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ABSTRACT 

The flutter problem of  uniform, thin, flat, kotropic, skew panels clampd 
on all the edges und under the action of mid-plane forces is formulated on the 
basis of the classicnl small deflection thin plate theory. For the aerodyn~mi~ 
loading, the two-dimensional static approximation is used. 

Approximate puffer analysis is made by using the Galerkin method 
employing a double series of beam characteristic fmcrions to represent the 

deflection curface. Results of numerical calculution for the critical dynamic 
pressure for a few configvations of rhombic panel under direct J t rm inthe 
stream-wise direction are presented 

Panel flutter is a self-excited oscillation of the thin skin forming the 
external surface of high speed aircraft and missiles. This is a dynamic 
instability brought about by the interaction of aerodynamic, inertia and elastic 
forces on the panel. It is a local instability of the panels of the exposed 
surface of  the vehicle distinct from the flutter of a lifting surface or vehicle 
as a whole. 

The failure of early V-2 rockets was supposed to have been due to panel 
flutter1. Panel flutter came to  be reckoned as a serious design problem 
indeed since the time that wind-tunnel tests indicated the susceptibility of 
some parts of X-15 surface to this instability, further confirmed by flight 
tests on other aircraft (see, for example, References 2 and 3). It is 
significant to  note that a survey of the US. Aircraft Industry in 1962 
apparently revealed a total of 82 incidences of  panel flutter in flight of the 
attack, fighter and experimental aircraft of that time, the bulk of which were 
for flat, uniform panels4. 
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There have been many theoretical invesiigations involving different panel 
configurations, support conditions and ' the use of different aerodynamic 
theories. Similarly. there have been several experimental investigations on 
flutter of panels o f  different configurations under a variety of  conditions. 
~ 1 1  the pre-1960 investigations have been quire comprehensively reviewed in 
the I n  Reference 7, . Fung reports some of the subsequent 
c o n t r i b o t i ~ r ~ ~ .  ~ o h n s '  discussed the, status of  panel flutter In a comprehensive 
review of the entire bibliography o n  panel flutter upto that date and followed 
it by a survey9 which also outlined the efforts of  different groups around the 
world. It  is interesting to note, however, that among all  these investigations, 
the flutter problem of skew panels has not reseived much artention. The 
few papers published so far appear to  be by K o r n e ~ k , ' ~  and the author"-". 

It has been shown earlier for two-dimensional pan'els on'd rectangular 
panels that a panel with mid-plane compressive force is more susceptible to 
flutter. ~ e ' d g e p e t h ' ~  has shown, for rectangular s i m ~ l y  supparted panels, 
that compressive mid-plane force in  the chordwise (srream-wise) direction 
lowers the critical dynamic pres,sure while the spanwise (cross-stream) 
,nid-plane force does not have any influence. Eisley and Luessen16, in a 
detailed study of the effect of  in-plane loads including e&e shear loading on  
the flutter of rectangular ,panels, have shown that the edge shear loads have 
a pronounced effect on the critical dynamic pressure and s r e  indeed detri- 
mental when combined with either spanwise o r  chordwise normal edge 
loadings. These and other investigations by Kobayashi", Movchanl', and 
F r a h l i ~ h ' ~  on simply supported rectangular panels ind~ca te  convincingly that 
a panel on the verge of buckling is very much prone to  flutter. Experi- 
ment~'~," in which the boundary condition is more nearly that of clamping 
have also amply corroborated this.' Analytical studies on  the  influence of 
in-plane forces o n  fiutter of clamped panels do not seem to have been made 
in sufficient detail. DixonZ2, however, used a simple 4-term approximation 
in treating the " Transtability Flutter " of rectangular clamped panels. No 
results are available a t  all  in published literature with regard to  flutter of  
stressed clamped skew panels. 

In this paper, therefore, .the influence of in-plane forces on  the critical 
dynamic pressure of  clamped skew panels is investigated using the conven- 
tional small deflection, thin plate theory and the Pwo-diihensional static 
approximation for the aerodynamic loading. The prc;sent formulation may 
also be used to obtain the results for stressed rectangular clamped panels by 
setting the skew angle to  zero. Results of  nunlerical calculations made, for 
a rhombic panel under the mid-plane force N, are presented in this paper. 

