a2 02
€1+ €F (2cks— chy — o) €y [(chy — 55 (chy —C55) — 53 -3k — 4]

’ ' ’ ’ poor oy

35 (€33 — ¢55) + a3 (€4q —€55) — 2034 ¢35 €45] =0 {2a]
3 2 i K ’ 2 (73 2
€3+ €3 (26 — 55— c3) + €5 [(chs — ca)(chy —€hg) — 33~ oif —~ 33

! ’ ’ U

{5} (chs - Cyg) + €3 (chy — ) - 20y €5 5] =0 [2b]
3 2 ’ ! * 12 2 3]
€51 €3 (2043 - ¢l —eb)+ €3 [(cha— ";3)(5'55 —33) 363 — i3]

+[ci (chy — €hy) + ¢33 (¢55 — 33} — 2654 €35 cls] =0 [2¢]
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The first order values of ¢}, are, cis=¢,— €, Ciy=4, —€,and =g, &
They are again solved to obtain the first order values c(,” The choce of ¢,
15 such that €, +€,+€;=0 for any particular direction, since the trace of the

’j matrix 1s a constant. The first order values of the diagonal constanis are;
AgP=5325 | P=4.177 cih=5.697
1720 ) =(1.197+1.257)/21.227 D=1.255

 For" dlrecuons 1 2 and 3 the calculations are easy whereas for the other

directions the computations are quite lengthy.

As.mentioned carlier the values ¢4, ¢y and ¢;; obtnined from arbitrary
orientations depend on a knowledge of the other 18 terms  The zero order
values because of the neglect of off diagonal terms in two various directions
are, ngcéssarily approximate. Tn particular; ¢y, ¢s and ¢y in directions
& and 11y are expressed as' the difference between two large quantities,

“ In vigw bof the errors in the eightegn ) values, ibe zero order values
k c‘ v c‘o) and c{are quite unrehable and contdm disproportionately large

errors The result of this is tg,give abnormal first iteration values to
¢l chs and ¢y in directions "4 onwards leading to very large oscillations in
the iteratedvalue of ¢, :

The diﬁicu}ty is obviously caused by the serious propagation of errors
which occurs especially in-equations containing ¢4 €35 and ¢4, In principle,
there is no doubt that after a sufficient number of iterations the oscillaticns
ifi the values of ¢y will damp out. In practice, it was felt, after spendinga
cansiderahle amount of time and effort, that this may take a great many
iterations and that it would be desirable to speed up the convergence of the
iterations.

In the equations(Za, b, ¢] for €, the constant term depends on the product
of ¢4, ¢is and ¢y with (Csa—‘ss) (cha—che) and (& ~c55).  Of them (chy=t)
and (c33 —cks) are usnally large, of the order of 3-5. When s is also large,
the c.orrectwns € and &, for the shear modes will be large. The corrected

_ values of Ch “and cs5 upset the entire procedure leadmg to either divergence

or-violent oscillations in'the iterated values of ¢;;  Therefore, it appears that
the best way to accelerate the convergence 01 the iteration is to choose
initially the values of ¢{f, i and cf? stch that ¢}, is small in directions 4-11
The choice {§=—0.2, i¥=0.2 and c‘°’~ —0.4 15 found to effect this. With
this choice, the first order values of cy are:

P ~2793; ofY=-0483; o =0096; P= 0.148;

=3.598; o) =-0.096; "cf=—0435; cl=-0180;

P=3203; o =-0197; . = ~0.207; = 0.103;

V-
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1t was found that in the second iteration also it was desirable to select
Becuuse of the serious propagation
of errors in the case of these three constants it was necessary 1o continue ihe
operation until the 18 terms approximately settled down to steady values.
It was only in the 12th iteration that directioas 8 and 11 were used to calcu-
late g Cas and ¢y, for the subsequent iteration.

Cigr C25

and ¢y to speed up convergence.

The iterations were carried on uniil two successive values of ¢y agreed
The velocity measurements indicate an

within the experimental errors.
So £ ¥* is correct to +0.5%,.

error of +02%.

error of this magnitude.

