
PROPAGATION OF LONG WAVES OF 
FINITE AMPLITUDE 

We consider the radiation problem for long waises oj- tmali ampiintie, 
cmed by an instanlaneozrs disturbance of unit height at the origin. TIE 
e q ~ ~ i o n s  governing this phenomrnon were derived by Long (1964). The 
mynptotic expressions for the wave front and for large times are obtained. 
The initial value problem for the non-linear system of equations is also solved, 
wing a perturbation scheme based on the small parameter n, the non-dimensional 
umplitude of the disturbance. The sofution holds only for t < < I / =  as a r~sul t  
of [he appearance of a secular term in the fist order solution. 

Long (1964) derived a set of equations governing the development of 
arbitrary, small but finite amplitude long waves. These waves are, therefore, 
characterised by the inequaljties 

V I ~ )  < c I ,  ( A I ~ )  =. :, I 1I.11 

where 11 is the uniform depth of the water, a is a length representative of the 
amplitude and A is a length representative of the wavelength of the disturbance. 
In contrast to the theory of Airy' which imposes the additional restriction that 

(a lh )  ( X Z / A 2 )  > > I WI 

and of JetTereys and Jeffereys (1946) which requires 

( 4 k )  (XZ/hz)  < < 1 

B@ussi1lesq2 derived an equation which governs the propagation of long 
waves when 



fhe  initialivalde prbhlems for the Bmssinesq equation whicli Were 
discussed by Korteweg and de ~ r i e ~ ' ,  for example, were for waves for 
which the wr2.e heights travel only in one d,rection with not an arbitrary 
speed but one nearly equal to (ph)'''. L O U  (19641, fo i l~wing Rsyegt,Il, 
expanded the complex potential for the unsteady motion and der~ved a set of 

equations which govern arbitrary long waves of small hut fini:e amplitude 
without any resxiction on  their speed to  (g/z)"* or  the direct~on of rheir 
propagation. With these restricrions these equatiotls properly reduce to 

Boussinesq equations, Long has shown that these e q u l ~ o n s  also yield the 
solitary wave which is a long wave that propagates without ch.inge of fonl,, 

H e  has also considered numerical solutions o f  his eqmiions for sorne 
symmetric initial values of elevation and zero initihl velocity. After some 
time, the wave profile i n  either of the  two directions is very nearly that 
corresponding to a solitary wave. 

The purpose of this paper is to study the  non-linear hyperbolic system 
of equat:ons derived by Long (1964). These equations govern the develop. 
merit of an arbitrary, small ( b u ~  finite) amplitude long wave disrurbmces and 
also yield the solitary wave when they are suitably approx:mated. Our 
treatment follows the well-known approach of Lighth~l l  and Whith.niP 
and Whitham", particularly the latter, t o  the system which is obtained 
by linearising the non-linear system. Whitham showed that the highest 
order derivative in a partial and d3ffereptial equation governing wave 
propaqation, yield the phenomenon In the earlier stages of propagation, 
coupled with a damping caused by lower order terms, while it is the lowest 
order terms which finally govern the phencmenen, these being accompanied 
by a diffusion due to the higher order terms. The characteristics of differ- 
entit.1 equations that we cons'der have constant slopes kd3, 0, 0, which, 
however, d o  not introduce any simplicity in the analysis of the equations. 
First we consider the radiation problem for the linearised form of these 
equations and derive the  form of the wave io r  small and large times 
respectively. The solucion for the initial boundary conditions f = 0 ,  

9 - F,= q,, = T,,, =O. x > 0 and q = 6 (2) at  x= 0, is expressed in terms of 
Bessel function of f i : ~  order for small time, that is, when the high frequency 
waves dominate o r  in tke region where the dkcontinuities in the  wave form 
appear. The solution is expressed in terms of Airy function when we 
consider the wave form after a large time. We also consider an  initial value 
problem fo, the non-linear system in a power series in the small parameter a, 
charzcterising the non-d mensional amplitude of the dis turbace.  The first 
order term in the soluticn contains a secular term, that is, one containing rbe 
independent variable 2, so that the soluton is valid only for or t c < 1. 

2. DIFFERENTIAL EQUATIONS AND THEIR CHARACTERISTIC FORM 
The differential equations describing the two dimensional long gravity 

waves and satisfying the kinemtio and dynamic conditions on  the surface of 



water were written by Long in terms of the non-dimensional height q = ( B ' / h )  
of the disturbance above the undisturbed level and a non-dimensional velocity 
u= -F,= -IF:, (x', t ' ) ld (gh) l .  Here the primed quimtities denote the dimen- 
sional variables so that j"= 0 is the x'-axis along the bottom uf the channel 
and f = h  is the vertical undisturbed height as  shown in the fiigure. E' i s  time. 
The function F' is a f~nc l io f l  of x' and t' i n  ternls of which the real part of 
the complex velocity potential $' is expanded about y'=O, that is, 