2. MATHEMATICAL ANALYSIS 

In Reference 12, the  flutter problem of a clamped skew panel with 
mid-plane forces is formulated in detail and the results for  panels without 



mid-plane forces have been presented. Consequenrly, in this paper, 
essential equations only aIe put down Tor the sake of brevity. 

The skew panel considered is Aat and is  clamped all round. It is acted 
upon by uniform in-plane loads. A sketch of the panel, the coordinate 
system and thc orthogonal mid-plane force system on an element of the panel 
together *ith the assumed positive sign convention is shown in pig. I ,  
The panel is assumed to be uniform, thin and isotropic. I t  is exposed t, 
supersonic flow on one side and to still air on the other. The damping in 
the structure is neglected in the present analysis. Under the above 
mentioned issumptions and using the classical, small deflection theoly, the 
governing differential equation is 

where the subscripts after comma den0te:differentiation. . The boundaries of 
the panel, in oblique coordinates, are 

The rectangular and oblique coordinates are related by the equations. 

FIG. 1 
Sketch of Skew Panel and tho M i d - P h e  Force Sprom 



F~~ the aerodynamic loading, the two-dimensional static approximation is 
in the first instance as it has been shown to be reasonable for flat panels 

at sufficiently high Mach The effect of yaw of the skew panel 
is included. The syslem of axes and the skew panel in yaw are shown in 
~ i ~ .  2. The aerodynamic loading is then written as 

The non-dimensional coordinates 

f -  x, /a  and 7 =y,/h [51 

are introduced. Using Eqs. [3], [4] and [5], Eq. [ I ]  becomes 

W ,  I ( C L  + (alh)" us, ,?l,n + 2 ( 1  + 2  sin2 Jr) ( ~ l b ) ~  w, It?ln -4  sin t+!i (alb) (w, 

-(alb)' w , ~ ~ ~ ~ )  + (a/h)z w . f l  (R: -2R:,, sin Jr +R,f sin2 4) 
Lw,,,,, R: ( u / h ) ' + 2 ~ . ~ ~  (a/h)3 (R: -R: sin $) -t (pha4 cos4 $ID) w,,, 

= -[(2qa3 cos4$)/6 Dl [(cos A -sin A tan 4) w,* + (alb) sin A sec t,h w,,] [6]  

For a plate which is clamped all round, the boundary conditions are 

w- a wlan-0 on all the edges [71 

Fro. 2 
Co-ordinatc system of P a d  in Yaw. 



where R denotes the direction of  the outward normal to the edge. T~~ 
boundary conditions of  the prescnl problem are  entirely of the " geometric ,, 
or  " kinematic :'. type. 11 can be shown, 'by the use of Eqs. [3] and (51, 
that the boundary conditions, Eq. [7] reduce lo  the  form 

w=a,+g=O 011 E - 0  and I . ' [gal 

~t the critical flutter condition, a s  the motion is simple harmonic, one 
write 

w (.$, 7 ,  t )  - R e  W (f ,  7 )  e'"' [ill 

; t W,,,.h; ( ~ / b ) ~ +  2 W,tq (a /b I3  (Rzy- R-z sin J;) -k*' W 

+ A* [(em A -sin A tsn J i )  W,* -1 (olb) sin A sec %. W,,] = 0. LW 

The solution of  the problem now consists of  finding the critical value of A* 
at which a non-zero W ( 5 ,  7 )  satisfying Eq. [lo] and the boundary conditions, 
given by Eqs. [ S ]  is possible. 

An approximate solution of  this problem i s  attempted by using the 
Galerkin method2'. The deflection of the panel is expressed in  terms of a 
double series of  beam characteristic functions representing the norrnal modes 
of a uniform clamped-clamped beam2'. That is, it is written a s  

where 
x, (f)-(cosh E , f - c o s  €,.$)-ol, (sinhc,[-sin E , E )  [12a] 