The diagonal terms have an
In sets like ¢, ¢4 0y and ¢, the ervors can be

estimated by knowimng the uncertainties in £ ¥ and the values of the diagonal

constants.

Ca30 €

directions 6 and 10 are only 4° apart.

They amount to be only +0.02 to £0.04.

The error in the set

ey and cg is also of the same order. However, in the set ¢y, ¢35, ¢35
and ¢4 the errors are somewhat large +0.02 to £0.10, mainly because

The propagation of errors in the case

of ¢14. €5 and ¢3¢ is dramatically seen when the errors are calculated to be

+0.2 for ¢4 £0.1

summanized m Table 3.

v Order of

approx.

Elastic constants of Coppersulphat- Pentahydrate

‘11,

5.325
5.313
5312
5.315
5.315

Order of .

approx.
0

12
13

o

4.224

4.177
4.213
4.218
4.221
4.221

€12

3.186

2.793
2.964
2.872
2.879
2.877

3.301

3.598
3.577
3.515
3.518
3.520

for ¢,, and 0.1

for c4s.  The

TABLE 3

€3

3.355

3.293
3.089
3.167
3.163
3.161

o4

0.043

-~0.096
-0.097
—0 066
-0 061
—0.063

14

—02
(—0.842)
—02

—~0.25
~0.3
—0.264
—0.270

C2s
0.2
(~0.646)
0.2
—-0.15
—0.14
—0.133
—0.149

iteration results are

at 25°C

Cis Cig
—0.107 —0.491
—0.197 ~0.483
—0.241 ~0.487
—0.226 —0.483
~0.226 -~ 0.480
—0.226 —0.480

€2

0.393

0.096

0.131

0.062

0.069

0.061
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(f;i;:)zf €33 Ca4 G5 €36 Cas
0 5.749 —0.403 —0.233 -0.4 1.683
(~0.329)
1 5697 —0.435 ~0.297 ~0.4 1.720
B 5.686 —-0.409 —0.303 ~0.1 1.696
9 5.689 —0.399 —0.289 —0.1 1.687
12 5.691 ~0.397 -0.290 —0.091 1.678
13 5.689 -0.397 ~0.289 —0.101 1.679
Oa’;;iro ;f Cas Cas €55 Css Co6
0 0.058 —-0.034 1.339 —0.439 0.961
1 0.148 0.103 1.227 —0.180 1.253
5 0.152 0.156 1.283 —0.219 1.188
9 0.183 0.124 1.265 —0.238 1.232
12 0.171 0.124 1.269 —-0.239 1229
13 0.177 0.124 1.268 -0.237 1231

The calculations were stopped with the 13th iteration. Tt was found
that further iteration did not change the numbers appreciably. For example
) were €, =5315, ¢y =4221, 3=5.689, 0 =1.230, ¢, ——0.480,
C3y=—0.396, rys=—~0.284, ¢,5,=0.177, and so on.

The final set of ¢y values in the original choice of the X, X,, X, axes, is:

5.315 2.877 3.161 —0.270 —0226 —0.480
30.03 +£0.03 #0.08 +02 +0.03 +0.02
4.221 3.520 ~0.063 ~0.149 0.061
40.02 -£0.04 +0.02 0.1 +0.04
5.689 -0.397 —0.289 —0.101
+0.03 +0.04 +0.04 +0.1
1.679 0.177 0.124
+0.01 +0.02 +0.02
1.268 —-0.237
+0.02 +0.03
1.231

+£0.02 [3]
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The manner in which the ¢; values have changed during the successive
iterations is evident from Table 3 The final values are quite different from
the zero orders values in the case of many constants. The least differences
are among the diagonal terms ¢;y, ¢y, ¢33 and ¢y, which have not changed by
more than ~ 2%. ¢ss has changed by ~ 5% from the zero order to the final
value. The two zero order values of cs5, 1.182 and 1495 have finally come
as close as 1.291 and 1.250. However, the final value of ¢g is notably
different from its zero order value. Among the principal off diagonal terms
¢y and ¢35 are smaller in the final approximation than they are in the zero
order calculation whereas final ¢,y is higher than zero order c,y. The changes
are ~ 5-10%. The =zero order sequence ¢y3=¢y2=cy, is changed to
Gy > O3 > Cpa. AS regards the remaining minor off diagonal terms, the largest
of them has a magnitude ~0.5. Nine of the elements have not changed in
sign, though their magnitudes hive changed by 0 01 to 0.35. Three constants
have changed sign but the differences between the zero order and final values
are again less than ~0.35.  Such differences are not entirely unexpected.

