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ABSTRACT

The stability of an accelerated cylindrical shell of conducting fluid in the
presence of a magnetic field having axial and azimuthal components against small
wave number axi-symmetric disturbances is studied. In the exploding case, ir is
seen that the system is overstable and the frequency of unbounded oscillutions
depenas on the thickness, the rate of explosion and the initial magnetic field of
the system.  Further, we find that the presence of a volume current distribution
reduces the growth rate of instability. In the imploding case there occurs pure
instabilizy, the growth rate of which increases logarithmically and does not depend
on the initial magnetic field but depends on the thickness of the shell and on the
rate of collapse.

1. TNTRODUCTION

The considerable interest in the problem of stability of a collapsing or
exploding cylindrical shell of conducting medium in the presence of a
magnetic field originates in an effort to investigate the means of production
of high magnetic fields which will lead towards the success of thermonuclear
energy generation. A number of theoretical "and experimental studies have
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been done recently in this subject. Linhart(1960) and Fowler ef al. (1960)
have discussed the stability of a radially accelerated cylindrical shell of
conducting material in the presence of poloidal or toroidal magnetic field,
the field being either inside the shell or outside the shell. Harris (1962
has considered a shell of infinitesimal thickness and discussed its stability
against azimuthal and axial disturbances in the presence of axial magnetic
fields. Recently Bhatnagar and Bhat (1968) reconsidered the problem considered
by Harris (1962) with finite thickness of the shell in the presence of borh
poloidal and toroidal magnetic fields against axial disturbances. They foung
that an esploding shell is overstable and the frequency of unbounded
oscillations depends on the initial magnetic field, the rate of explosion ang
on the thickness of the shell; while, an imploding shell is purely unstable
and the growth rate of instability depends on the rate of collapse and the
thickness of the shell.

In the present paper we have considered the effect of a steady volume
current distribution on the stability of a cylindrical shell, which is composed
of incompressible, inviscid and ideally conducting fluid of finite thickness
against axisymmetric disturbances. A magnetic field having both poloidal
and toroidal components prevails inside the shell. In the inner vacuum of
the shell there is a co-axial coaducting rod of radius ‘R’, carrying a
uniform axial current and the rod is insulated by means of 2 non-conducting
sheet.

2. EQUILIBRIUM STATE

At time ?=0, let the inner and outer radii of the shell be R, and R,
and let *R’ be the radius of the coaxial conducting rod. The state of
magnetic fleld and plasma pressure in non-dimensional form is as follows:

0, Af r*, 1) r*<R%,
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where <A’ is a constant. Here
co BB o re, ap = DR
A= Ey AR i Ry
A= Q8 RFE=AD), 23
A= (3 RS+ ATIRR-AD). J

In non-dimensionalising the physical quantities, we have used the following
characteristic quantities :

Characteristic length =Ry,
do magnetic field=H,,
do velocity =F[R,, [2.4]
do pressure um=HE,
do time =RYF,

In the above I, I, are axial uniform line currents in the central rod and
in the plasmi column, respectively and H,, H, and H, are axial magnetic
fields. We shall drop the stars over the quantities in our further analysis.

Starting from this initial state, we impose a radial velocity w,=F/r on
the system, where F is a pure constant, and calculate the physical and
dynamical state at any time ¢ > 0. We record the solutions below :

(a) Exploding case:
Conducting fluid: R, <r < R,
RP=1+2¢; R =Ri+42:
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Outer Vacuum : 1> Rg.

V==(0, 0, 0); H=(0, 0, Hy

_ . golo, BB {,\R+ Ry _ 5}
J=(, 0, 0); E [ 7 it Tk R

A 2
Poug =7 = +Hi)-
Inner Vacuum: r <R,

V=, 0, 0); H=[0, (A/n, 1] 1

- - — : \
T=0, 0, 0; E=[o, =1 —3—{1\;&-”4&——%]
i

R, R,
Prpg =3 G/ 411

Inner surface: r=R,

Te=10, (1—Hy), R (A+2A)—AJR,.

QOuter surface: r=R,
Tr—{0, (Hy—Hy). Ro(A+M/Ri-A/Ro}.

‘We note that in the above, unsteady state helical surface current exist at the
inner and owuter surfaces of the shell.

(b) Imploding case:

In this case the solutions are obtained by putting —¢ for ¢ in the above
selutions.

