THE TWENTY-ONE ELASTIC CONSTANTS OF TRICLINIC COPPER SULPHATE PENTAHYDRATE

By R. S. Krishnan, V. Radha and E. S. R. Gopal
(Department of Physics, Indian Institute of Science, Bangalore-12, India.)

[Received: April 18, 1970]

Abstract

The twenty-one elastic constants of triclinic copper sulphate pentahydrate have been determined at room temperature by the ultrasonic pulse echo method. An iteration technique is used for solving the full cubic Christoffel equation exactly, (J. Indian Inst. Sci., 50 (1968) 170) to obtain the elastic constants of crystals from ultrasonic velocities along arbitrary directions. The stiffness coefficients are oblained from measurements along eleven directions. The elastic constants referred to the I.R.E. system of axes are: $c_{11}=5.65 ; \quad c_{12}=2.65 ; \quad c_{13}=3.21 ; \quad c_{14}=-033 ; \quad c_{15}=-0.08 ; \quad c_{16}=-0.39 ;$ $c_{22}=4.33 ; \quad c_{23}=3.47 ; \quad c_{24}=-0.07 ; \quad c_{25}=-0.21 ; \quad c_{26}=0.20 ; \quad c_{33}=5.69 ;$ $c_{34}=-0.44 ; \quad c_{35}=-0.21 ; \quad c_{36}=-0.16 ; \quad c_{44}=1.73 ; \quad c_{45}=0.09 ; \quad c_{46}=0.03 ;$ $\epsilon_{55}=1.22 ; \quad c_{55}=-0.26$ and $c_{66}=1.00$ in units of $10^{10} \mathrm{~N} / \mathrm{m}^{2}$.

The results are discussed in relation to other studies on $\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}$.

1. 1ntroduction

In spite of the developments in the experimental techniques for determining the elastic constantis of crystalline solids, it is surprising to note that not many crystals belonging to the less symmetric systems have been investigated. Since 1946, after Mason's ${ }^{1}$ study on monoclinic dipotassium tartrate, a handful of monoclinic crystals has been studied ${ }^{2}$. Copper sulphate pentahydrade $\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}$ is the first triclinic crystal to be studied for its elastic constants.

In the case of a triclinic crystal the difficulties encountered in the determination of the elastic constants are two-fold. In order to determine the twenty-one constants, one has to carry out a minimum of twenty-one nondegenerate velocity measurements along different directions. Secondly, the Christoffel equation describing the elastic wave propagation cannot be resolved into pure modes for an arbitrary direction in an anisotropic material. Consequently, one has to solve a set of simultaneous cubic equations to obtain the elastic constants.

It was with a view to study triclinic crystals that an interation technique ${ }^{3}$ to solve the Christoffel equation to connect the analytic expressions for the velocities in terms of the elastic constants was developed. The evalution of the elastic constants of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ is now presented.

2. Choice of Co-ordinate Axes

Large size crystals of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ were grown by the slow evaporation of the aqueous solution. The crystal belongs to triclinic $\overline{1}$ group with a:b:c: : $0.5721: 1: 0.5554$ and $\alpha=82^{\circ} 5^{\prime}, \quad \beta=107^{\circ} 8^{\prime}$ and $\gamma=102^{\circ} 41^{\prime}$ (Groth ${ }^{4}$). Among a large number of forms observed, most common is the one sketched in Figure 1 with vertical zones $a(100), m(110), \mu(1 \overline{0}), \pi(1 \overline{3} 0)$ and $b(010)$ with $\omega^{\prime}(1 \overline{1} i \overline{)}$ as end faces. The interfacial angles in a large crystal can be be measured by means of a contact goniometer.

Fig. 1
Schermatic view of $\mathrm{Cu} \mathrm{SO}_{4}, 5 \mathrm{H}_{n} \mathbf{O}$. Crystal. Choice of Axes $X_{1}, X_{2}, X_{3} . X_{1}$ Axis is outward Normal to a face. X_{1} Axis is along a- μ Edge upwards

Once the ' a ' and ' m ' faces are located their intersection immediately gives the c-axis. In the original choice of the coordinate axes, identical to Sreedhar's ${ }^{5}$ preference in his thermal expansion studies, the X_{3}-axis coincides with the c-axis of the crystal. The ' a ' face is taken as the $X_{2} X_{3}$ plane, the X_{1}-axis being the outward normal to the ' a ' face. The X_{2}-axis completes a right handed orthogonal system of coordinates. It lies on the ' a ' face and points horizontally towards right in the direction of the ' b ' face.

It was noticed later that this original choice does not conform with the I.R.E. convention ${ }^{6}$. Even though the choice of X, Y, Z axes in a triclinic crystal for describing the elastic properties is arbitrary to some extent, the I.R.E. committee seeks to establish a convenient pattern for all crystal systems. The crystallographic c-axis is chosen as the Z-axis. The Y-axis is taken as the outward normal to the crystallographic ' b ' face and is orthogonal to Z. The X-axis is then obtained by completing the right handed system of axes.

The present X_{3}-axis corresponds to the I.R.E. Z-axis; therefore a rotation of the present system by $-10^{\circ} 48^{\prime}$ about X_{3} will bring it into coincidence with the I.R.E. system. Reference to Figure 2 clearly shows the relative orientations of these sets in a plane perpendicular to the c-axis.

Fig. 2
Relative Disposition of the two sets of Axes. c-Axis ($X_{3} Z$) Perpendicular to and outwards from paper. X_{1}, X_{2} present axes; X, Y, I.R.E. axes.

The original system of axes was chosen to facilitate comparison with the work of late Sundara Rao. He was the first person to attempt studies on a triclinic specimen. However, there were some discrepancies in his results and they were not published. Sundara Rao's X-axis (denoted by X_{1}^{\prime} to avoid confusion) is the inward normal to the ' a ' face and is thus $-X_{1}$, where X_{1} is the axis used originally in this study. The edge common to the ' a ' and
Table 1
Orientations of Crystal Blocks

	8		0	\bigcirc	0	$\stackrel{\stackrel{m}{\sim}}{\stackrel{m}{\circ}}$	$\begin{gathered} r^{+1} \\ \stackrel{\sigma}{8} \\ \underset{i}{2} \end{gathered}$	0	\square 8 8	$\frac{90}{6}$	－	b 0 0 0
－	8	\bigcirc	\square	\bigcirc	$\stackrel{\infty}{\infty}$	$\underbrace{\infty}_{0}$	0	芽	$\stackrel{\text { ču}}{\substack{* \\ \text { ¢ }}}$	永	\bigcirc	E 0 0 0
	$\stackrel{\square}{8}$	0	0	－	¢	\bigcirc	$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & \stackrel{y}{\circ} \end{aligned}$	$\begin{aligned} & r^{2} \\ & \stackrel{8}{8} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{8}{8} \\ & \stackrel{n}{8} \\ & i \end{aligned}$	－	${ }^{\text {N}}$	a 0 0 0 0
\cdots	8	0	\square	－	－	0	\bigcirc	－	$\begin{aligned} & m \\ & \text { g} \\ & i \\ & i \\ & i \end{aligned}$	¢	\bigcirc	$\stackrel{\square}{2}$
	$8_{8}^{\text {fr }}$	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	0	$\frac{0}{\sigma}$	$\frac{a^{\infty}}{6}$	\cdots	$\stackrel{\infty}{\infty}$
	ने	\bigcirc	0	\bigcirc	0	－	0	－	0	0	0	8 0 0 0 0
或	8	\bigcirc	0	－	0	$\begin{aligned} & {\underset{\theta}{0}}_{0}^{6} \\ & 0 \end{aligned}$	8 8 8	\bigcirc	－	\bigcirc	＋180	$\frac{\stackrel{N}{E}}{6}$
	$\underset{8}{\sim}$	\bigcirc	\bigcirc	－	$\begin{aligned} & \text { m } \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\stackrel{\infty}{\stackrel{m}{\stackrel{m}{e}}}$	0	$\begin{aligned} & \overleftarrow{L}_{6}^{\infty} \\ & \boxed{\infty} \end{aligned}$	$\begin{aligned} & \underset{i}{\circ} \\ & \underset{\circ}{\circ} \end{aligned}$	0	\bigcirc	哭
	$\ddot{\square}$	－	－	\bigcirc	$\begin{gathered} \infty \\ \stackrel{\infty}{\sim} \\ \stackrel{\infty}{0} \end{gathered}$	\bigcirc	$\stackrel{\overbrace{1}^{N}}{\stackrel{N}{i}}$		$\begin{aligned} & C_{0}^{\infty} \\ & \infty \\ & 0 \end{aligned}$	－		$\stackrel{\sim}{\text { N }}$
			N	m	\checkmark	n	0	－	∞	a	\bigcirc	$=$

' ω ' faces was taken by Sundara Rao as the X_{2}^{\prime}-axis and its positive direction was outwards towards the ' b ' face, from left to right. If the ' a ' face is taken as the $X_{2}^{\prime} X_{3}^{\prime}$ plane, the X_{3}^{\prime}-axis is taken normal to the X_{2}^{\prime}-axis, its positive direction being down into the crystal. The X_{1}^{\prime}-axis then completes a right handed orthogonal system. A rotation of his axes about X_{1} brings his system into line with the present choice.