Each term in  the series, Eq. [ I  I] satisfies the bo&dary conditions, Eq. [12]. 
These functions are tabulated by Young and FelgarZ5 and the integrals 
involving these fun+ons and there derivatives are given by   el gar^^. We 
define the ingrals 



where primes denote differentiation with respect to the appropriate non- 
dimensional independent variable. Similar integrals involving ym ( r l ) ,  Y, ( q )  
are labelled as J-integrals. Since the fuuctiom X,,,(&, Y.(q) are the same in 
the present problem in view of the fact that the boundary conditions on both 
the pairs of opposite edges are identical, the J-integrals have the same values 
as the corresponding I-integrats. I t  is easily seen that 

corresponding relationships exist among the J-integrals. In  Ref. [26] these 
integrals are given as functions of  E m ,  c,, or,, a, from which the numerical 
values may be calculated. These values, along with the values for a few 
other combinations of commonly occurring boundary conditions, are tabulated 
in Ref. [271 

Applying the GAerkin method, by substituting Eq. [I11 in Eq. [lo] and 
orthogonalising the resulting error in the differential equation with respect to 
each of the proauct functions X , ( c )  Y, (7) of Eq. [Ill, we get a set of 
homogeneous, linear, simultaneous, algebraic equations which can be Written 
in the matrix notation as follows : 

[E,,,,I 1 c,A = k*' i c,J 1151 

where 

Em,,, -(l/m4) [it: + (alb)' E:) 6,,,,+2 (1 1-2 sin2 6 )  (albY I;:! J$ - 
-4 sin Jt (alb) {I$ .I,,(:)+ (a/b)' I/,' J,,(:') ] - HA:!, - R:, HG!, - 
- R: HA:!, - Q* [I61 

with 

H;;;, = - ( I  lm2) J;;; J;,:) ~ 7 1  

HA:,',= -(l/mP) [sin2 +h 1::; J,IL) + (alb)' I$ J,$) -2 (alb) sin pb I,,!:; JZ'I [I91 

and 

L,,,, - - [(cos A -sin A tan $) 1;:; J,!:) + (alb) sin A rec 4 I,,!!! J$] [201 

Eq. [IS] reprents the algebraic eigenvalue problem corresponding to the general 
problem of panel flutter of a clamped skew panel acted upon by mid-plane 
forces N,, N,, and N,. I t  is clear that the problems of free vibration. 
buckling under the action of N,, N,, and N, individually or  in combination - - -  
and panel flutter of unstressed panels (i.e. with R: =R:,=R; -0) are special 



cases o f  lht: preceding general equation by drc.pping Lhe appropriate terms, 
7 h c  final results of the free vibration and buckling calculations are reported 
in Refs. 28, 29 and the  flutter oT unstressed panels in Ref. 12. 

- 
The'eigenlzalucs k*' of the matrix [El represent squares of the frequencies 

of vibration of the panel. Fo r  the static aerodynamic theory that is used, 
all  eigenvalues of Eq. [I51 are real for sufficiently small values of Q * ,  xn 
fact, for Q * = O ,  the  problem posed by ,Eq.  [Is] is really a free vibration 
prdblem and the kesulting eigenvalues correspond to  the  in-vacuil frequencies 
of the pan-el. As Q y  is gradually increased, some of the eigenvalues 
approach each other and for a certain value o f  Q* two of them coalesce 
forming an eigenvalue loop. If Q* is increased further, these twd would 
become complex. When k-*' becomes complex, the correspondmg motion 
clearly is a divergent oscillation. Thus the value o f  Q* at  which two 
eigenvalues coalesce defines the critical value Qr, for flutter. This criterion 
for critcal flutter is well-known and is commonly adopted in theoretical panel 
flutter analyses using static approximation15'2"30. Further,  it is generally the 
'case that the eigenvalues a t  the lower end of the spectrum are the ones 
which tend to coalesce, leading to  instability. I n  the present problem the 
eigenvalues and eigenvectors of the matrix [El wcrc determined using a 
,library routine based on  the QR-transformation method". 

Numerical calculations have been performed for  rhombic panels only, 
i.e., a/b= I. Only 1: was considered and the value has been varied upto or 
slightly below the buckling value. A sixteen-term series ( M - 4 ,  N = 4 )  has 
bken used. From earlier i n~es t iga t ions '~ ' ' ~ ,  it is concluded that a 16-tcrm 
series would be quitc adequate in the present problem of clamped skew panel 

,with a: alone from considerations of convergence. 