The final c,; values are substituted in the usual Christoffel equation
| Tiy—8; p* |=0 (41

where I',j=c;y, ooy to calculate the velocities and to see how far they
agree with the measured values. This is nothing more than a mere check on
numerical computations. For example, the calculated Pvf along the eleven
directions are (with the measured values in brackets).

Direction 1: 5.749 (5.749) ; Direction 2: 4.224 (4.224) ;
Direction 3: 5.380 (5.380); Direction 4: 3.766 (5.765) ;
Direction 5: 5.494 (5.490); Direction 6: 6.190 (6.190);
Direction 7: 4.747 (4.746) ; Direction &: 5.672 (5.674);
Direction 9: 5.469 (5.468) ; Direction 10: 6.172 (6.172) ;
Direction 11: 6.082 (6.081) .

6. DiscuUssiON

As indicated earlier Sundara Rao, as early as 1950, had attempted a
determination of the elastic constants of CuSO,.5H,0. The present work,
though begun as early as 1967, took a considerable time in the absence of
high speed computation. Meanwhile Siegert and Haussihl'? have published
an analysis of the elastic constants of CuSO,.5H,0 using Schaefer-Bergmann
techniques of study.

In discussing all these matters it appears best to follow the 1.R.E.-
recommended system of coordinate axes. The I.R.E. Z-axis and the original
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X,-axis chosen in the present studies are the same. The “a’ and ‘b’ facey
of the crystal are inclined at 79°12'. Thus a rotation of the prescnt original
system by —10°48" about the Xj-axis makes it coincide with the L.R.E. axeg
This can be easily effected by a transformation matrix.

Xl X2 X3
Xi e s 0 c=-cos (—10° 48

bt
4
&
=3

a=sin (~10° 48" 151

N
=
=
-

With the aid of Table 4-1 and the above direction cosine scheme it is easy
to transform the ¢ to I.R.E. ¢,’s.  They are:

5.64 92,653  3.210 —0.327 —0.076 —0.389
4003  +0.03  £0.08 +0.2 +0.03 +0.02
4.329 3470 —0.068 —0.206 0 201
£0.02  £0.04  £0.02 +0.1 +£004
5689  --0.444 —0.210 ~0.159
4+0.03 +0.04 +0.04 +0.1
1.729 0088 0.032
+0.01 +002 +102
1.218 ~0.265
+0.02 4+0.03
1.004
£002 [6]

The ¢;/'s are matrix-inverted to obtain 57 in umits of 107 p?/N.

2.902 —1.095 —0.914 0.248 0.083 1.211
5.174 —2.641 —-0.649 ‘ —-0.006 -1.857

3.976 0.711 0.319 0.-866

6.007 -0.401 0.042

8.828 2.424

11.570 [
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The relationship between Sundara Rao’s choice of axes and the present
coordinate system was already mentioned. The s; values given by Sundara Rao
were first matrix-inverted to obtain the following [ (sn his own system of axes)

~1.86  —067 049 094  —0.39 0.47
107 0.65 0.33 0.01 0.67
195  ~0I1  —0.48 011
—-0.17 011 —019
0.44 0.26
0.41 8]

Sundara Rao’s results. though pioneering, are based on static measure-
ments. Consequently, the accuracy is rather poor and there is also the risk
of plastic deformation. Added to this, one is apt to expect large propagation
of errors too in the calculations, especially when the specimen is a triclinic
crystal like CuSO,.5SH,0. Glancing at Sundara Rao’s values (equation 8), it is
striking to note negative ¢, and ¢, values, which are two of the principal
elastic constants. It is well known from tbe conditions of the stability of a
crystal that the principal diagonal terms must be positive and every major
determinant should also be positive. Therefore, clearly there must be a
serious error in Sundera Rao’s determination of the elastic moduli.
Furthermore, some of the off diagonal terms are even larger than the main
diagonal terms. In view of these and other defects a transformation of
Sundara Rao’s ¢; to I R E. axes is not useful. Sundara Rao’s work, though
pioneering, contains serious errors which make his final resulls untrust-
worthy.