3. Perturbation equations: In order to study the stability of the system
under small axial disturbances, at any time ¢ we impose an axial perturbation

-~ A
on the system of the type X=Xe'* and study its growth with time. Here £ is
the wave mxmbcr of the perturbdtlon, z is the axial coordinate in dimentionless

form. Let V B, E H and T denote the perturbations in the velocity,
pressure, elecmc field, magnetic field and the current density respectively.
We have the following equatjons determining them in dimensionless form :
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Plasma :

(317/at)+(—l;-V) f;+(V-V) V=V2[-grad Pt curl HxH+curl Hx 1_1;],

(al?/at):curl ('l;x_l;) +eurl (¥ x I-:V),

Here V} is the square of dimensionless Alfven velocity.

Inner and Outer vacuum :

¥

div H=0,

curl §= 0,

curl E= —(aﬁ/at),

div E=0,

[3.1]
[3.2)
[3.3]
{3.4]

13 5}

3.6]
B
[3.8]

3.9

The boundary conditions satisfied by the perturbations are the following :

> > S
n{Hl+n-{H}~0,

wx[H] £7 % [H]= 7%,
;x[E]+;x[ﬁ:; [17]+u [ﬁ] ,

-~ 5 5 53 - 5 .5 =
n[Pl+n[Pl=J% x H+J* x H+q*E + q*F,
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- 3
Where u stands for the velocity of the boundary and g% and J* denote the
perturbations in the surface charge density and surface current density
respectively. The equation of the boundary afier perturbation is

r=R, o+ 81y o exp (ik2), [3.16)
Where ‘S'r[ o is the radial displacement of the boundary and R; stands for the

jnner radius of the shell and Ry for the equation of the outer surface of the
shell. The disturbance in the unit normal at the surface of the shell is

H=(0, 0, -ik br, oexp (ikz), 317
so that

o ~

n={0, 0, —ik&r, o- 13.15]

4.  Solutions of the problem in the exploding case: We have solved the
above set of equations [3.1]-]3 9] with boundary conditions [3.10]—[3.15], for
smail wave number k corresponding to the large wave length disturbances,
which are of particular interest in such problems. Thus we set

X=Xy +k X, +0(kY), [4.1]

and evaluate X, X;.

The zeroth order solutions in the three regions of the system are as
follows :

Plasma :
§o=(0, 0, 0); Py=—Hyg(r*~21) exp (ikz),
I:;‘,:[O, 0, g (=21 exp (ikz)]; LEZ‘;-‘—-[O, (1/r) g rF =2 1) exp ikz, 0] [4.2)
Inner Vacuum :
15,,: O, 0, 0); i;",ﬂ(o, 0, 0). [4.3]
Outer Vacuum :

Ho=(0, 0, 0); Ey~(0, 0, 0). {44

where g (£) is the arbitrary function of £, In the imploding case the solutions
are obtained by changing 7 to —¢ in the above.
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The first order solutions after feeding the set of zeroth order solutions

are :
=F(0)[r, [4.5]
~ ) e r(f 40
uyy =(1/r) & (P -20+V3 [c Ay + 22[ T
; 2 17\4g(1 —21)
—(if4) A3 r38(r* —20) — SR - Zt)] ) [4.6]
U =i V3 H, g (77 =20) + g, (2 —20), 4.7
;{,l:_c_ v.i.[rg(rz—ﬁlt) dr, [4.8]
r r
o = (fh [F (1) dt +rg (P2 —20), [4.9]
Ha=g, (20, 14.10]
B [Hzg (r-20)— JA,r to A 2)g2(, ‘2[)1] [4.114
By~ [(1/r) 84 (ra—20) + (Hy/r) Fy(O), [4.12]
- 2
= JF R el E
( ax ang [
=g () — il? At M)
1=y(1) A[F Oynr+ ] {3(r1—21)3 =25 JFl(t)dl
’ . ,rg(r —2t)
~2>\3ng *—20) dr+4)\4tJ Ny

r

£
Ar A (32 +21) 2
~ 42, 3 B S F, () dr—2 —21) di
{2(r Sore + 12(r2—2t)’} V() dr—2 25 { tg (r ) dr
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r * 2
-2i
_2}\3J-r3g; (P—=20)ydr-2 )\,j & (r -2 dr

(r*-21)
v v
P g) (1 —21) J a2, .
Con [Pa =20 g | e, (2 26) dr
2A4,[ oo O T rE [4 14]

Here F, (7) and ¢, (r) are arbitrary functions of integration and C is a pure
constant. And g, &, g3 and g, are arbitrary functions of the argument.