3. Experimental Samples

To determine all the 21 constants at least 21 non-degenerate velocities must be determined. Eleven specimens were used in all. Three of them were axial cuts i.e., propagation along X_{1}, X_{2} and X_{3}. Two each had propagation direction in the $X_{1} X_{2}, X_{2} X_{3}$ and $X_{3} X_{1}$ planes, while the two remaining propagation directions were completely arbitrary.

The orientations of these blocks may be specified as follows: X_{3}^{\prime} is taken as the direction of propagation, giving a quasi-longitudinal mode q_{3}. X_{2}^{\prime} and X_{1}^{\prime} are the two perpendicular directions and q_{2} and q_{1} are the quasi-transverse modes having vibration directions respectively along X_{2}^{\prime} and X_{1}^{\prime}. The directions X_{i}^{\prime} are related to the crystal axes X_{j} by the scheme $X_{i}^{\prime}=\alpha_{i j} X_{j} \quad$ A specification of $\alpha_{i j}$ now uniquely fixes the direction of propagation X_{3}^{\prime} and the two transverse directions X_{2}^{\prime} and X_{1}^{\prime}. This is done for all the eleven blocks in Table 1.

The longitudinal and transverse velocities are measured by the ultrasonic pulse echo method ${ }^{8}$. The values of $q_{j}=\rho v_{i}^{2}$, where $\rho=228_{4} \mathrm{~kg} / \mathrm{m}^{3}$ is assumed are recorded in Table 2. All the velocities were determined for blooks $1,3,7,9$ and 10 . For directions $2,4,5,6$ and 11 , only the longitudinal mode was excited. For Directions 8 , the L and T_{2} velocities were obtained.

For propagation along X_{3}^{\prime}-direction, the Christoffel equation is

$$
\begin{equation*}
\left|c_{3 i 3 j}^{\prime}-\delta_{i j} \rho_{v^{2}}\right|=0 \tag{1}
\end{equation*}
$$

Here $c_{1,}^{\prime}$ are the constants in a rotated coordinate system and they can be expressed in terms of the elastic constants $c_{i j}$ and the direction cosines of the rotated system $9,10, \mathbf{n}$. For the sake of convenience this is given separately in Appendix I.

The iteration procedure starts with equation $[1],\left|c_{3,3 j}^{\prime}-\delta_{i ;} \boldsymbol{\rho}_{v^{2}}\right|=0$, where if the off diagonal terms $c_{3 / 3 j}^{\prime}$ are neglected, the $c_{3 i 3 i}^{\prime}$ are obtained as the ρv_{4}^{2} in the zero order approximation. Now, $c_{3 i 3}^{\prime}$ involves the linear combinations of the elastic constants $c_{w l}$; so by solving a sufficient number of simultaneous equations for $c_{3 i s_{i}}^{\prime}$ along different directions the zero order values of the elastic constants $c_{k l}^{(0)}$ are obtained. These $c_{k l}^{(0)}$ are used to calculate $c_{3,3 j}^{\prime}$ Then the corrections $\epsilon_{1}=\rho v_{2}^{2}-c_{3 i 3 i}^{\prime}$ are obtained by numerically solving the cubic equations fully. This gives the first order values of $c_{3,3 i}^{\prime}$ and $c_{k l}^{(1)}$ are evaluated from them. The operations are continued until the convergent limit is approached to the desired accuracy.

Table 2

Effective Velocities for the Eleven Samples

Direction	Description	$q_{2}=\rho \nu_{i}^{2}\left(10^{10} \mathrm{~N} / \mathrm{m}^{2}\right)^{*}$		
		$c_{55}^{\prime}=q_{1}$	$c_{44}^{\prime}=q_{2}$	$c_{53}^{\prime}=q_{3}$
1	X_{3}-cut	1.182	1.683	5749
2	X_{2}-cut	\cdots	\cdots	4.224
3	X_{1}-cut -....	0.961	1.495	5.380
4	$X_{1}\left(-14^{\circ} 28^{\prime}\right) X_{2}$-	5.765
5	$X_{2}\left(47^{\circ} 20^{\prime}\right) X_{3} \quad: \quad . . .$.	$\cdots \cdots$	5.493
6	$X_{1}\left(-52^{\circ} 52^{\prime}\right) X_{3}$	6.190
7	$X_{1}\left(26^{\circ} 7^{\prime}\right) X_{2}$	1.293	1.451	4.746
8	$\dot{\alpha}, \beta, \gamma\left(X_{8}^{\prime} \perp\right.$ to ω face) $\quad \cdots \cdots$	1.134	5.674
9	$X_{2}\left(23^{\circ} 6^{\prime}\right) X_{3}$	0.964	1.468	5.468
10	$X_{1}\left(-48^{\circ} 55^{\prime}\right) X_{3}$	1.092	1.405	6.172
11	$\alpha, \beta, \gamma \quad$.	\cdots	6081

- The third decimal is retainêd in the preliminary calculations to avoid serious propagation of errors.

4. Zeroth approximation to the Values of $c_{i j}$

The zero order values of $c_{i j}$, can be determined by neglecting the expressions for $c_{34}^{\prime}, r_{35}^{\prime}$ and c_{45}^{\prime} in equation [1]. Directions 1,2 and 3 furnish the zeo order values

$$
\begin{array}{lll}
c_{11}^{(0)}=5.380 & c_{22}^{(0)}=4.224 & c_{33}^{(0)}=5.749 \\
c_{44}^{(0)}=1.683 & c_{35}^{(0)}=(1.182+1.495) / 2=1.339 & c_{66}^{(0)}=0.961
\end{array}
$$

in units of $10^{10} \mathrm{~N} / \mathrm{m}^{2}$. (From hereon the units $10^{10} \mathrm{~N} / \mathrm{m}^{2}$ are dropped for convenience). Directions 4 and 7 together yield,

$$
c_{12}^{(0)}=3.186 ; \quad c_{16}^{(0)}=-0.491 ; \quad c_{26}^{(0)}=0.393 ; \quad c_{45}^{(0)}=0.058
$$

Similarly,

$$
c_{23}^{(0)}=3.301 ; \quad c_{24}^{(0)}=0.043 ; \quad c_{34}^{(0)}=-0.403 ; \quad c_{36}^{(0)}=-0.439
$$

are obtained from directions 5 and 9 and

$$
c_{13}^{(0)}=3.355 ; \quad c_{13}^{(0)}=-0.107 ; \quad c_{35}^{(0)}=-0.233 ; \quad c_{46}^{(0)}=-0.034
$$

from directions 6 and 10 .
There now remain c_{14}, c_{25} and c_{36} to be determined. It is worth mentioning here that even if the three velocities for Direction 8 had been determined, it would not have been possible to evaluate $c_{14}^{(0)}, c_{25}^{(0)}$ and $c_{36}^{(0)}$. The set of s :multaueous equations (for Direction 8) becomes

$$
\begin{array}{rrrrr}
q_{3}: & 0.2772 & c_{14}-0.1844 & c_{25}-0.4316 & c_{36}=\text { const } . \\
q_{2}: & 0.1244 & c_{25}+0.2912 & c_{36}=\text { const } \\
q_{1}: & -0.2772 & c_{14}+0.0600 & c_{25}+0.1404 & c_{36}=\text { const. }
\end{array}
$$

and are hence not linearly independent. Therefore, the choice of another direction viz, Direction 11 became unavoidable. Using the q_{3} and q_{2} values of Direction 8 and the q_{3} value of direction 11, the consiants are evaluated as:

$$
c_{14}^{(0)}=-0.842 ; \quad c_{25}^{(0)}=-0.646 ; \quad c_{36}^{(0)}=-0.329 ;
$$