The dimensionless quantities are expressed as  

x= (x'lh), Y =(y91h). t= t ' / d ( g l h ) ,  

U,  in fact, is the velacity at the bottom of the channel. Long wade 
certain assumptions as to the  order of different terms, which correspond to 
those employed in the derivation of the solitary wave. Thus, he assumed 
that if the non-dimensional amplirude of the disturbance is of the order a, 
a small quantity, that is, if 

q-n, 12.31 
then 

@/ax)- aPr2. 12-41 

This, in fact, expresses [1.4]. Besides, Re assumed that 

U= -Fa - a, (a/&) - (alax). 12.51 



By subst~tuting tbd  Aon-dimensional velocity potenti81 in the 
dim-nsional f i r m  of sarface condition, Long obtained the following equations 
for and U  with an error of 0(ff9) in 7 ,  

n s + U r l x + U , - ~ ? r + + ~ , = O ,  L2.61 

The equations [2 81 and [Z 91 are a l r e ~ d y  in characteristic form. The 
former two equaticns, I2.61 aud [2.71, can be suitably combined to give t ,e 
characteristic form : 

*here the independent variables are the characteristics i - x  +.\/3 I, z=.t--32/r. 
Thus, we have a h y p e r b o l ; ~  system of equations with explicit characteristics, 
h ~ v i n g  constant slopes f 4 3 ,  0, 0. 

3. SOLUTION Of THE LJNEAR~SED EQ\~ATIONS 

i f  we put O= Ua+ U, 7 = q o  + 7, where Uo and (in particular ?,=O) 
are the solutions of equations [2 61' and r2.71' giving uniform flow and U and 7 
are of order 0(a2),  and linearise (thus omitting terms of O(cu1I2) ,  w- obtain, 
after elimination of U, a linear equation in 7. 

Thus the second order operator gives the lower order waves with speeds 
[ U , & ~ ( U ?  i- 1- go)ll  .- r),] and the f m r h  order operator gives the higher 
order waves with speeds 0.0, f d(3). Unlike the differential operators 
considered by Whitham (19591, hcre the order of the adjacent differential 
operators d.ffers by two. If we subst i tu t~  



in equation [3.11 wheve k is real and consider long waves so that k i c 1, 
easily verify t h d  all roots of the dispersion relation are pure imaginary. 
 hi^ shows that we have a stable situation, with progressive waves as 
solutions. Similarly, if we consider a periodic wave maintained at J-0 80 

that 
q a exp.(Bx-iwt) 1 3 4  

with 0) (real) c c. I , .  we again get all four root; corresponding to B pare 
imaginary, leading to the same result as noted above: ' Thus, for large times, 
we again have a stable situation. However, to be able to study the general 
wave motion, we consider the following s:gnalling problem for the differential 
equation [3. I], an unsteady wave phenomenon on a running stream. 

Initial conditions : q = 7 ,  = v,, = v,,# =O at t=o, x>O 

Boundary conditions : q - f ( r )  at x=  0 P 4 1  

In the above we consider waves propagating in the x z 0 direction due to the 
signal at x - 0 ,  but we could also consider the waves in the opposite direction. 
We find the Laptace transform of the equation [3.1] with the initial condi- 
tions [3.4]. We have 

The solution of this equation i s  

where Al  and A2 are some functions of p and 

This expression is rather complicated and therefore we approximate this for 
the following two situations (a) when p is very large i.e., t is small, this 
approximation is valid when the high frequency waves dominate or near 
discontinuities in the wave form. (6)  when p is very small 6 0  that we 
consider the solution for large times. 

(a) When p is large.' I n  this case. 



For the forward moving wave we take negative sign, wilh A, ( p ) = ~ ,  a,d 
inlertitg e ~ ~ a t i o n  [3.61, 

where 7 -Rep is such that all singuiarities of the integrand are to the left of 

Rep- 7. It is obvious that . 

If we take f (r) F 8 jf) ,  the Dirac delta function, so that A, ( p )  = i ,  the above 

integral is easily evaluated, Roberts and Kaufmand2, the solution is 

For any other f (t), we can use the faltung theorem to obtain 

If we were to consider wave propagation in the negative direction, we would 
have 



(h) In this  cnse p ;s  small, we approximate Y,,2 to 

Again if wc consider wave propa&ation in the positivc direction only, then 
taking the lower sign, 

y i i -  
1 - 

7 =T;; ./(PI ex?. I P U  +B.x) +c2xp3l dp 83.151 

where R17 is d - f ind  in t h s  ususE w ~ y .  Again if we choose f (f) =% (1 )  so 
tha t j [p )= l ,  the above integral can be easily integrated, Magnus el 01". 
We can transform this integral into the form 

which is expressible in terms of Airy functions 

ihe asymptotic expression of Ai for l a d e  value of t when.x/t is kept &xed. 
We briefly vciify thiiresult by the method bf sa@e points. - T h e  expmntial  
term in the integral [3.15] can be written as ' 

'' ' . 

