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ARBSTRACT

The flutter problem of uniform, thin, flat, isotropic, skew panels clamped
on all the edges and under the action of mid-plane forces is formulated on the
basis of the classical small deflection thin plate theory. For the aerodyngmic
Ioading, the two-dimensional static approximation is used.

Approximate flutter analysis is made by wusing the Galerkin method
employing a double series of beam characteristic functions to represent the
deflection surface. Results of numerical calculation for the critical dynamic
pressure for a few configurations of rhombic panel under direct stress inthe
stream-wise direction are presented.

1. INTRODUCTION

Panel flutter is a self-excited oscillation of the thin skin forming the
external surface of high speed aircraft and missiles. This is a dynamic
instability brought about by the interaction of aerodynamic, inertia and elastic
forces on the panmel. It is a local instability of the panels of the exposed
surface of the vehicle distinct from the flutter of a lifting surface or vehicle
as a whole.

The failure of early V-2 rockets was supposed to have been due to panel
flutter!. Panel flutter came to be reckoned as a serious design problem
indeed since the time that wind-tunnel tests indicated the susceptibility of
some parts of X-15 surface 1o this instability, further confirmed by flight
tests on other aircraft (see, for example, References 2 and 3). It is
significant to note that a survey of the U.S. Aircraft Industry in 1962
apparently revealed a total of 82 incidences of panel flutter in flight of the
attack, fighter and experimental aircraft of that time, the bulk of which were
for flat, uniform panels?®.

® Paper presented at the 21st Annual General Meeting of the Aeronautical Society of India
held at the Indian Institute of Technology, Madras, April 4-6, 1969,
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There have been many theoretical investigations involving different panel
configurations, support conditions and'the use of different derodynamic
theories. Similarly, there have been several experimental investigations on
flutter of panels of different configurations under a variety of conditions.
All the pre-1960 investigations have been quite comprehensively teviewed in
the literature®S. In Reference 7, Fung reports some of the subsequent
contributions. Johns® discussed the status of panel flutter in a comprehensive
review of the entire bibliography on panel flutter upto that date and followed
it by a survey” which also outlined the efforts of different groups around the
world. It is interesting to note, however, that among all these investigations,
the flutter problem of skew panels has not received much attention. The
few papers published so far appear to be by Korneck:'® and the author!!~'+,

It has been shown earlier for two-dimensional panels and rectangular
panels that a panel with mid-plane compressive force is more susceptible to
fntter. Hedgepeth's has shown, for rectangular simply supported panels,
that compressive mid-plane force in the chordwise (stream-wise) direction
lowers the critical dynamic pressure while the spanwise (cross-stream)
wid-plane force does not have any influence. Eisley and Luessen's, in a
detailed study of the effect of in-plane loads including edge shear loading on
the flutter of rectangular panels, have shown that the edge shear loads have
a pronounced effect on the critical dynamic pressure and zre indeed detri-
mental when combined with either spanwise or chordwise normal edge
loadings. These and other investigations by Kobayashi'’, Movchan'®, and
Frahlich'® on simply supported rectangular panels indicate convincingly that
a panel on the verge of buckling is very much prone to flutter. Experi-
ments’» 3! in which the boundary condition is more nearly that of clamping
have also amply corroborated this.” Analytical studies on the influence of
in-plane forces on fiutter of clamped panels do not seem to have been made
in sufficient detail. Dixon??, however, used a simple 4-term approximation
in treating the ° Transtability Flutter ” of rectangular clamped panels. No
results are available at all in published literature with regard to flutter of
stressed clamped skew panels. C

In this paper, therefore, .the influence of in-plane forces on the critical
dynamic pressure of clamped skew panels is investigated using the conven-
tional small deflection, thin plate theory and the two-dirhensional static
approximation for the aerodynamic loading. The present formulation may
also be used to obtain the results for stressed rectangular clamped panels by
setting the skew angle to zero. Results of numerical calculations made, for
a rhombic panel under the mid-plane force N, are presented in this paper.

i

2. MATHEMATICAL ANALYSIS

In Reference 12, the flutter problém of a clamped skew panel with
mid-plane forces is formulated in detail and the results for panels without
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mid-plane forces have been presented. Consequently, in this paper, the
essential equations only are put down for the sake of brevity.