Coming to Siegert and Haussiihls’ results, the choice of axes is indenti-
cal to the I.R.E. recommmendation. They employ 14 specimens in all and
determine the longitudinal and one of the two shear wave velocities for, all of
them. Their values at 20°C are in 10'0 N/m?,

5709 2062 3.164 —0.426 ~0.042 ~0.291
0.1% 1% 1% 5% 20% 3%
3.577 2.340 ~0.281 —0.012 ©  -0.058
0.2% 1% 59, 60%, 209,
5.841 —0.084 —~0.284 —0.075
0.1% 10% 59, 209
1.650 —0.185 +0.119
1% 39, 10%
1.515 —0.353
1% 3%
1.205

1% 19
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5;; can be obtained by matrix-inverting ¢,;.

Cemparing Siegert and Haussiihls’ values and our values, there i
good agreement in the main terms ¢, ¢y and cy.  Also the sequence
e3> C> (> G Css> Cge 8 maintained. 1n the c’ase of cross comnstants,
save for ¢y, and ¢y, there is general agreement in magnitude and sign. Eyey
in these two cases the differences are ~0.2. This overall agreement con.
sidering the complexity of experiments and calculations must be considered
good.

There are, however, small differences in details. For example, Siegert
and Haussuhls’ value of ¢, (3.58) is significantly smaller than the present
value (4.33). ¢55(1 52) and ¢ (1.20) are larger than the present 1.22 and 1.00.
As regards the off diagonal terms ¢;3 (3.16) > ¢p3 (2 34) > ¢}, (2.06) whereas in
the present measurements ¢z (3.47) > ¢f5 (3.21) > ¢, (2.65). It is also found
that the largest of the set ¢;3 (3.16) is only 10% smaller than c,, whereas in the
pulse echo measurements the largest of the set ¢,; (3.47) is nearly 209, smaller
than ¢y, As for the remaining 12 terms, the largest magnitude for them is
~0.4 and ten of them agree in sign in both cases. Even those two that do
not agree in sign are small.

The overall agreement must be considered satisfactory. Nevertheless,
it seems desirable to discuss the relative merits of the two determinations.

Certain points arise from the studies of Siegert and Haussyhl. Consider
first of all, the overall accuracy of 0.1% quoted by them for ¢ etc. This
implies an accuracy of 0.05% in their velocity measurements. Siegert and
Haussyhl use a Schaefer-Bergmann pattern and in this case the accuracy of
velocity determinations depends on the sharpness of the fringes. The
precision of this procedure js generally 0.5%. Even pulse echo measurements
which are generally considered more accurate show normal errors ~ 0.1% in
velocities. In the present measurements the estimated errors in velocities are
not less than ~0.2%. It is quite surprising that Siegert and Haussyhl could
claim an accuracy of 9.05% in velocities determined from Schaefer-Bergmann
patterns.

Secondly, Siegert and Haussyhl have used in their calculation, the
iteration procedure developed by Neighbours and Schacher!®. This is an
elaboration of the earlier method of Neighbours and Smith!®. In this method
instead of solving the cubic equations exactly to obtain the correction ¢, to
the effective velocities, the linearized equations are dealt with. Solving the
linearized equations to obtain ¢ is, in principle, not an exact solution of the
cubic Christoffel equation. Even if the errors in the individual values of €
are small, the final resultant error in the case of a triclinic crystal may be
ve-y serious because of the considerable propagation of errors. From that
point of view Siegert and Haussiihls’ values of the elastic constants of
CuSO, SH,0 are not the ‘true’ values. In the present calculations the
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simultaneous cubic equations are solved fully for each crystal block in every
step of iteration to obtain the exact corrections. Hence the convergent values
of the elastic constants are the °t{rue’ solutions of the full Christoffel

equations.

