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ABSTRACT

We consider the radiation problem for long waves of small amplitude,
caused by an instantaneous disturbance of unit height at the origin. The
equations governing this phenomenon were derived by Long (1964). The
asymptotic expressions for the wave front and for large times are obtained.
The initia! value problem for the non-linear system of equations is also solved,
using @ perturbation scheme based on the small parameter «, the non-dimensional
amplitude of the disturbance. The solution holds only for t < <1/« as a result
of the appearance of a secular term in the first order selution.

1. INTRODUCTION

Long (1964) derived a set of equations governing the development of
arbitrary, small but finite amplitude long waves. These waves are, therefore,
characterised by the inequalities .

@h < <1, ) >>1 : L
where 4 is the uniform depth of the water, a is a length representative of the

amplitude and A is a length representative of the wavelength of the disturbance.
In contrast to the theory of Ajry' which imposes the additional restriction that

alhy () > > 1 [1.2
and of Jeifereys and Jeffereys (1946) which requires
(alhy (Rh) < <1 [1.3]

Boussinesq® derived an equation which governs the propagation of long
waves when

(afhy (Nfi) ~ 1. ] [L4]
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The initialvalue problems for the Boussinesq equution which wep
discussed by Korteweg and de Vries?, for example, were for waves for
which the wabve heights travel only in one di.rection with not an arbitrary
speed but onme mearly equal to (gh)*.  Lorg (1964), following Raye gt
expanded the complex potential for the unsteady motion and derived a set of
equations which govern arbitrary long waves of small but finite amplitudg
without any resiriciion on their speed to (gh)"? or the direction of their
propagation. With these restrictions these equations properly reduce 1o
Boussinesq equations, Long has shown that these equations also yield the
solitary wave which is a long wave that propagates without chunge of form,
He has also considered numerical sotutions of his equations for some
symmetric initial values of elevation and zero initial velocily. After some
tifne, the wave profile in either of the two directions is very nearly that
corresponding to a solitary wave. :

The purpose of this paper is to study the mnon-linear hyperbolic system
of equations derived by Long (1964). These equations govern the develop-
ment of an arbitrary, small (bul finite) amplitude long wave disturbances and
also yield the solitary wave when they are suitably approx‘mated. Our
treatment follows the well-known approach of Lighthill and Whith.n®
and Whitham!?, particularly the latter, to the system which is obtained
by linearising the non-linear system. Whitham showed that the highest
order derivative in a partial and d.fferential equation governing wave
propagation, yield the phenomenon m the earlier stages of propagation,
coupled with a damping caused by fower order terms, while it is the lowest
order terms which finally govern the phencmencn, these being accompanied
by a diffusion due to the higher order terms. The characteristics of differ-
enti.] equations that we cons'der have constant slopes £v/3, 0, 0, which,
however, do not introduce any simplicity in the analysis of the equations.
First we consider the radiation problem for the linearised form of these
equations and derive the form of the wave sor small and large times
respectively.  The solution for the initial boundary conditions =0,
N=T¢=Tg="Tm=0. x>0 and 7=5(2) at x=0, is expressed in termsof
Bessel function of firsi order for small time, that is, when the high frequency
waves dominate or in the region where the discontinuities in the wave form
appear. The solution is expressed in terms of Airy function when we
consider the wave form after a large time. We also consider an initial value
problem for the non-linear system in a power series in the small parameter a,
charzcterising the non-d mensional amplitude of the disturbonce. The first
order term in the soluticn contains a secular term, that is, one containing the
independent variable z, so that the soluton is valid only for x t < < 1.