The complete set of zero order values are :

5.380	3186	3.355	-0.842	-0.107	-0.491
	4.224	3.301	0.043	-0.646	0.393
		5.749	-0.403	-0.233	-0.329
			1.683	0.058	-0.034
				1.339	-0.439
					0.961

5. Iteration Procedure

The zero order values are evidently the results of neglecting the off diagonal elements in $c_{3 i 3 j}^{\prime}$ and they serve as the starting point for the iterations. Using $c_{i j}^{(0)}$, the numerical values of $c_{34}^{\prime}, c_{35}^{\prime}, c_{45}^{\prime}, c_{55}^{\prime}, c_{44}^{\prime}$ and c_{33}^{\prime} for all the crystal blocks are written down. The numerical corrections are calculated from the expressions,

$$
\begin{align*}
& \epsilon_{1}^{3}+\epsilon_{1}^{2}\left(2 c_{55}^{\prime}-c_{33}^{\prime}-c_{44}^{\prime}\right)+\epsilon_{1}\left[\left(c_{33}^{\prime}-c_{55}^{\prime}\right)\left(c_{44}^{\prime}-c_{55}^{\prime}\right)-c_{34}^{\prime 2}-c_{35}^{\prime 2}-c_{45}^{\prime 2}\right] \\
&+\left[c_{45}^{\prime 2}\left(c_{33}^{\prime}-c_{55}^{\prime}\right)+c_{35}^{\prime 2}\left(c_{44}^{\prime}-c_{55}^{\prime}\right)-2 c_{34}^{\prime} c_{35}^{\prime} c_{45}^{\prime}\right]=0 \tag{2a}\\
& \epsilon_{2}^{3}+\epsilon_{2}^{2}\left(2 c_{44}^{\prime}-c_{55}^{\prime}-\right.\left.c_{33}^{\prime}\right)+\epsilon_{2}\left[\left(c_{55}^{\prime}-c_{44}^{\prime}\right)\left(c_{33}^{\prime}-c_{44}^{\prime}\right)-c_{34}^{\prime}-c_{35}^{\prime 2}-c_{45}^{\prime 2}\right] \\
&+\left[c_{34}^{\prime 2}\left(c_{55}^{\prime}-c_{44}^{\prime}\right)+c_{45}^{\prime 2}\left(c_{33}^{\prime}-c_{44}^{\prime}\right)-2 c_{34}^{\prime} c_{35}^{\prime} c_{45}^{\prime}\right]=0 \tag{2b}\\
& \epsilon_{3}^{3}+\epsilon_{3}^{2}\left(2_{13}^{\prime}-c_{44}^{\prime}-c_{55}^{\prime}\right)+\epsilon_{3}\left[\left(c_{44}^{\prime}-c_{33}^{\prime}\right)\left(c_{55}^{\prime}-c_{33}^{\prime}\right)-c_{34}^{\prime 2}-c_{35}^{\prime 2}-c_{45}^{\prime}\right] \\
&+\left[c_{35}^{\prime 2}\left(c_{44}^{\prime}-c_{33}^{\prime}\right)+c_{34}^{\prime 2}\left(c_{55}^{\prime}-c_{33}^{\prime}\right)-2 c_{34}^{\prime} c_{35}^{\prime} c_{45}^{\prime}\right]=0 \tag{2c}
\end{align*}
$$

The first order values of $c_{313 i}^{\prime}$ are, $c_{55}^{\prime}=q_{1}-\epsilon_{1}, c_{44}^{\prime}=q_{2}-\epsilon_{2}$ and $c_{33}^{\prime}=q_{3}-\epsilon_{3}$. They are again solved to obtain the first order valur's $c_{1 j}^{(1)}$. The choice of ϵ_{1} is such that $\epsilon_{1}+\epsilon_{2}+\epsilon_{3}=0$ for any particular direction, since the trace of the $c_{i j}^{\prime}$ matrix is a constant. The first order values of the diagonal constanis are:

$$
\begin{array}{lll}
c_{11}^{(1)}=5.325 & , c_{22}^{(1)}=4.177 & c_{33}^{(1)}=5.697 \\
c_{44}^{(1)}=1.720 & c_{55}^{(1)}=(1.197+1.257) / 2=1.227 & c_{66}^{(1)}=1.255
\end{array}
$$

For' directions 1, 2 and 3 the calculations are easy whereas for the other directions the computations are quite lengthy.

As mentioned earlier the values c_{14}, c_{25} and c_{35} obinined from n rbitrary orientations depend on a knowledge of the other 18 terms The zero orde: values" because of the neglect of off diagonal terms in two various drections are necessarily approximate. In particular, c_{14}, c_{25} and c_{35} in directions 8 and $1 \mathrm{l}, \mathrm{s}$ are expressed as the difference between two large quantitics. In view bf the errors in the eighteen $c_{i j}^{(0)}$ values, ihe zero order values $c_{14}^{(0)}, c_{25}^{(0)}$ and $c_{36}^{(0)}$ are quite unrelable and contain disproportionately large errors. The result of this is to give abnormal first iteration values to $c_{34}^{\prime}, c_{35}^{\prime}$ and c_{45}^{\prime} in directions " 4 onwards leading to very large oscillations in the iteratcd value of $c_{1 J}$.

The difficulty is obviously caused by the serious propagation of errors which occurs especially in equations containing c_{14}, c_{25} and $'_{36}$. In principle, there is no doubt that after a sufficient number of terations the oscillations in the values of $c_{i j}$ will damp out. In practice, it was felt, after spending a considerahle amount of time and effort, that this may take a great many iterations and that it would be desirable to speed up the convergence of the iterations.

In the equations [$2 a, b, c$] for ϵ_{1} the constant term depends on the product of $c_{34}^{\prime}, c_{35}^{\prime}$ and c_{45}^{\prime} with $\left(c_{33}^{\prime}-c_{55}^{\prime}\right),\left(c_{33}^{\prime}-c_{44}^{\prime}\right)$ and $\left(c_{44}^{\prime}-c_{55}^{\prime}\right)$. Of them, $\left(c_{33}^{\prime}-c_{44}^{\prime}\right)$ and ($c_{33}^{\prime}-c_{55}^{\prime}$) are usually large, of the order of $3-5$. When c_{45}^{\prime} is also large, the corrections ϵ_{1} and. ϵ_{2} for the shear modes will be large. The corrected yalues of $c_{44}^{\prime \prime 2}$ and $c_{5 s}^{\prime}$ upset the entire procedure leading to either divergence or violent oscillations in the iterated values of $c_{i j}$ Therefore, it appears that the best way to accelerate the convergence of the iteration is to choose initially the values of $c_{14}^{(0)}, c_{25}^{(0)}$ and $c_{36}^{(0)}$ stich that c_{45}^{\prime} is small in directions $4-11$. The choice $\mathrm{r}_{14}^{(0)}=-0.2, c_{25}^{(0)}=0.2$ and $c_{36}^{(0)}=-0.4$ is found to effect this. With this choice, the first order values of $c_{i j}$ are :

$$
\begin{aligned}
& c_{12}^{(1)}=2.793 ; \quad c_{16}^{(1)}=-0.483 ; \quad c_{26}^{(1)}=0.096 ; \quad c_{45}^{(1)}=0.148 ; \\
& c_{23}^{(1)}=3.598 ; \quad c_{24}^{(1)}=-0.096 ; \quad c_{34}^{(1)}=-0.435 ; \quad c_{56}^{(1)}=-0.180 ; \\
& c_{13}^{(1)}=3.293 ; \quad c_{15}^{(1)}=-0.197 ; \quad c_{35}^{(1)}=-0.297 ; \quad c_{46}^{(1)}=0.103 ;
\end{aligned}
$$

It was found that in the second iteration also it was desirable to select c_{14}, c_{25} and c_{36} to speed up convergence. Because of the serious propagation of errors in the case of these three constants it was necessary to continue the operation until the 18 terms approximately setiled down to steady values. It was only in the 12 th iteration that ditections 8 and 11 were used to calculate c_{14}, c_{25} and c_{36} for the subsequent iteration.