Another feature of the Schaefer-Bergmann measurement of Siegert and
Haussuhl is that only one transverse velocity is identified for all the
14 specimens. Normally along a general direction in an infinite anisotropic
crystal ome quasi-longitudinal and two quasi-shear modes can propagate.
For a given boundary condition, viz, a specified vibraijon direction of the
transducer, these will involve some linear combination of the three amplitudes
to saiisfy the boundary condition. Within the crystal, necessarily all the
three modes will be launched simultaneously with appropriate amplitudes.
Tn the Schaefer-Bergmann pattern there is an additional complication because
the intensity of the light spot depends on the piezooptic coeflicients also.
It is surprising to note that ihe second transverse velocity has not been
observed even for one sample.

I a finite crystal block there is an additional complication arising from
mode conversion at the boundaries. When a compressional wave is reflected
from a boundary at an arbitrary angle, the reflected wave is, in geuneral,
compressional plus shear'S. The admixture of modes is unavoidable in
amsotropic erysials even for normal incidence, the relative amplitudes
depending on the presence of symmetry elements, boundary orientation and
elastic constants. Such a mode conversion has been observed by Joel' in LiF.

There is no doubt that an exciiing transducer gives rise to the
simultaneous propagation of the three waves. Even in pulse work, this has
been clearly demonsirated by Briscoe and Norwood.” The three waves
moving independently of one another with a characteristic velocity will have
different transit times. But in a standing wave pattern such as the Schaefer-
Bergmana histogram all the three waves must so exist with different amplitudes.
But the two shear modes have not been identified in Siegert and Haussuhls’
experiments. In other words, the spots obtained by Siegert and Haussuhl
cannot be due io pure transverse modes, but due to an admixture of 7y and, T2
modes in some proportion.

To quote a few numerical examples, Siegert and Haussuhls® block 3 is
identical to our Direction 1 for which the propagation direction is the
crysiallographic c-axis. Siegert and Haussuhls' measured value of py?of .-
(1.364) is midway between the present values (1.182 and 1.683). Similarly,
for propagation perpendicularto the “a” face, the Schaefer-Bergmann £12 of
}.031 is again in between the pulse echo values of 0.961 and 1.495. This is
In support of the point discussed earlier.
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In ihis connection it is worth mentioning that Haussuhl’s® values of the
elasiic cons.ants of sodium chlorate and sodium bromate obiained fropm
Schaefer-Bergmann patterns show large deviations in the cross constant ¢y
For NaClO,, the averages of our pulse echo measurements® and those obtained
by che resonance method by Mason” and by __Bechmann“’ are ¢y =4.9,
¢=1.16 and ¢;,=1.41 (10" N/m?), while Haussnhl’s valaes are ¢4y =5.00,
c44=1.16 and ¢, =1.55. For NaBrO, the average values obtained from pulse
echo®™ and tesonance studies are ¢;;=5.85, ¢ =1.54 and ¢,,=2.05 whereas
Haussuh! gels respectively 5.48, 1.57 and 1.63. It is clear ihat the agreement
of ¢, is less satisfactory than that for ¢y and ¢y,

In the pulse echo method these complications arising from the simul-
taneous presence of more than one mode are avoided, because the transducer
fil.ers out’ one mcde at a time and furthermore, the L, 7| and 7, modes
would be received scparated in transit times. In the present measurements
small uncertainties could have crept in from two of the blocks used. The
block corresponding to Direction 6 had a thickress 2,64 mm just sufficient
enough to give echoes separated by a small time interval 1.02 u sec. Further,
Direction 2, had a rather small sectional area for the transmission of the
pulse. Therefore in the measurements made with these two blocks the errors
may have been more. Bzcause of the propagation of errors, these two hlocks
affect the overall accuracy of the other constanis. Perhaps the combined
accuracy of the present measurements can be improved by higher precision in
velocity measurements.