2. DIFFERENTIAL EQUATIONS AND THEIR CHARACIERISTIC FORM

The differential equations describing the two dimensional long gravity
waves and satisfying the kinematio and dynamic conditions on the surface of
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water were written by Long in terms of the non-dimensional height 5 =(y'/#)
of the disturbance above the undisturbed level and a non-dimensional velocity

e Fy= = [Fly (X, ')V (gh)]. Here the primed quantities denote the dimen-
sional variables so that y'= 0 is the x" —axis along the bottom of the channel
and y'=h is the vertical undisturbed height as shown in the fiigure. ¢ is time.
The function F” is a function of x’ and ¢ in terms of which the real part of
the complex velocity potential ¢’ is expanded about y' =0, that is,

¢r (x:’ yr’ t')=F' (x,;' T’)-—(}”zllz) F,z’xl (x,, t')+ . [2"1}
The dimensionless quantities are expressed as

x=x(h), y=('1h), t=t'[V(¢/h),

AP 10 S _Fx,
¢ (x, » 1) vy ', Fix, 0 e [2.2]

U, in fact, is the velocity at the bottom of the channel. Long made
certain assumptions as to the order of different terms, which correspond to
those employed in the derivation of the solitary wave. Thus, he assumed
that if the non-dimensional amplitude of the disturbance is of the order a,
a small quantity, that is, if

p~a, [2.3
then

(8/3x)~ ali®. 2.4
This, in fact, expresses [1.4]. Besides, he assumed that ,

U=~F, ~ a, (3far) ~ (3/ax). [2.5)

1

g Y= nirh

£

(Sl 777777 S x

fie. 1
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s

By substituting the fon-dimensional velocity potential in the nop.
dimensional ferm of surfuce condition, Long obtained the following equations
for 4 and U with an error of 0(a?) in p,

Tt Unat U= +1 82,=0; 126
TatU=Un,+4 8,0, 2]
7y —w=0, 28
w,— 2=0. [2.9]

The equations [2 8] and [29] are alreedy in characteristic form. The
former two equaticns, [2.6] aud [2.7], can be suitably combined to give te
characteristic form :

3y +VIU+LD)/3: 43U (37/32)
=twlV3g+2U-Q2V] 26y

A~ +V3U~L Doz +v/3 U (37/82)
=LlwlV3j-2U-(2/¥/3)] 2.7y

where the independent variables are the characteristics z=x+v37, z=x~3e.
Thus, we have a hyperbolic system of equations with explicit characteristics,
heving coustant slopes £v3, 0, O.

3. SOLUTION ©Of THE LINEARISED EQUATIONS

If we put U=Up+U, p=yy+7, where Uyand 54 (in particular 75=0)
are the solutions of equations [2 6]' and [2.7]" giving uniform flow and U and y
are of order 0(a?), and linearise (thus omitting terms of 0 (a?), w: obtain,
after elimination of U, a linear equation in 7.

3t [ a? 3t a? ?? a?
O3 2 V6 (g 412U % -6 -2y 0. [
[aez(at* ) AU v R v v e ]7’ b1

Thus the second order operator gives the lower order waves with speeds
otV (U2 +1-3g)/1--ng] and the fourth order operator gives the higher
order waves with speeds 0,0, £ V/(3). Unlike the differential operators
considered by Whitham (1959), here the order of the adjacent differential
operators d.ffers by two. If we substitute

1 exp (kx - at) (3.2
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in equation {3.1] where k is real and consider long waves so that k < < 1, we
easily verify thst all roots a of the dispersion relation are pure imaginary.
This shows that we have a stable sitnation, with progressive waves as
solutions.  Similarly, if we consider a periodic wave maintained at x=0 so
that

7 & exp.(Bx~iwt) {3.3]

with @ (real) < < 1, we again get all four roots corresponding to f pure
imaginary, leading to the same result as noted above.” Thus, for large times,
we again have a stable situation. However, to be able to study the general
wave motion, we consider the following signalling problem for the differential
equation [3.1], an unsteady wave phenomenon on a running stream.