The iterations were carried on until two successive values of $c_{i j}$ agreed within the experimental errors. The velocity measurements indicate an error of $\pm 02 \%$. So ρv^{2} is correct to $\pm 0.5 \%$. The diagonal terms have an error of this magnitude. In sets like c_{12}, c_{16}, c_{26} and c_{45} the errors can be estimated by knowing the uncertainties in ρv^{2} and the values of the diagonal constants. They amount to be only ± 0.02 to ± 0.04. The error in the set c_{23}, c_{24}, c_{34} and c_{56} is also of the same order. However, in the set c_{13}, c_{15}, c_{35} and c_{46} the errors are somewhat large ± 0.02 to ± 0.10, mainly because directions 6 and 10 are only 4° apart. The propagation of crrors in the case of c_{14}, c_{25} and c_{36} is dramatically seen when the errors are calculated to be ± 0.2 for $c_{14} \pm 0.1$ for c_{25} and ± 0.1 for c_{36}. The iteration results are summarized m Table 3.

Table 3. Elastic constants of Coppersulphat:- Pentahydrate at $25^{\circ} \mathrm{C}$

Order of approx. \%	c_{11}	c_{12}	c_{13}	c_{14}	c_{15}	c_{16}
	5.380	3.186	3.355	-0.2	-0.107	-0.491
1				(-0.842)		
5	5.325	2.793	3.293	-02	-0.197	-0.483
9	5.313	2.964	3.089	-0.25	-0.241	-0.487
12	5.312	2.872	3.167	-0.3	-0.226	-0.483
13	5.315	2.879	3.163	-0.264	-0.226	-0.480
			3.161	-0.270	-0.226	-0.480

Order of approx.	c_{22}	c_{23}	c_{24}	c_{25}	c_{26}
0	4.224	3.301	0.043	0.2	0.393
				(-0.646)	
1	4.177	3.598	-0.096	-0.2	0.096
5	4.213	3.577	-0.097	-0.15	0.131
9	4.218	3.515	-6066	-0.14	0.062
12	4.221	3.518	-0.061	-0.133	0.069
13	4.221	3.520	-0.063	-0.149	0.061

Order of approx.	c_{33}	c_{34}	c_{35}	c_{36}	c_{44}
0	5.749	-0.403	-0.233	-0.4	1.683
				(-0.329)	
1	5697	-0.435	-0.297	-0.4	1.720
5	5.685	-0.409	-0.303	-0.1	1.696
9	5.689	-0.399	-0.289	-0.1	1.687
12	5.691	-0.397	-0.290	-0.091	1.678
13	5.689	-0.397	-0.289	-0.101	1.679

Order of approx.	c_{45}	c_{46}	${ }^{\prime} 55$	c_{56}	c_{66}
0	0.058	-0.034	1.339	-0.439	0.961
1	0.148	0.103	1.227	-0.180	1.255
5	0.152	0.156	1.283	-0.219	1.188
9	0.183	0.124	1.265	-0.238	1.232
12	0.171	0.124	1.269	-0.239	1229
13	0.177	0.124	1.268	-0.237	1.231

The calculations were stopped with the 13th iteration. It was found that further iteration did not change the numbers appreciably. For example $c_{i_{j}}^{(14)}$ were $c_{11}=5.315, \quad c_{22}=4.221, \quad c_{33}=5.689, \quad c_{66}=1.230, \quad c_{16}=-0.480$, $c_{34}=-0.396, r_{35}=-0.284, c_{45}=0.177$, and so on.

The final set of $c_{i j}$ values in the original choice of the X_{1}, X_{2}, X_{3} axes, is :

5.315	2.877	3.161	-0.270	-0226	-0.480
± 0.03	± 0.03	± 0.08	± 0.2	± 0.03	± 0.02
	4.221	3.520	-0.063	-0.149	0.061
	± 0.02	± 0.04	± 0.02	± 0.1	± 0.04
		5.689	-0.397	-0.289	-0.101
		± 0.03	± 0.04	± 0.64	± 0.1
			1.679	0.177	0.124
			± 0.01	± 0.02	± 0.02
				1.268	-0.237
				± 0.02	± 0.03
					1.231
					± 0.02

The manner in which the $c_{i j}$ values have changed during the successive iterations is evident from Table 3 The final values are quite different from the zero orders values in the case of many constants. The least differences are among the diagonal terms c_{11}, c_{22}, c_{33} and c_{44} which have not changed by more than $\sim 2 \%$. c_{55} has changed by $\sim 5 \%$ from the zero order to the final value. The two zero order values of $c_{55}, 1.182$ and 1495 have finally come as close as 1.291 and 1.250 . However, the final value of c_{66} is notably different from its zero order value. Among the principal off diagonal terms c_{12} and c_{13} are smaller in the final approximation than they are in the zero order calculation whereas final c_{23} is higher than zero order c_{23}. The changes are $\sim 5-10 \%$. The zero order sequence $c_{13} \geqslant c_{23} \geqslant c_{12}$ is changed to $c_{23}>c_{13}>c_{12}$. As regards the remaining minor off diagonal terms, the largest of them has a magnitude ~ 0.5. Nine of the elements have not changed in sign, though their magnitudes hive changed by 001 to 0.35 . Three constants have changed sign but the differences between the zero order and final values are again less than ~ 0.35. Such differences are not entirely unexpected.

The final $c_{i j}$ values are substituted in the usual Christoffel equation

$$
\begin{equation*}
\left|\Gamma_{i j}-\delta_{i j} \rho v^{2}\right|=0 \tag{4}
\end{equation*}
$$

where $\Gamma_{1 j}=c_{i j k l} \quad \alpha_{j} \alpha_{l}$ to calculate the velocities and to see how far they agree with the measured values. This is nothing more than a mere check on numerical computations. For example, the calculated $\rho \nu_{1}^{2}$ along the eleven directions are (with the measured values in brackets).

Direction 1	5.749 (5.749) ;	Direction 2:	4.224 (4.224) ;
Direction 3	5.380 (5.380);	Direction	5.766 (5.765);
Direction 5	5.494 (5.490) ;	Direction	6.190 (6.190) ;
Direction 7 :	4.747 (4.746) ;	Direction 8	5.672 (5.674) ;
Direction 9:	5.469 (5.468) ;	Direction 10:	6.172 (6.172) ;
Direction 11:	6.082 (6.081) .		

6. Discussion

As indicated earlier Sundara Rao, as early as 1950, had attempted a determination of the elastic constants of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$. The present work, though begun as early as 1967, took a considerable time in the absence of high speed computation. Meanwhile Siegert and Haussüh ${ }^{12}$ have published an analysis of the elastic constants of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ using Schaefer-Bergmann techniques of study.

In discussing all these matters it appears best to follow the I.R.E.recommended system of coordinate axes. The I.R.E. Z-axis and the original
X_{3}-axis chosen in the present studies are the same. The ' a ' and ' b ' faces of the crystal are inclined at $79^{\prime \prime} 12^{\prime}$. Thus a rotation of the present original system by $-10^{\circ} 48^{\prime}$ about the X_{3}-axis makes it coincide with the I.R.E. axes. This can be easily effected by a transformation matrix.