Finally, the rvelationship between the elastic constants and other
properties of CuSO,.5H,0 may be briefly indicated. X.ray studies® show
that in CuS80,.S5H,0 the Cu atoms are arranged in a face centred lautice
surrounded by four water molecules which are at the corners of a squate.
The fifth water molecule is not coordinated and all the waters show wo
oxygen bonds each. Neutron diffraction study®® of the water molecules
provides full details of the shape and cnvironment of these water molecules
and of hydrogen bonds which link together the atoms in the structure.
Studies™ on the magnetic properties reveal a symmetry axis, coinciding with
the intersection of the two-planes formed by the water molecules around each
Cu atom. Unfortunately this symmetry axis is not seen in other properties,
which must therefore be an accidental symmetry.

Sreedhar® in his thermal expansion studies has chosen a system of axes,
which coincides with our original choice. The thermal expansion coeflicients
A;=29.27, A,=41.55 and A, =4.45 (10-%) show extreme anisotropy of expansion.
Tt is interesting to note that A,> A > A; whereas ¢;3> ¢, > ¢, for the
longitudinal elastic constants. But the elastic constants do not show the
extreme anisotropy exhibited by A,  Neither do these properties reveal the
magnetic symmetry axis.



Taie Al

Transformation Squations of Elastic Constants

fy

fy

by

ts & % s A
i
uf o Bt bt it
LEARR LA ety | AR | ey TR
EARRIRAR eidrety AR, w0 By
o Tt gl ¢ Iy ﬁﬂhﬁﬁz‘"ﬂ\"a Dol BENABAYY,
(RARRINARA R w2
sfirafteandon RN AR 27 400,07} AR A
afHagd e, S ] URR A 2 2o} AR
b ol ﬁz\‘é 0‘% ﬁﬁ?
[HARRTRAAN aWitenh | BELeRY | laay, AR
a2y 1 3l | A 21,420,808 VARY AR
AR PN TSR AR AN DR I UTERA KNI A E AR AR
0l e dh PLRAAN W
o B adn AN EANE 2y, 2000, YA
241
4% o A o it
0l 2 o ) 5 o
by agddagdyy Syt ey AR Doy, 2030, pENSY AR
- 1 v
ad e Beandny | Sehrat R 2,6, % 4203, WAB-28
(R ARETH AR IR ﬁﬂ,?j+ﬂ,1ﬁ§ J Tt L BB
of kel deh AR
‘ 142 gt
ER TR AIEE NARN R RTAA N AR A u§v§+a§j§+ ey
Ul Lty Tyl By
! Y v v 1 2
aftradmteadnyy | 200 Be2e s B RIR R | dageeladn 2ﬂ1ﬂ1“1,+‘2v{§371"r,%
Tudn N ad Ha Y LY Doy ey | BENL2RANY
CHARADIN. A 2
o, 219429 % 219 8
o B b af IR RV IR SN AR T PR (51 AN . z‘ﬁxﬂ,miﬂnﬁ”
Ly af Y ROV LA a2y | R ANY
LA AR e
an . 1 ANl i
afhea bl By | 2R | abis a,‘!L ff;,; ) Bf‘
FARRERANA RILE i: ] s
¥ ? 2 I ? v +
PRSI NR TN AR 20,02 2a,0, 2ﬁn,7,+2§3m e ig‘ﬁ’?iﬁéé‘a'v :
IR AART N AN HanY 1YY et lne )y | B R
EERANAYHAAN g
‘ y 2, 40 Y
aft bl 2ag R0y | AR, ;f\ﬂﬁm f;gﬁi ;AM'
EARATA AN %7 GLRL

'

L3isH

iy,

o




Twenty-one Elastic Constants of Triclinic Copper Sulphate Pentahydrate 131

7. ACKNOWLEDGEMENT
One of the authors (V. R.) is grateful to the Council of Scientific and
Industrial Research, New Delhi, for the award of a Junior Research Fellow-
ship.
APPENDIX
In the iteration calculation, values of ¢'y;, 'y, g5, ¢y, a5 and ¢y
are required along arbitrary directions X’ They may be expressed in terms

of ¢; and the direction cosines defining X, with respect to X;. The direction
cosine scheme may be written as

X, X2 X,
X, oy a, Ay
X B Bs B
Xy M Y2 Y3

Interms of the direction cosines (written as «, B, 7, to avoid con-
fusion with the o, used in the iext), the vatues of c,'J are given in Table A-1.
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