Initial conditions : N=Ng=Tg= TNy =0 at =0, x>0

Boundary conditions: 5 =f(1) at x=0 [3.4]

In the above we consider waves propagating in the x > 0 direction due to the
signal at x=0, but we could also consider the waves in the opposite direction.
We find the Laplace transform of the equation [3.1] with the initial condi-
tions (3.4]. We have

G0 +6) 1, =12 Uy p 7, = [6 (1 -70) PP +2*] 7 =0. 3.5]
The solution of this equation is
7=4, (2) exp.[7, (p) X1+ 4, (P} exp.[Vy(P)A] [3.6}

where 4y and A4, are some functions of p and

6Uypk p{36 U2+ (3 p* + 6} p*+6 (1 9]} 12
. 63,7
3(FP+2)

‘yl-:=

This expression is rather complicated and therefore we approximate this for
the following two situations (g) when p is very large i.e,, ¢ is small, this
2pproximation is valid when the high frequency waves dominate or mear
discontinuities in the wave form. (b) when p is very small so that we
consider the solution for large times.

() When p is large. In this case,

a (3.8
. o V 3) 39[6%&‘/(3)(2 3191 (3.8]
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For the forward moving wave we take negative sign, with 4, (p)=0, 229

invertirg ejuation [3.6], P
ytie

1 k
7= 5;;[ AZ(@.eXP.{p(t-\/ﬁ )+ [6U,—V(3)(2 - 3'70)]—}1(@ [3.9)

PSPy

T

where 7 =Rep is such that all singularities of the integrand are to the left of
Rep=7. It is obvious that

A (p)= J exp.(—pt) £(2) di. 13.10]
7
If we take £ (1) = 5 (¢), the Dirac delta function, so that A, (py=1, the above

integral is easily evaluated, Roberts and Kaufmann®?, the solution /7\, is

P D=0 O<t< V3 o1
.=s(,_,>f_)_( )”’ [v(s)cz ~370-60,]"
v/ \3 YO
1

x J {2 (——)"1 1—— — [‘\/(3) 2-3 -6 Ug)H?
! 3 .‘/(3) 7]0) 0] J‘
= [x/\/(3)

For any other f(r), we can use the faltung theorem to obtain

7= j 7 G5 w) £ G- du- By
o

If we were to consider wave propagation in the negative direction, we would
have

1)=8(t+-v—zé-

) —(~x)¥? [V(3) (2-350) + 612 y
V3[ t+x/3%

( x)uz [V(3 (2 3 6U, m( 2 u2 .
) (2= 359) + 6 (14 V(3) }

] t = ~[x/V(3)]
=0. . t< =[] [3.03

a7
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Thc above solution represents higher order progressive waves with
speeds +4/3) and —V3) respect.ively. The wave height near the front
initially decrcases from 1 as x increases. We also note that if 760,
Uoﬁ[l/\/_;], p(x, 0 =8{r—x/V(3)] in equation [3.11] which gives n(x,t)=1
on 1=[x,V3)] and =0 elsewhere. Of course these results are based on
linear theory, the mon-linear effects will alter the situation considerably.
Unlike the exponential damping of dynamic waves by the kinematic waves,
in the flood wave problem of Lighth'll and Whitham, we have near the wave
front a diminishing of the amplitude from urity and an oscillatory character,
given by Bessel function of order one.

(%) In this case p is small, we approximate Y to
439, i

- S U (UJH—;,D)W}

—p[U3 UG+ 1— g P T8
V.= U (UG + 1 =19 ] 5 p iIZ(U,,2+1—7]0) 3

=B, 20+ Gy, 2 P [3.14]

Again if we consider wave propagation in the positive direction only, then

taking the lower sign,
yHe

1 -
7 Yy J. S(p) exp. [p(t + Byx) + Cxp®l dp 3.15}

y~i=

where RI'Y is d2finzd in the nsual way. Again if we choose £(£)=3 (#) so
that f(p)=1, the above integral can be casily integrated, Magnus ef i,
We can transform this integral into the form