With the aid of Table $A-1$ and the above direction cosine scheme it is easy to transform the $c_{b j}$ to I.R.E. $c_{* j}$'s. They are:

5.64	92.653	3.210		-0.327	-0.076
± 0.03	± 0.03	± 0.08	± 0.2	± 0.03	± 0.02
	4.329	3.470	-0.068	-0.206	0201
	± 0.02	± 0.04	± 0.02	± 0.1	± 004
		5.689	-0.444	-0.210	-0.159
		± 0.03	± 0.04	± 0.04	± 9.1
			1.729	0088	0.032
			± 0.01	± 002	± 902
				1.218	-0.265
				± 0.02	± 0.03

$\pm 002[6]$

The c_{ij} 's are matrix-inverted to obtain $s_{i \bar{j}}$'s in units of $10^{-\mathrm{se}} \mathrm{m}^{2} / \mathrm{N}$.

2.902	-1.095	-0.914	0.248	0.083	1.211
	5.174	-2.641	-0.649	-0.006	-1.857
		3.976	0.711	0.319	0.866
		6.007	-0.401	0.042	
			8.828	2.424	
					11.570

The relationship between Sundara Rao's choice of axes and the present coordinate system was already mentioned. The $s_{i j}$ values given by Sundara Rao were first matrix-inverted to obtain the following $c_{i j}$ (in his own system of axes)

-1.86	-0.67	0.49	0.94	-0.39	0.47
	1.07	0.65	0.33	0.01	0.67
		1.95	-0.11	-0.48	0.11
			-0.17	0.11	-0.19
				0.44	0.26
					0.41

Sundara Rao's results. though pioneering, are based on static measurements. Consequently, the accuracy is rather poor and there is also the risk of plastic deformation. Added to this, one is apt to expect large propagation of errors too in the calculations, especially when the specimen is a triclinic crystal like $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$. Glancing at Sundara Rao's values (equation 8), it is striking to note negative c_{11} and c_{44} values, which are two of the principal elastic constants. It is well known from tbe conditions of the stability of a crystal that the principal diagonal terms must be positive and every major determinant should also be positive. Therefore, clearly there must be a serious error in Sundera Rao's determination of the elastic moduli. Furthermore, some of the off diagonal terms are even larger than the main diagonal terms. In view of these and other defects a transformation of Sundara Rao's $c_{i j}$ to I R E. axes is not useful. Sundara Rao's work, though pioneering, contains serious errors which make his final results untrustworthy.

Coming to Siegert and Haussühls' results, the choice of axes is indentical to the I.R.E. recommendation. They employ 14 specimens in all and determine the longitudinal and one of the two shear wave velocities for all of them. Their values at $20^{\circ} \mathrm{C}$ are in $10^{10} \mathrm{~N} / \mathrm{m}^{2}$,

5.709	2.062	3.164	-0.426	-0.042	-0.221
0.1%	1%	1%	5%	20%	3%
	3.577	2.340	-0.281	-0.012	-0.058
	0.2%	1%	5%	60%	20%
		5.841	-0.084	-0.284	-0.075
		0.1%	10%	5%	20%
			1.650	-0.185	+0.119
			1%	3%	10%
				1.515	-0.353
				1%	3%
					1.205

$s_{i j}$ can be obtained by matrix-inverting $c_{3 j}$.
Ccmparing Siegert and Haussühls' values and our values, there is good agreement in the main terms c_{11}, c_{33} and c_{44}. Also the sequence $c_{33}>c_{11}>c_{22}>c_{44}>c_{53}>c_{66}$ is maintained. In the case of cross constants, save for c_{26} and c_{45}, there is general agroement in magnitude and sign. Even in these two cases the differences are ~ 0.2. This overall agreement considering the complexity of experiments and calculations must be considered good.

There are, however, small differences in details. For example, Siegert and Haussühls' value of $c_{22}(3.58)$ is significantly smaller than the present value (4.33). $\quad c_{55}(152)$ and $c_{66}(1.20)$ are larger than the present 1.22 and 1.00 . As regards the off diagonal terms $c_{13}(3.16)>c_{23}(234)>c_{12}(2.06)$ whereas in the present measurements $c_{23}(3.47)>\varepsilon_{13}(3.21)>c_{12}(2.65)$. It is also found that the largest of the set $c_{13}(3.16)$ is only 10% smaller than c_{22} whereas in the pulse echo measurements the largest of the set c_{23} (3.47) is nearly 20% smaller than c_{22}. As for the remaining 12 terms, the largest magnitude for them is ~ 0.4 and ten of them agree in sign in both cases. Even those two that do not agree in sign are small.

The overall agreement must be considered satisfactory. Nevertheless, it seems desirable to discuss the relative merits of the two determinations.

Certain points arise from the studies of Siegert and Haussühl. Consider first of all, the overall accuracy of 0.1% quoted by them for c_{11} etc. This implies an accuracy of 0.05% in their velocity measurements. Siegert and Haussuhl use a Schaefer-Bergmann pattern and in this case the accuracy of velocity determinations depends on the sharpness of the fringes. The precision of this procedure is generally 0.5%. Even pulse echo measurements which are generally considered more accurate show normal errors $\sim 0.1 \%$ in velocities. In the present measurements the estimated errors in velocities are not less than $\sim 0.2 \%$. It is quite surprising that Siegert and Haussühl could claim an accuracy of 0.05% in velocities determined from Schaefer-Bergmann patterns.

Secondly, Siegert and Haussuhl have used in their calculation, the iteration procedure developed by Neighbours and Schacher ${ }^{13}$. This is an elaboration of the earlier method of Neighbours and Smith ${ }^{14}$. In this method instead of solving the cubic equations exactly to oblain the correction ϵ_{f} to the effective velocities, the linearized equations are dealt with. Solving the linearized equations to obtain ϵ_{i} is, in principle, not an exact solution of the cubic Christoffel equation. Even if the errors in the individual values of $\boldsymbol{\epsilon}_{i}$ are small, the final resultant error in the case of a triclinic crystal may be ve'y serious because of the considerable propagation of errors. From that point of view Siegert and Haussühls' values of the elastic constants of $\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}$ are not the 'true' values. In the present calculations the
simultaneous cubic equations are solved fully for each crystal block in every step of iteration to obtain the exact corrections. Hence the convergent values of the elastic constants are the 'irue' solutions of the full Christoffel equations.

Another feature of the Schaefer-Bergmann measurement of Siegert and Haussuhl is that only one transverse velocity is identified for all the 14 specimens. Normally along a general direction in an infinite anisotropic crystal one quasi-longitudinal and two quasi-shear modes can propagate. For a given boundary condition, viz, a specified vibration direction of the transducer, these will involve some linear combination of the three amplitudes to satisfy the boundary condition. Within the crystal, necessarily all the three modes will be launched simultaneously with appropriate amplitudes. In the Schaefer-Bergmann pattern there is an additional complication because the intensity of the light spot depends on the piezooptic coefficients also. It is surprising to note that the second transverse velocity has not been observed even for one sample.

In a finite crystal block there is an additional complication arising from mode conversion at the boundaries. When a compressional wave is reflected from a boundary at an arbitrary angle, the reflected wave is, in general, compressional plus shear ${ }^{15}$. The admixture of modes is unavoidable in ansotropic crystals even for normal incidence, the relative amplitudes depending on the presence of symmetry elements, boundary orientation and elastic constants. Such a mode conversion has been observed by Joel ${ }^{16}$ in LiF.

There is no doubt that an exciing transducer gives rise to the simultaneous propagation of the three waves. Even in pulse work, this has been clearly demonsirated by Briscoe and Norwood. ${ }^{17}$ The three waves moving independently of one another with a characteristic velocity will have different transit times. But in a standing wave pattern such as the SchaeferBergmana histogram all the three waves must so exist with different amplitudes. But the two shear modes have not been identified in Siegert and Haussühls" experiments. In other words, the spots obtained by Siegert and Haussüh 1 cannot be due to pure transverse modes, but due to an admixture of T_{1} and T_{2} modes in some proportion.