Results have been obtained for a/b= l with only N ,  present. The 
variation of the frequencies with the dynamic pressure parameter Q* for 
representative cases is shown in Figures 3 to 7. Thc  eigenvalue loops for 
different values of l?: for a given rhombic panel are  plotted on the same 

'graph. The coalescence is mostly between the first two. eigenvalucs only; 
there are a few cases in which it is bctwcen the third and the fourth (see, for 
example, Figures 5 and 6) .  I n  these cases the third and the fourth had to be 
plotted separately with magnification since the eigenvalues for Q * - 0 ,  
corresponding t o  the natural frequencies in-vacuo, are themselves close to 
each other. We noticc that the  Q* at which the  two pairs 1,2 and 3,4 
coalesce are quite close indeed requiring exlra care in establishing the 

m e r e  critical ( i . e .  lower) one of the two coalescences. 



Tne results are presented in the  Table. They have also been presented 
in F ~ E ,  8 for d~fferent  skew angles showing the variation o f  Q,, with Ti: . 
~h~ figure shows the usual trend of lowering of the Q,, with increase in ,., 
,id-p]ane compressive force, the decrease being more rapid for higher skew 

angles. 
The effect of the other two components of midplane force namely, rV,, 

(both positive and negative values) and N, when each one is acting 
individually and the effect of all the  three components acting simultaneously 
can also be investigated using the computer programme developed. 

The supersonic flutter problem of isotropic, flat, clamped, skew panels 
subjected to mid-plane forces is considered using rhe two-dimensional static 
approximation for the aerodynamic loading. Results have been obtained in 
the present paper for a/b= 1 and  12-0 with only Nx present using a 16-term 
series. The critical dynamic pressure is lowered by the mid-plane compressive 
force and the decrease is more  rapid  for higher skew angles. 

TABLE 
Critical Dynamic Pressure for Flutter o f  Clamped skew Panels with Mid-Plane Forces 

a/b M N %, k Qf, Code- I E C ~ ~ C  Qcr 







FIG. 5 
Variation of Frequenoics wirh dynamic pressure 







Variation o f  critical dynamic pressure with mid-plane force 
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panel dimensions along the x, and y, axes reipectively. 

coefficient in the series expansion o i  deflection. 

plate rigidly, Eh3/lZ (1 -v2) 

Young's modulus of the material of the panel. 

element of the matrix [Em,,,]. 

plate thickness 

integrals defined in Eq. [13]. 

frequency parameter, Ph w2a4 cos4 $ID 7v4, 

aerodynamic loading per unit area. 

elements of aerodynamic matrix, Eq. [20].  

indices in the deffection series. 

Mach number, also maximum value o f  indices rn, r. 

maximum value of indices n, s. 

mid-plane forces per unit length. 

dynamic pressure, 4 P, uZ. 

dynamic pressure parameter, 2 qa3/,E D m' and 
2qa3 cos4 4 / p D  m4 respectively. 

non-dimensional mid-plane force parameters N,a2 w 
cos4 ljt/D n2 ; Nxy a2 cos3 +ID n2 ; Nya2 cosZ #ID n 2  
respectively. 

time. 

kinetic energy. 

velocity of free stream. 

potential energy. 

time dependent deflection of panel. 

deflection surface o f  the panel. 

rectangular coordinate system, defined in Figs. I and 2. 

oblique coordinates, defined in Fig. 1 and 2.  

reetaneutar mordinates. defined in Fig 2. 



rth beam characteristic function in the &direction, 
see Eq. [12a]. 

sth beam characteristic function in the ?-direction, 
see Eq, [12b]. 

parameters in beam characteristic functions, Eq. [12]. 

(Ma-I)"=.  

beam eigenvalues, Eq. 1121. 

mass density of panel material. 

mass density of free stream air. 

angle of skew, defined in Figs. 1 and 2. 

angle of yaw, defined in Fig. 2. 

non-dimensional coordinates, x, /a  and y,/b respectively. 

Poissson's ratio. 

frequency of oscillation, radians per second. 

Kronecker delta, =1, for m = r  and n=s 
-0, for m f r  or n + s  

biharmonic operator in rectangular coordinates, 
a41ax'+2 a41ax2ay2-ta41ay4. 
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