%=(l/7t) Jcosz (¢4 Bx) —c, x2%] dz {3.16)
G
which is expressible in terms of Airy functions
» 1 Byx+t\
- A —3~us B2 .
7 (3 Clx)lw i ( (sz)hJ)

! cos [_z_ Bx+0? /4}, [3.16)"

TV B Cayx (Bpx 41y B GHVE

‘the asymptotic expression of A7 for large value of r when-x/t is kept fixed.
We briefly verify this result by the method of isaadle points. ~ The exponential
term in the integral [3.15] can be written as’ '~ -

exp ¢ {p[1+ B, (x/t) 1+ C, (x/0) °}.
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For fixed value of x/t, we evalumate this integral for large 2. The sadgje
points of F(p)=p [L+8, (x/)]+ C, (x/1) 1p* are

Po, 1= il(t/x +By) A3CH% .16y

saddle points,

1
TG B

3 [y (po) exp i {30+ By xWVI(/x+ By (1/3 )] w4

+y (pyyexp —i1{2 0+ Bx) vV ((t/x+ By) (1/3 C)l - /4} ]

1 s (Byx+ )3 "
= [« = ] - +
V7 [3Cax (Byx+1))¥4 051 P3Gl 7/ [3.17]

when ; (p)=1. This is the same as in [3.16]. This represents essentially
the lower order waves. We find that the solution does mnot hold at the
observation point x=0 and the frent B,x+t=0, Lighthill and Whitham®,
We also note that 5 o< (1/4/x) or y e<(1/4/¢) for fixed x/t, showing diffusion
of the lower order wave by the higher order ones.

The solution in the negative x direction can be easily obtained by changing
B, and G, to B, and C, respectively.

Before we consider the non-linear wave propagation, we briefly indicate
the results as obtained by the quick methcd, Whitham®®. For example,
for the wave corresponding to (3x/31) =43 we put (3/31)=—/3 (3/ox) in
equation [3.1] and introduce the variable £ ~ x~v/31, we get the equation

(3% /2x38) = —L[2-3 9,-2V3 U,ly. [3.18)

With the conditions that 7 =0 on the front x~v/31=£=0and 3 =7 (z) on x=0,
the solution of equation {3.18] can be written in the form, Garabedian®,

10%02x0 , f.

plx. = )2V AE -1 )] dy,. [(3.19

Similarly, the solution near the wave front x= —4/3¢ is obtained by smnply
changing £ to £ =x+4/3t. For the lower order waves, if we put (3/21)
= = Cy2(3/3x) in equation Whero C, ={Upt V(U3 +1-14)/1 —3,,
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e get c -3
21, 21 G- B _o iy 2 [3.20]

ar ax 6(l-pg Bx

zfter integrating out once with respect to x. The solution of this equation
can be expressed in terms of Bessel functions.

4. INiTiat VALUE PrOBLEM

Now we consider the initial value problem for the hyperbolic system
2.6 —(2.9) where equatiops [2.8] and [2.9] are expressed iz terms of the
chsracteristic variables z and z as

(27/32) (a7 /3z) = (WA/3), {2.8}
(awfas)—(aw[a2) = (2]V/3). 12.97

We assume that g (x, 0) and U(x, 0) arc given. We seek the solution in
the form
p=0a (qeton), U=a(Uytaly), ‘"““3’2(00‘('““1)’

Q= (Q+a 2y, . [4.1]

since the equations of Long give » with an error of 0(a®. Here p and U
are functions of 2z and z. We substitute the expressions [4.1] in equations
{2.6) ~{2.9]', taking note of the assumptions {2.4] and [2.5].