To quote a few numerical examples, Siegert and Haussühls' block 3 is identical to our Direction 1 for which the propagation direction is the crysiallographic c-axis. Siegert and Haussühls' measured value of ρv^{2} of (1.364) is midway between the present values (1.182 and 1.683). Similarly, for propagation perpendicular to the ' a ' face, the Schaefer-Bergmann $\rho_{b^{2}}{ }^{2}$ of 1.031 is again in between the pulse echo values of 0.961 and 1.495. This is in support of the point discussed earlier.

In ihis connection it is worth mentioning that Haussühl's ${ }^{18}$ values of the elasiic consants of sodium chlorate and sodium bromate obiained from Schatfer-Bergmann patterns show large deviations in the cross constant c_{12}. For NaClO_{3}, the averages of our pulse echo measurements ${ }^{3}$ and those obtained by the resonance method by Mason ${ }^{19}$ and by Bechmann ${ }^{20}$ are $c_{11}=4.96$, $c_{44}=1.16$ and $c_{12}=1.41\left(10^{10} \mathrm{~N} / \mathrm{m}^{2}\right)$, while Haussühl's values are $c_{11}=5.00$, $c_{44}=1.16$ and $c_{12}=1.55$. For NaBrO_{3} the average values obtained from pulse echo ${ }^{21}$ and resonance studies are $c_{11}=5.85, c_{44}=1.54$ and $c_{12}=2.05$ whereas Haussunt gets respectively $5.48,1.57$ and 1.63 . It is clear that the agreement of c_{12} is less satisfactory than that for c_{11} and c_{44}.

In the pulse echo method these complications arising from the simultancous presence of more than one mode are avoided, because the transducer fileers out one mode at a time and furthermore, the L, T_{1} and T_{2} modes would be received scparated in transit times. In the present measurements small uncertainties could have crept in from two of the blocks used. The block corresponding to Direction 6 had a thickress 2.64 mm just sufficient enough to give echoes separated by a small time interval $1.02 \mu \mathrm{sec}$. Further, Direction 2, had a rather small sectional area for the transmission of the pulse. Therefore in the measurements made with these two blocks the errors may have been more. Because of the propagation of errors, these two blocks affect the overall accuracy of the other constants. Perhaps the combined accuracy of the present measurements can be improved by higher precision in velocity measurements.

Finally, the relationship between the elastic constants and other properties of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ may be briefly indicated. X-ray studies ${ }^{29}$ show that in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ the Cu atoms are arranged in a face centred latice surrounded by four water molecules which are at the corners of a squate. The fifth water molecule is not coordinated and all the waters show iwo oxygen bonds each. Neutron diffraction study ${ }^{23}$ of the water molecules provides full details of the shape and cnvironment of these water molecules and of hydrogen bonds which link together the atoms in the structure. Studies ${ }^{24}$ on the magnetic properties reveal a symmetry axis, coinciding with the intersection of the two planes formed by the water molecules around each Cu atom. Unfortunately this symmetry axis is not seen in other properties, which must therefore be an accidental symmetiy.

Steedhar ${ }^{5}$ in his thermal expansion studies has chosen a system of axes, which coincides with our original choice. The thermal expansion coefficients $\lambda_{1}=29.27, \lambda_{2}=41.58$ and $\lambda_{3}=4.45\left(10^{-6}\right)$ show extreme anisotropy of expansion. It is interesting to note that $\lambda_{2}>\lambda_{1}>\lambda_{3}$ whereas $c_{33}>c_{11}>c_{22}$ for the longitudinal elastic constants. But the elastic constants do not show the extreme anisotropy exhibited by λ_{1} Neither do these properties reveal the magnetic symmetry axis.