~ X P  t { P  I1 4 - 4  (%It) I + cz bit1 P'I . 



. '  
-, both of these being eqvally important. Therefore, by the usual method of 

saddle points, 

when ( p ) =  1.  This is the same as in r3.161. This represents essentially 
the lower order waves. We find that the solution does not hold at the 
observation point x - 0  and the front B2x+  t = O ,  Lighthill and Whitham9. 
We also note that 7 = (l/l/x) or  TI = ( l l d f )  for fixed ~ / t ,  showing diffusion 
of the lower order wave by the higher order ones. 

The solution in the negative x direction can be  easily obtained by changing 
B, and C, to B, and C, respectively. 

Refore we consider the non-linear wave propagation, we briefly indicate 
the resulu as obtained by the quick m e t h ~ d ,  Whitham". For example, 
for the wave corresponding to (ax/at)-2/3 we put @/at)- -d3 (a/ax) in 
equation [3.1] and introduce the variable f - x - d 3  r,  we get the equation 

With the conditions that 7 = O  on the front X - 4 3  1=.$=0 and q - j(r)  on x=O. 
the solution of equation 13.181 can be written in the form, Garabedians, 

Similarly, the solution near the wave front x= -d3t is obtained by s~mply 
changing to  5 '=x+d3 2. For the lower order waves, if we put (a/$) - - C,,(a/ax) in equatioa where C,,2=[Upf d ( U S  i- 1 -q&l -T* 
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Bfter integrating out once with respect to  x. The solution of this equation 
can be expressed in terms of Bessel functions. 

Now we consider the initial value problem for ihc hyperbolic system 
(2.6)'-(2.9)' where equations f2.81 and i2.91 are expressed in terms of the 

variables z and 2 as 

We assume that 7 (x, 0) and U (x, 0) are given. We seek the solution in 
the form 

since the equations of Long give 7 with an error of O(aa). Here 7 and U 
are functions of 2 and 2 .  We substitute the expressions [4.1] in equations 
[2.6]'-[2.91', taking note of the assumprions [2.4] and 12.51. 

After some calculation, we get the following equations. Zero order 
system : 

a (tic+-43 [I,) -(1/2/3) wo. 
az 

f4.21 

First order system : 



The equations satisfied by ? o  and 7 ,  are found io be 

Where K ( z ,  ;) 

We easily verify that the characteristics of the differential operator on the 
left hand side equations [4.1] and [4.21 are ; + ( 2 & d 3 )  z = ( 3 & d 3 )  (xyt) = 

const, agreeing with the linearised equation [29] of Long (1964). Thus the 
characteristic slopes of the zero order solutions are &- 1, while those of the 
non-linear system are fd3. We consider, in particular, the initial value 
problem 7 (x, 0 ) - 2  a cos x, U ( x ,  O)=O, so that we find from equations [4.10], 
(4.21 and [4.3] that 

Thw, it is more convenient to introduce the characteristic variables 

oc,=x-t, ,9 , -xt - t  [4..l?f 



propagotion of t o n g  Waves of Finite Amplitude 

-fT (cos aI +cos PI). E4.141 

The solution of this hyperbolic differential equztion with the initial 
condition rl!-(aqI/aoi,)- (a7),/ab,) -0 on  the initial line a,-A &&n 
equations [4.6] and f4.71 is 

l iI=(PI- a,) [+ (sin 2 a , - s in2  !,)+ sin$, -sin a,)] 

We find that a secular term in the Erst order term of the solution appears so 
that the solution is valid only for oi t 4 < 1. While the secular terms in 
ordinary differential equations have been treated quite successfully, there does 
not seem to be any general way of tackling then3 for partial differential 
equations. F<>r exmaple, Broer (1965) has considered some simple cases 
when a transformation of the tiine variable can be guessed from the solution. 
The term (or t / G )  [sin (n+I ) - s in  ( x - t ) ]  in [4.151 can be easily combined with 
the zero order lcrm by the transformati in t' - 1 + ( a  t / 6 )  but the other secular 
terms cannot be removed. The divergence of the solu~ion for  large i i s  not 
due to the linearising of the characteristrcs since we can easily fit the exact 
characteristics by stretching the x-co-ordinate by 1/1/3, but does not remove 
the singularity for large t .  This perturbation scheme is not suited to give 
solution for the far field for which a different procedure similar to that given 
by Cole (1968) would lead to the Korteweg equation which provides, the 
solilary wave and other periodic solutions, Kruskal and Zabusky8. In  any 
case, the above solution for r -z ( l / a )  shows thzt in the first order solution 
we get zero order solution and its double harmonic out of phase with the 
zero order solution by 7c/2 and,these together have their amplitude increasing 
linearly with tiine while the other double harmonic in 7 ,  remains bounded. 
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