The skew pancl considered is flar and is clamped all round. Tt is acted
upon by umiform in-planie loads. A sketch of the panel, the coordinag
system and the orthogopal mid-plane force system on an element of the Pane]
together with the assumed positive sign convention is shown in Fig. 1.
The panel is assumed to be uniform, thin and isotropic. It is exposed to
supersonic flow on one side and to still air on the other. The damping in
the structure is neglected in the present analysis. Under the above
mentioned assumptions and using the c¢lassical, small deflection theory, the
governing differential equation is

DWVAw+Now,,+2 Noy Wy T Ny W, PR W, =1 (X, 3, 1) 1
where the subscripts after comma denote’differentiation. . The boundaries of
the panel, in oblique coordinates, are

*=0, xy=a; =0, y,=b 21

The rectangular and oblique coordinates are related by the equations.

Xy=x—y tany; y, =y sec 31

Fig. 1
Sketch of Skew Panel and the Mid-Plane Force System
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For the aerodynamic loading, the two-dimensional static approximation is
psed in the first instance as it has been shown to be reasonable for flat panels
ufficiently high Mach numbers'®’ 2. The effect of yaw of the skew panel

at §
is included. The system of axes and the skew panel in yaw are shown in
Fig. 2. The aerodynamic loading is then written as

I (x, 3, )= —(2q/B) dw[dx [4)

The non-dimensional coordinates

£=x/a and 5 =y,/b [5]

are introduced.  Using Eqs. [3], [4] and [5], Eq. [1] becomes
Wy pege + (@B Wy +2 (142 8107 ) (a/8)? W, 110y — 4 5in g (a/B) (W, 444,
+(a/b)* W gun) +(afBV W (R} —2R}, sin g + R} sin? )
AW, RS (afBY + 2w, ¢, (afb)? (RE, — R sin ) + (Pha' cos* /D) w,,,

= —[(2g a® cos* )/ B D] [(cos A —sin A tan ) W, + (a/b) sin A sec i w,,][6]

For a plate which is clamped all round, the boundary conditions are

w=3w/3n==0 on all the edges M

g Y

FiG. 2
‘Co-ordinate system of Panel in Yaw.
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where » denotes the direction of the outward normal to the edge.  The
boundary conditions of the present problem are entirely of the ** geometric »
or ‘“kinematic”. type. Ii can be shown, by the use of Eqs. [3] and s,
that the boundary conditions, Eq. {7] reduce to the form

w=3w/af=0 on £~0 and 1 - (8]
w—2w/dy =0 on 3=0 and 1 8b]

At the critical flutter condition, as the motion is simple harmonie, one cap

write )
w (g, g, h=Re W(E n) e’ 3]

Substituting this in Eq. [6] resulis in
Wigeea +a/B)* Wiy 2 (142 sin ) (afb)* W,y —4 sin o (afb) (W,
+(@)BYY W, gym) +(alB)} W,y (RE —2 R sin b+ R sin®ef)

Wy RS (afBY 2 W, (afb)® (RY,~ R sin ) —k+? w

+ A% [(cos A—sin A tan ) W+ (a/b) sin A sec o W.,1=0. L16]

The solution of the problem now consists of finding the critical value of A*
at which a non-zero W (£, 1) satisfying Eq. [10] and the boundary conditions,
given by Eqs. 8] is possible.

An approximate solution of this problem is attempred by using the
Galerkin method?. The deflection of the panel is expressed in terms of a
double series of beam characteristic functions representing the normal modes
of a uniform clamped-clamped beam?’. That is, it is written as

M N
W =2 El Coe X,(8) Yo (p) !
r=1 8=
where
X, (£)=(cosh e, £—cose, &)~ (sinhe, £—sine, §) [12a]
Y, () =(cosh €,7 —cos€,7) - a,(sinh €, 7 —sine, p) [12b]

Each term in the series, Eq. [11] satisfies the boundary conditions, Eq. [12].
These functions are tabulated by Young and Felgar?® and the integrals
involving these functidns and there derivatives are given by Felgar®. We
define the ingrals

m,r

1
I(l) j X, dE; ],5123:_[ X)dE; In(liiz j X, Xlld§ JAC . fX X!n ¢ [13]
o
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where primes denote differentiation with respect to the appropriate non-
dimensional independent variable. Similar integrals involving ¥, (3), Y, (3}
are labelled as J-integrals. Since the fuuctioas X, (%), Y,(n) are the same in
the present problem in view of the fact that the boundary conditions on both
the pairs of opposite edges are identical, the J-integrals have the same wvalues
as the corresponding I-integrats. Tt is easily seen that