Trasiocration Equatioss of Elestic Corstants

4_{4}	${ }_{4}{ }_{45}^{\prime}$	l_{31}^{\prime}	t_{4}^{\prime}	c_{55}	4	c_{3}
\mathfrak{c}_{11}	$\alpha_{1} \beta_{1} \beta_{1} z_{1}$	$Q_{1} 1_{1}^{3}$	8.11_{1}^{3}	$x_{1}^{29 / 4}$	Afy	${ }_{1}^{4}$
${ }_{\text {it }}$	$\alpha_{1} \beta_{2} \gamma_{1} \eta_{2}+\alpha_{2} \beta_{1} \gamma_{1} \gamma_{2}$	$\left.a_{1} a_{1} n_{1}^{2}+x_{1}\right)_{1}^{2} y_{2}$	$\beta_{1} y_{1} y_{2}^{2}-\beta_{2} \beta_{2}^{2} \gamma_{2}$	$2 \alpha_{1} x_{2} \gamma_{1} \gamma_{2}$	$2 \beta_{3} \beta_{1} 1$	$2 \nu_{1}^{2} \gamma_{2}^{2}$
${ }_{6} 13$	$\alpha_{1} B_{3} y_{1} y_{3} y_{3}+\alpha_{3} B_{1} Y_{1} Y_{3}$	$a_{1} \gamma_{1} y_{3}^{2}+x_{3} a_{1}^{2} \gamma_{3}$	$\beta_{1} \gamma_{1} \gamma_{3}^{2}+\beta_{3} n_{1}^{2} \gamma_{3}$	$2 \alpha_{1} \alpha_{3} \gamma_{1} \gamma_{3}$		$2 \%_{1} \%_{3}^{2}$
4	$\begin{aligned} & \alpha_{1} \beta_{3} y_{1} \alpha_{2}+\alpha_{3} \beta_{1} y_{1} \gamma_{2}+ \\ & \alpha_{1} \beta_{2} y_{1} y_{3}+\alpha_{2} \beta_{1} y_{1} y_{3} \end{aligned}$		$\begin{aligned} & \beta_{1} y_{1}^{2} \eta_{2}+\beta_{2} n_{1}^{2} \gamma_{3} \\ & +2 p_{1}^{N} i_{1} n_{2} \end{aligned}$	$2 \alpha_{1} \alpha_{2} \chi_{1} \gamma_{2} \gamma_{2}+2 \alpha_{1} \chi_{2} \chi_{2} y_{1} \gamma_{1}$	$2 p_{1} \beta_{3} \gamma_{2} \gamma_{2}+2 \beta_{1} \beta_{2} y_{1} \chi_{5}$	4) $7_{1} \gamma_{2} \gamma_{3}$
$i^{1 / 5}$	$\left.x_{1} \beta_{3}\right\}_{1}^{2}+a_{3} B_{1} y_{1}^{2}+2 a_{1} \theta_{1} y_{1} \gamma_{3}$	$3 x_{1} \lambda_{1}^{2} \nu_{3}+x_{3} \beta_{1}$	$3 \beta_{1} 7_{1} Q_{3}>P_{3} y_{1}^{3}$	$\left.2 x_{1}^{2}\right)_{1}^{2} y_{3}+2 a_{1} \alpha_{3} 3_{1}^{2}$	$2 \beta_{1} \beta_{1} \gamma_{1} \gamma_{1}+2 \beta_{1} \beta_{3} \lambda_{1}^{2}$	$41_{1}^{1 / 3}$
4	$\left.\alpha_{1} \beta_{2} \gamma_{1}^{2}+\alpha_{1} \beta_{1}\right)_{1}^{2}+2 \alpha_{1} \beta_{1} \gamma_{1} \gamma_{2}$	$3 x_{1} 1_{1}^{2} y_{2}-x_{2}{ }^{\prime}$	$3 \beta_{1} \gamma_{1} Y_{2} \leq \beta_{2} Y_{1}^{3}$	$2 a_{1}^{2} y_{1} \gamma_{2}+2 a_{1} \alpha_{2} \gamma_{1}^{2}$	$2 \beta_{1} \gamma_{1} \gamma_{2}+2 \beta_{1} \beta_{2} r_{1}^{2}$	$4{ }^{3}$
c_{2}	$\alpha_{2} 3_{2} \beta_{2} 7_{2}^{2}$	$\mathrm{C}_{2}{ }^{\text {2 }}$	$\mathrm{B}_{3}{ }^{3}{ }^{3}$	$a_{2}^{2 n}{ }^{2}$	P12	${ }^{16}$
2_{23}	$\alpha_{2} \beta_{3} \gamma_{2} \gamma_{1}+\alpha_{3} g_{2} \gamma_{2} \gamma_{3}$	$\alpha_{3} y_{2} y_{3}+x_{2} x_{2} y_{2} y^{2}$	$\left.\beta_{3} 2_{2}^{2 \gamma} y_{3}+\beta_{2} y_{2}\right]_{3}$	$2 x_{2} x_{3} \gamma_{2} \gamma_{3}$	$2 p_{3} \beta_{2} \gamma_{3}$	$22_{2}^{2 / 2}$
${ }_{4}$	$\alpha_{2} \beta_{3} \gamma_{2}^{2}+\alpha_{3} \beta_{2} \gamma_{2} \gamma_{2}^{2}+2 x_{2} \beta_{2} \gamma_{2} y_{3}$	$\left.3 x_{1} \cdot \frac{2}{2} y_{3}+x_{3}\right]_{2}^{\prime \prime}$	$3 \beta_{2} \gamma_{2} \gamma_{3}+\beta_{3} \gamma_{2}^{3}$	$2 a_{2}^{2} \gamma_{2}^{7},+2 x_{2}$	$2 p_{2} \gamma_{2} \gamma_{1}+2 \beta_{2} \beta_{3} y_{2}^{2}$	43_{3}^{3}
${ }_{25}$	$\begin{aligned} & \alpha_{2} \beta_{3} \gamma_{1} \gamma_{2}+\alpha_{3} \beta_{2} \gamma_{3} \gamma_{2}+x_{1} \alpha_{2} \gamma_{2} \gamma_{2}+\beta_{1} \gamma_{2} \gamma_{2} y_{1} \end{aligned}$	$\begin{aligned} & \alpha_{1}^{\gamma_{2}^{2} \gamma_{3}+\alpha_{3} \gamma_{1}^{\gamma_{2}^{2}}+} \\ & 2 \alpha_{2} \gamma_{1}^{\gamma} \gamma_{2}^{\gamma_{3}} \end{aligned}$	$\begin{aligned} & \beta_{1} \gamma_{2} \gamma_{3} y_{3}+\beta_{3} y_{1} y_{2}^{2}+ \\ & 2 \gamma_{2}+1 \end{aligned}$	$2 \alpha_{1} x_{2} y_{2}^{\prime} y_{3}+2 \alpha_{2} \psi_{3} y_{1}$	$\left.2 \beta_{2} \beta_{2} \gamma_{3}+2 \beta_{2} \beta_{3} \gamma_{1}\right\}_{2}$	$47_{1} 2^{2} 16$
t_{26}	$x_{2} \beta_{1} y_{2}^{2}+\alpha_{1} \hat{p}_{2} \gamma_{2}+2 x_{1} \hat{p}_{2} \hat{y}_{2} \gamma_{2} \gamma_{2}$	$\left.3 x_{2} y_{1} \sum_{2}^{2}+\alpha_{1} Y_{2}\right\}_{2}$	$3 \beta_{2} \gamma_{1}, P_{2}^{2}+\beta_{1} M_{2}^{3}$	$2 \alpha_{1} x_{2}{ }_{2}^{2}+2 x_{2}^{2} \gamma_{1}^{2} \nu_{1}{ }^{\prime}$	$2 \beta_{1} \beta_{2} z_{2}^{2}+2 p^{2} y_{1} y_{2} y_{2}$	$47_{1}^{2} 8$
${ }_{3}$	$\alpha_{3} \beta_{3} \beta_{3} z_{3}^{2}$	$\alpha_{1}{ }_{3}{ }_{3}$	$\beta_{3} 3_{3}^{3}$	$\alpha_{3}^{2} 7_{3}$	$89_{9} 9_{3}^{2}$	${ }^{4}$
${ }_{3}$	$\alpha_{1} \beta_{2} \gamma \gamma_{3} / \alpha_{2} \beta_{3} \eta_{3} / 2 \alpha_{3} \beta_{3} \beta_{2} \gamma_{3}$	$3 x_{3} y_{2} y_{3}^{\prime 2}-x_{2} y_{3}$	$3 \beta_{3} \nu_{2} \gamma_{3}^{2}+\beta_{2} \%_{3}$		$2 \beta_{1} \beta_{3} \beta_{3}^{2}+2 \beta_{3}^{2} \gamma_{2} \gamma_{3}$	$\left.4 y_{2}\right)_{3}^{3}$
${ }^{6}$	$x_{3} B_{1} y_{3}^{2}+x_{1} \beta_{3} y_{3}+2 x_{2} \beta_{3} y_{1} y_{5}$	$3 \alpha_{3} y_{1} y_{3}^{2} \div x_{1} y_{3} y_{3}$	$3 R_{1} y_{1} y_{3}+\beta_{1} \gamma_{1} y_{3}$	$2 \alpha_{1} \alpha_{3} \nu_{3}^{2}+2 a_{3}^{2} \gamma_{1} \gamma_{3}$	$2 p_{1} p_{3} y_{3}^{2}-22_{3}^{2} y_{1}^{2} \gamma_{3}$	44_{1}^{43}
${ }_{36}$	$\alpha_{3} \beta_{2} \eta_{1} x_{2}+\alpha_{2} \beta_{3} \gamma_{4} x_{3}+$ $\alpha_{3} \beta_{1} \gamma_{3} \gamma_{3}+\alpha_{1} \beta_{2} \gamma_{2} \gamma_{3}$	$\begin{aligned} & a_{2} y_{1} y^{2} y^{2}+\alpha_{1} y_{2} i_{1}^{2}+ \\ & 2 \alpha_{3} y_{1} y_{2} y_{3} \end{aligned}$	$\beta_{2} \gamma_{1} \gamma_{3}+\beta_{1} \gamma_{2} \gamma_{3}^{2}$ $2 \beta_{3} \gamma_{1} y_{2}^{7}{ }_{3}$	$2 x_{1} \alpha_{3} \chi_{2} \gamma_{3}+2 \alpha_{2} x_{3} \gamma_{1} \gamma_{3}$	$2 p_{1} \beta_{3} Y_{2} \gamma_{3} \gamma_{1}+2 \beta_{2} \beta_{5} y_{1} \gamma_{1}$	
${ }_{4} 4$	$\begin{aligned} & \alpha_{2} \beta_{1} \gamma_{2}^{2}+\alpha_{2} \beta_{2} \eta_{3}^{2}+\alpha_{3} \beta_{2} \gamma_{2} \gamma_{3} \\ & \rightarrow \alpha_{2} \beta_{1} \gamma_{2} y_{2} \end{aligned}$	$2 \alpha_{3} \gamma_{2}^{7 \gamma_{3} y_{3}+2 \alpha_{2} \gamma_{2} \gamma_{3}^{2}}$		$\begin{aligned} & a_{2}^{2} \eta_{2}^{2} y_{3}+x_{3}^{2} y_{2}^{2}+ \\ & 2 a_{2} \alpha_{3} x_{2}^{7} y_{3}+ \end{aligned}$	$\beta_{2} y_{2} y_{4}, p_{3}^{2} y_{2}^{2}+$ $2 \beta_{2} \beta_{1} Y_{2} Y_{1}$	$42^{2} 3^{2}$
${ }_{4}$		$\begin{aligned} & 2 \alpha_{2}^{\gamma} \gamma_{1} \gamma_{3}^{2} \div 2 \alpha_{1} \gamma_{2}^{\gamma} \eta_{3} \\ & +4 \alpha_{3} y_{1}^{Y} y_{2} y_{3} \end{aligned}$	$\begin{aligned} & 2 \beta_{1} y_{1} y_{1}^{2} \div 2 \beta_{1} v_{2} y_{3}^{2}+ \\ & 4 \beta_{3} y_{2}, y_{3}^{y} \end{aligned}$		$\begin{aligned} & 2 q_{1} \beta_{2} \beta_{3} y_{3}+2 R_{3}^{2} y_{1} \gamma_{2}+ \\ & 2 \varepsilon_{1} \beta_{3} \gamma_{2} \gamma_{3}+2 \beta_{3} \beta_{2} y_{3} y_{3} \end{aligned}$	
${ }_{46}$	$\begin{aligned} & \alpha_{1} \beta_{1} p_{2}^{2}=\alpha_{1} \beta_{5} y_{2}^{2}+\alpha_{3} \beta_{2} \gamma_{1} y_{2} \\ & 1 \alpha_{2} \beta_{1} \gamma_{2}+\alpha_{2} \beta_{1} \gamma_{2} \\ & +\alpha_{1} \beta_{2} \gamma_{2} g_{2}+2 \alpha_{2} \beta_{2} y_{1} y_{3} \end{aligned}$	$\begin{aligned} & \left.2 \alpha_{1}\right]_{2}^{2} y_{3}+2 \alpha_{3} y_{1} y_{2}^{2} \\ & 44 \alpha_{2} y_{1}^{\prime} y_{2} y_{1} \end{aligned}$	$\begin{aligned} & 2 \beta_{1} y_{1}^{2} y_{3}, 2 \beta_{3} y_{1} y_{2}^{4}+ \\ & 4 p_{2} y_{1} y_{2} y_{3} \end{aligned}$	$\begin{aligned} & \left.2 \alpha_{1} \alpha_{1}\right)_{2}^{2}+2 a_{2}^{2} y_{1} y_{3} \\ & +2 x_{1} a_{2} y_{2} y_{3}+2 a_{2} \alpha_{3} y_{1} y_{2} \end{aligned}$	$2 \beta_{1} \beta_{1} \gamma_{2}^{2}+2 \beta_{2}^{2} \nu_{1} \gamma_{3}+$ $+2 \beta_{1} \beta_{2} \gamma_{2} \gamma_{3}+2 \beta_{1} \beta_{3} \gamma_{1} \gamma_{2}$	$8 y_{1} 7_{2}^{2} \gamma_{1}$
${ }_{4}$	$\alpha_{1} \beta_{3} y_{1}^{2}+a_{1} \beta_{1} \beta_{1} \xi_{3}^{2}+$ $\alpha_{1} \beta_{1} \gamma_{1} \gamma_{5}+\alpha_{1} \beta_{3} \gamma_{1} \psi_{3}$	$2 x_{1} \gamma_{1} \gamma_{3}^{2}+2 x_{3} \nu_{1}^{2} \gamma_{1}$	$2 \beta_{1} y_{1} y_{3}^{2}+2 \beta_{1} y_{1}^{2} y_{3}$	$\begin{aligned} & \left.a_{1}^{2} y_{1}^{2}\right\}_{1}^{2} a_{3}^{2} y_{1}^{2} \\ & -2 a_{1} y_{3}^{4} y_{1} a_{3} \end{aligned}$		$4 \mathrm{r}_{1}^{\sim} \%$
${ }_{6}$	$\begin{aligned} & \alpha_{3} \beta_{2} y_{1}^{2}+\alpha_{2} \beta_{3} y_{1}^{2}+\alpha_{1} \beta_{2} \gamma_{2} \gamma_{3} \\ & +\alpha_{2} \beta_{1} \gamma_{3} \alpha_{3}+\beta_{1} y_{1} y_{2} \\ & +x_{3} \beta_{1} y_{1} y_{2}+2 \alpha_{1} \beta_{1} v_{2} y_{3} \end{aligned}$	$\begin{aligned} & 2 x_{1} y_{1}^{2} y_{3}+2 x_{3} \cdot \frac{12 \gamma_{1}}{} \\ & +4 x_{1} y_{1} \gamma_{2} \gamma_{3} \end{aligned}$	$\begin{aligned} & 2 \beta_{1} y_{1}^{2} y_{3}+2 p_{3} y_{1}^{+} y_{2} \\ & +4 \beta_{1} y_{1} y_{2}^{y} 2_{3} \end{aligned}$	$\begin{aligned} & \left.2 \alpha_{1}^{2} y_{2} \eta_{3}+2 \alpha_{1} \alpha_{3}\right)_{1}^{2} \\ & +2 x_{1} x_{2} y_{1} y_{3}+2 \alpha_{1} \alpha_{1} y_{1}^{y_{2}} \end{aligned}$	$2 p_{1}^{2} i_{2} \gamma_{3}+2 \beta_{2} \beta_{1} \beta_{1}^{2}+$ $2 \beta_{1} \beta_{2} \gamma_{1} \gamma_{3}+2 p_{1} \beta_{3} \gamma_{1} \gamma_{2}$	$87_{1} \lambda_{2} \gamma_{3}$
${ }^{4}$		$2 \alpha_{1} 7_{1} \lambda_{2}+2 \alpha_{2} \lambda_{1}^{2} \chi_{2}$	$2 \beta_{1} \gamma_{1} \gamma_{2}^{2}+2 \beta_{2} \gamma_{1}^{2} \gamma_{2}$		$\begin{aligned} & \beta_{1}^{n} \eta_{1}^{2}+\beta_{1}^{2} \eta_{1}^{2}+ \\ & 2 a_{1}^{1} \beta_{2} T_{1} T_{2} \end{aligned}$	$44^{2} 2^{2} 2^{2}$