I . . - .
The fhrst order solutions in inner and outer vacuum respectively are:

A

H=[0, 0, iX(nl, (4.1
B0, ~iX() /. AL [4.16]
H-0, 0 o) (17
f?x=[ﬁ(1)/(r\, FAGY G AN [4.18]

where £ (£), X(1), £ (®), fs() and f;(¢) are arbitrary functions of the
argument. A dash denotes differenciation with respect to time 7.

After applying the corresponding first order boundary conditions, we
obtajn the following set of equations which enable us to determine the
arbitrary constants and functions in the solutions :

=0, g(P—20)=0, g (?-20=0, g,(*-21=0,
f(0)=0, g (r*-2H)=0 [4.19]

X(#) +2%(1)RE =2 F,(D/RE, [4.20]

=, [4.21]
=— [4.22]

2
1

XD =)~ 5 FL @y Rs DAL A gy
VAJt R 3 2

2

=222, (1 +R}) + 1 R? (7«3+}‘7“) ~2;\3R;} _['15‘ (O dr+ > [4.23

Rz



Stab;?ﬁf)’ of an Accelerated Plasma Shell in the presence of Magnetic Field 159

Fl(t)} _{4A§t 202

1 ’
= — L FI() In Ry + 2. A Tie s
0=, V}{ 0 iRy L o

. Eﬁ%‘i g+2r) N 2A}§gR3} J’ F() dt+ v [4.24)
A= —F(X[RE, 14.25]
F) = —Fi(2) A5/ R, [4.26)
S =F,(t) Hy, [4.27]

where (SAR,-)l:x and (§Ro)1=y are the first order displacements of external
and internal boundaries respectively.

5. Methoa of solution:

From [4.20], we obtain

iX(t)=—2z,(5)/RA+1i1,/RA, [5.1]
t
where /, is an arbitrary constant of integration and z, :_f Fi(t)dt

Again from {4.21] and [4.22], we obtain
x=z()/R; + L[ R;, [5.2)
y=2,()[ Ry + 15/ Ry, 15.31

where 4, and J; are arbitrary constants of integration.

Making use of [5.1}—[5.3} in the resnlt got by subtracting [4.24] from
[4.23], we obtain

EZ_ a* Lz M .
@ (1 ) (o) (R r2njd+20] & G+ 20/l +2n]

1

b __ L ivih 1
R+ (1+212  (1+20) |in[(RE+2D/(1+20)])°

where a? = RZ-1 ) [5.4]
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and
[ @ (R244t41) +V2{ (A4+2A3)—f“"

T 20E((1+ 207

SO0 1AM A (LD =M G+ P+ T A+ 132”-

(a) Exploding case:
In this case f can take any value > 0, hence we have solved equation
[5.4] asymptotically (Ford 1960) when t-—» oo and its general solution is as

follows:
1 a &, Aiq,

=D, 1" exp [_Z_{aalnt+—tL—2_.tzT...} +j}(t)] x[ 1+_'t'_‘1—4 . ]

1

- { fP1exp [_;_(a,,lnw_"ti —§%+...)+}‘](t)] <1+L41t:_ + .. )}x

. 4, _ a _a
xJ’tP(1+_itl+. ..)r(t)exp[ %(a‘,lnm——t' 2—:§+ ..)—f,(t)lm
A

2\
+ {r”’exp [-;—(c'olnl—l-i;—%z- + .. .)—-fz(t)] ( l+i:—l+ - ) X
2

N Ay, a a
y Izp(u Ay .)r(t)exp [ —%(aolnt—k_t‘-—z—:?(». i ) —fz(n]dt
< ,
53]