After some calculation, we get the following equations. Zero order
system :

a;._(”__"‘;:_/i‘@ S /«/.i) . 4.2
(3/32) (— 79+ 43 Up) = (- wolv'3), {4.3}
(370/32) = (374/32) = (w¥V/3), L M4
(Dwo/82) — (Beog/82) = (2,/4/3). [4.5)

Fust order system :

3 [, +V3 U, +(24/2)]
3z

~{wpi2) (V3 7+ 2 Up) — (@, VD), [4.6

+4/3 U, (314/52)
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Lny +V3U = (2 /3.0, (apofaz)

¥z
=(“‘o/2) ('\/3 'f]o"z Uo)""(‘*’1/'\/3)s 4.7
(5771/37')"(3771/3;)=(‘°1/"\’/3)’ {4.8)
(Fw,/22) — (2w, /32) = (2, /V3). 49

The equatjons satisfied by 74 and 7, are found o0 be

2 2 2
P T Y -
pos o ) j
a2 3zt 2z 3z
2 2 2 -
(i R S _) n=F@ (411
3z 3z? 3737

Where F(z, 7)
- ?—-’—%’;+\/3[—B:( uoih) ‘E( U,,ﬂe)]

Azdz az 3z 3z dz
V3 3 (310 2\

~X2 (- 2y (V3 +2 Uy
2 ¥z \ 3z 3z V370 °

+(v/3/2) (3/32) [(370/32) = (B370/32)] (V3 74 -2 Up). [4.12]

We easily verify that the characteristics of the differential operator on the
left hand side equations [4.1] and [4.2} are z +(24V/3) z=(3£V3) (xF )=
const, agreeing with the linearised equation [29] of Long (1964). Thus the
characteristic slopes of the zero order solutions are =1, while those of the
non-linear system are +v3. We consider, in particular, the initial value
problem 7 (x, 0)=2 « cos x, U(x, 0)=0, so that we find from equations [4.10],
{4.2] and {4.3] that

76 (X, 1) =cos (x+7) +cos (x~1), Uy(x, 1)=cos (x—~1)~cos(x+1). [4.13]

Thws, it is more convenient to introduce the characteristic variables

wy=x—t, By=x-+t {413}
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so that 7, can be shown to sarisfy the equation
(3%, /d0,38) = —L cos(ay + By +3 [cos 2 oy +cos 2 By

— 'z (c0s &g +cos By). . [4.14]

The solution of this hyperbolic differential equation with the initial
condition 7,=(37,/3a,;)=(37,/38,)=0 on the initial line &, =8 from
equations [4.6] and [4.7] is

3= (B — o) [$ (sin 2 oy —sin2 fy) +5 sin B, —sin ;)]

+4 cos (a; +8;)—cos 2 &, ]+ L (cos 2 g —cos 2 By)

=t[2 {sin2 (x—0)~sin2 (x+0} +% {sin (x+1) —sin (x-H}]

+4{cos2x—cos 2 (x—1)] +4lcos2 (x~#)—cos 2 (x +1)]. [4.15)

We find that a secular term in the frst order term of the solution appears so
that the solution is valid only for wt < < 1. While the secular terms in
ordinary differential equations have been treated quite successfully, there does
not seem to be any general way of tackling them for partiai differential
equations. For example, Broer (1965) has considered some simple cases
when a transformation of the time variable can be guessed from the solution.
The term (o 1/G) [sin (x +¢) —sin (x—1)] in [4.15] can be easily combined with
the zero order tcrm by the transformati m ¢ == 1+ (e 1/6) but the other secular
terms cannot be removed. The divergence of the solution for large ¢ is not
due to the linearising of the characteristics since we can easily fit the exact
characteristics by stretching the x-co-ordinate by 1/4/3, but does not remove
the singularity for large . This perturbation scheme is not suited to give
solution for the far field for which a different procedure similar to that given
by Cole (1968) would lead tothe Korteweg equation which provides the
solitary wave and other periodic solutions, Kruskal and Zabusky®. In any
case, the above solution for r < (1/&) shows that in the first order solution
we get zero order solution and its double harmonic out of phase with the
zero order solution by /2 and-these together have their amplitude increasing
linearly with time while the other double harmonic in 7, remains bounded.
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