7. Acknowledgement

One of the authors (V. R.) is grateful to the Council of Scientific and Industrial Research, New Delhi, for the award of a Junior Research Fellowship.

Appendix

In the iteration calculation, values of $c_{33}^{\prime} c^{\prime}{ }_{44}, c^{\prime}{ }_{55}, c_{34}^{\prime}, c_{35}^{\prime}$, and c_{45}^{\prime} are required along arbitrary directions $X_{i}^{\prime}{ }_{i}$. They may be expressed in terms of c_{4} and the direction cosines defining X_{1}^{\prime} with respect to X_{j}. The direction cosine scheme may be written as

In terms of the direction cosines (written as $\alpha_{i}, \beta_{i}, \gamma_{i}$ to avoid confusion with the $\alpha_{i j}$ used in the iext), the vatues of $c_{i j}^{\prime}$ are given in Table A-1.

References

I. Mason, W. P. . . . Phys. Rev. 1956, 70, 705.
2. Bechmann, R and Hearmon, R.F.S. .. Lardolt-Börnstein, 1966, Group III 1.
3. Radha, V. and Gopal, E.S.R. . . J. Indian Inst. Sci. 1968, 50, 170.
4. Groth, P. Chemische Kristailographie, 1908, Leipzig. 419.
5. Sreejhar, A. K J Indian Inst. Sci, 1953, 35-A, 17.
6. STANDARDS COMMITTEE .. Proc. I.R.E., 1949. 37, 1378.
7. Suudara Rao, R.V.G. D.Sc Thesis submitted to the Andhra Unıversity, 1950, (unp bulishe d),

8 Viswanathan, R. Indian J. Pure and Appl. Phys. 1964, 2, 53.
9. Lieberman, D. S. and Zirinsky, S. .. Acta, Cryst., 1956, 9, 931.
10. Hearmon, R.F S. Jbid, 1957, 10, 121.
11. Bechmamn, R. Ibid, 1960, 13, 110.
12. Haussuhl, S. Private communication.
13. Neighbours, J. R andSmith. C. S. .. J. Appl. Phys 1967, 33, 5366.
14. Neighbours, J. R. and Smith, C. S. .. Ibid, 1950, 21, 1338.
15. Hammond, V. G. and Carter, R. . . Nafure, 1958, 182, 190.
16. Joel, N. Pro. Phys. Soc. 1961, 78, 38.
17. Briscoe, C. V. and Norwood, N. H. .. Physica, 1959, 25, 111.
18. Haussuhi, S. Phys. kondens Materie, 1964, 3, 139.
19. Mason, W. P. Phys. Rey 1946, 70, 529.
20. Bechmann, R. . . . Pro. Phys. Soc. 1951, 64B, 323.
21. Radha, V. and Gopal, E.S.R. .. J. Indian Inst. Sci , 1968, 50, 26.
22. Beevers, C A. and Lipson, H. .. Proc. Roy. Soc. 1934, A146, 570.
23. Bacon, G. E. and Curry, N. A. .. Ibid, 1962. A266, 95.
24. Krishran, K. S. and Mookherji, A. .. Phys. Rev. 1936, 50, 860.