2
+D,1*1exp [_]_faolnt+ft1_ _Eaz_z'Jr"'} +f2(t)} % [ 1+f? .. ]

where D, and £, are constants of integration, and

m+a_ ) +hy i1 2
s

R
iv an
a11=7l‘4,‘/[2{- 344(31444,\3,\4 H

m2=—l—Vf—1/I2{ 4;“‘4-_—)\ A A - }\;I]
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by . b
Gp1= Tt T T
2V R3+1) A A 7
bas,_,;_[1+(_.2_4___{—1_é(a4+2/\3)+4A3,\,—_22+_2_;\4}
1 ((RE+1)? (Rg—l)H 4/\4
—_——t A +__-)\ +4 X -
4‘ 4 3 3 s s A’} ’
1., R+l _Rj+RI+1
‘70”—2—, a -z a; 5 T

my t

5= {5 +(a,_,)z} ; fz(t)={._2_’+(a2_,)t}

A=t"(1+/—4-1;’—~'+ .. ) [Pzt"’"’ (1+‘_41’J + .. )
ﬂut"'fl ! (%’. B NI .)+m2+a,,_,}(l+i4_2t.-.! N ')—”'"zAz,-x]
- t"’(lq'-’it&l-p .. -)[P, t"“‘(l+A——"‘+ .. )
I
1/ a, a, A \
+181 {.E(_ti-—_ﬁ + .. ) +m,+a,’_l} x<1+~% R )

_Aye{2P 0, +bs} | i=1,2.
2P~ ym+ K,

>

CONCLUSION

We note that all the zeroth order solution js identically zero. But the
disturbances in the first order plasma pressure and that of first order plasma
velocity grow with time. In fact they manifest in the form of unbounded
oscillations, the frequencies proportional to

2 t/2
[ZL{~‘¥+ 2 Ay A,-—A;”
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Hence we conclude that the exploding shell is overstable and the growth rate
of these unbounded oscillations depends on the thickness of the shell 3t
the rate of explosion ¥}, and the initial magnetic field configuration.
Further, we find that the effect of volume current distribution which i
characterised by ¢ A;> and the presence of ring surface current which exists
in the configuration as a result of postulated magnetic field reduces the
frequency of unbounded oscillations. This is due to the surface forces
coming into picture on account of surface currents. The general feature of
the volume current distribution is therefore to add to the stability of the
system®.

(&) Collapsing Case :

In this case R, — R when the inner vacuum of the shell is extinct,
This means that  — (1—-R%/2. Therefore effecting the transformation

_R? _p?
151——2£ — £, where t—»f——»Oasl—zﬁ,

and setting £ = (@) where as » — oo, £ — 0 the transformed equation is
dn f2, a* &,
T dee /Ry 2 In{[p(a* + RY) +2a))(R* + 2a9)} | dy

Ml
AL G R +2a‘]/(R‘y~7a2)}

_ A 3 A iv2l
vz (22v+Rz v+222)2 vz (V R2+252) vﬂ (Rz V+252)

a4
5.6
ln {IW(R*+a*) +2a%/(R* v+2 } 54
where
RI+2R 1) v +477] @v: o
M- @ v R
e [ {(Rz—}-Rz-— Dy 4—2(12} (V R2+2a2)2 i Aat229)
7t vt 74 2 -
L JeVe a2V {1_ 2@ 4@
4,4 WOR v RITLTR

The two linearly independent solutions of [5.6] are

2,= Dy, (v)«ul(v)J. 20 by 6) 40y ) J' “ (”)’(”)d (5.7]
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Here Dy and D, are constants of integration, and
1 by—ay
_ B M W N N
u (v) [ " %7

1 () = [lnu {.[;_3 +ﬁ_(§i;i)-+ - } +{1+-a—‘ +ﬂ+ .. }} R

1 4 14

5a4ViA (1R
3= = Ty
at .
R In[a_z+R2)/R2] (@2+RY) ?

a

~ 22 { a2
T R R s ) R (Bt R | In[(RE+ a5 R

—(a?+2 R’)’} ,

7 L [ iVil
o[l R ] 00,

A = Wronskian of (uy, u).

5. CoNCLUSIONS

In this case the disturbances in the plasma pressure become large as the
shell collapses and at the same time the disturbances in the velocity of the
shell also grows. The growth rate of this instability is proportional to

20
Inl-——=—
1-R¥H -2
Hence the imploding shell is purely unstable and the growth rate of the
disturbance depends on the rate of collapse ¢, the thicknets of the shell &*
and on the radius of the conducting rod. However, there is no contribution
from the volume current distribution to this growth rate which is on account

of the fact that their contribution is not felt in the dominating terms of the
solution.
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