. 2 . .
T | 14

Corresponding relationships exist among the J-integrals. In Ref. [26] these
integrals are given as functions of €, €,, «,, «, from which the numerical
values may be calculated. These values, along with the values for a few
other combinations of commonly occurring boundary conditions, are tabulated
in Ref. [27]

Applying the Gailerkin method, by substituting Eq. {11] in Eq. [10] and
orthogonalising the resulting error in the differential equation with respect to
each of the product functions X, (£) Y, (y) of Eq. [11], we get a set of
homogeneous, linear, simultaneous, algebraic equations which can be written
in the matrix notation as follows :

el {C,s} = &% {C,} {15]
where
Epps = (1/7%) [{€4+(a/b)* s:} Srunes +2 (1+2 sin? ) (a/b)? ],,(,:2 J,,g)
—4 sin g (a/b) {10 T2+ (a/B? [P IOV -Re B, ~RY, HE),

~R} HS%—0* Lo, [16]
with
Hi = — () 13 0 (17
HD =2/ {sing 101 J5) —aby 13 131 [18]
HO = —Q/n®) [sin* o L2 T +(afb)* 12 7, ~2 (afb) sindp LR 7,21 [19)
and
Lyus= —[(cos A—sin A tan ) L3 J1V) -+ (a/b) sin A secy LD 73] {20}

Eq. [15] reprents the algebraic eigenvalue problem corresponding to the general
problem of panel flutter of a clamped skew panel acted upon by mid-plane
forces N,, N,, and N,. It is clear that the problems of free vibration,
buckling under the action of N,, N, and N, individually or in combination

and panel flutter of unstressed panels (i.e. with R} —R%,=R} =0) are special
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cases of the preceding general equation by dropping the appropriate termg.
The. final tesults of the free vibration and buckling calculations are reporied
in Refs. 28, 29 and the flutter of unstressed panels in Ref. 12.

The eigenvalues %% of the matrix [E] represent squares of the frequencies
of vibration of the panel. For the static aerodynamic theory that is used,
all eigenvalues of Eq. [15] are real for sufficiently small values of Q¥
fact, for Q*=0, the problem posed by Eq. [t5] is really a free vibration
problem and the resulting eigenvalues correspond to the in-vacuoe frequencies
of the- pamel. As QF is gradually increased, some of the eigeavalues
approach each other and for a certain value of @* two of them coalesce
forming an eigenvalue loop. 1f Q* is increased further, these two would
become complex. When k *2 becomes complex, the corresponding motion
clearly is a divergent oscillation. Thus the value of Q* at which two
eigenvalues coalesce defines the critical value Q7, for flutter. This criterion
for critcal flutter is well-known and is commonly adopted in theoretical panel
flutter analyses using static approximation®’?* 30, Further, it is generally the
‘case that the eigenvalaes at the lower end of the spectrum are the ones
‘which ténd to coalesce, leading to instability. In the present problem the
eigenvalues and eigenvectors of the matrix [E] were determined using a
‘library routine based on the QR-transformation methoad®'.

3. NuUMERICAL CALCULATIONS

Numerical calculations have been performed for rhombic panels only,
i.e., afb=1: Only R} was considered and the value has been varied upto or
slightly below the buékling value. A sixteen-term series (M=4, N=4) has
been used. From earlier investigations'® ', it is concluded that a 16-term
series would be quite adequate in the present problem of clamped skew panel
with R} alone from considerations of convergence.

4. RESULTS AND DIscuUssioN

Results have been obtained for a/b=1 with only N, present. The
variation of the frequencies  with the dynamic pressure parameter Q% for
representative cases is shown in Figures 3 to 7. The eigenvalue loops for
different values of R} for a given rhombic panel are plotted on the same
‘graph. The coalescence is mostly between the first two. eigenvalues only;
there are a few cases in which it is between the third and the fourth (see, for
example, Figures 5 and 6). 1In these cases the third and the fourth had to be
plotted separately with magnification since the eigenvalues for Q*=0,
corresponding to the natural frequencies in-vacuo, are themselves close to
each other. We notice that the O* at which the two pairs 1,2 and 3,4
coalesce are quite close indeed requiring extra care in establishing the
‘moere critical (i.e. lower) one of the two coalescences.
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The results are presented in the Table. They have also been presented
in Fig. 8 for different skew angles showing the variation of Q. with R: .
The figure shows the usual trend of lowering of the Q,, with increase in i ..
mid-plane compressive force, the decrease being more rapid for higher skew

angles.

The effect of the other two components of midplane force namely, Ny,
(both positive and mnegative values) and N, when each ome jis acting
individually and the effect of all the three components acting simultaneously

can also be investigated using the computer programme developed.

5. CONCLUSIONS

The supersonic flutter problem of isotropic, fat, clamped, skew panels
subjected to mid-plane forces is considered using the two-dimensional static
approximation for the aerodynamic loading. Results have been obtained in
the present paper for a/b=1 and A =0 with only N, present using a [6-term
series, 'The critical dynamic pressure is lowered by the mid-plane compressive
force and the decrease is more rapid for higher skew angles.

TasLE
Critical Dynamic Pressure for Flutter of Clamped Skew Panels with Mid-Plane Forces

g § M N R R, R Q Sl Q,
1 15° 4 4 0 0 0 7.92 1&I1 9.10
3 0 0 5.32 ' 6.1t
5 0 0 3.75 ' 4.31
8 0 0 1.72 ' 1.98
9.46 0 0 0.916 5 1.05
30° 4 4 0 0 0 6.35 " 11.29
2 [ 0 4.47 ' 7.95
4 0 0 2.26 II&IV 4.01
6 0 0 1.26 . 2.24
7.636 0 0 0.657 I&I1 1.17

45° 4 4 V] 0 0 4.16 s 16.6

1.5 0 0 2.53 » 10.1
3 0 0 1.46 as 5.84
4.5 0 0 0.715 sy 2.86
5.41 0 0 0.396 . 1.58
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Variation of critical dynamic pressure with mid-plane force
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NoTtaTtioN

a, b . . panel dimensions along the x, and y; axes respectively,

C,, .. coefficient in the series expansion of deflection.

D plate rigidly, ER/12 (1—+)

E .. Young’s modulus of the material of the panel.

Eprs element of the matrix [E,,.].

h .. plate thickness

IW, r@ & 1@ . integrals defined in Eq. [13].

kx? .. frequency parameter, Ph w?a* cos*yi/D 4.

! (xp.0) .. aerodynamic loading per unit area.

Loinrs .. elements of aerodynamic matrix, Eq. [20].

m,nr,s, .. indices in the deflection series.

M .. Mach number, also maximum value of indices m, r.

N .. maximum value of indices n, 5.

N,, N, N, .. mid-plane forces per unit length.

q .. dynamic pressure, £ P, %

Q, 0* .. dynamic pressure parameter, 2448 D ~* and
2ga® cos* i |BD w* respectively.

R, ]—Q;y, I_Q', .. non-dimensional mid-plane force parameters N,a’x
cos'y/Dm?; N a*cos’§/Dm?; N, cos®if/Dn?
respectively.

H time.

T kinetic energy.

™ velocity of free stream.

v .. potential energy.

w(x,y, .. time dependent deflection of panel.

Wx,y) .. deflection surface of the panel.

X, ¥, 2 .. rectangular coordinate system, defined in Figs. 1 and 2.

X Py .. oblique coordinates, defined in Fig. 1 and 2.

x, ¥ .. reotangular coordinates, defined in Fig. 2.
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™ beam characteristic function in the ¢-direction,

X&)
' see Eq. [12a].
7, (1) s beam characteristic function in the 7-direction,
! see Eq, [125].
o, o parameters in beam characteristic functions, Eq. [12].
r”
8 (M?-1)172,
€, beam eigenvalues, Bq. [12].
1 €
P mass density of panel material.
e, mass density of free stream air.
" angle of skew, defined in Figs. 1 and 2.
A angle of yaw, defined in Fig. 2.
¢ non-dimensional coordinates, x,/a and y,/b respectively.
v Poissson’s ratio.
@ frequency of oscillation, radians per second.
Smrs Kronecker delta, =1, for m=r and n=s
=0, for m#r or n¥s
v biharmonic operator in rectangular coordinates,
34/ axt 42 % ax2 3y + 343 )4,
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