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Abstract

A simple method is proposed to design PI controllers for stable inverse response systems with and without delay. The
method is based on (i) matching the corresponding coefficient of s in the numerator and in the denominator of the
closed loop transfer function for a servo problem, and (ii) by specifying the initial (inverse) jump. This method gives
simple equations for controller settings in terms of model parameters. PI controllers are also developed by IMC
principles. A numerical optimization method is proposed to obtain the tuning parameters for the simple method.
Simulation results are given for robust performance of the controllers for uncertainty in process gain, time constant
and the location of zero. The performance of the proposed controllers is evaluated by simulation on nonlinear isothermal
CSTR carrying out Van de Vusse reaction.
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1. Introduction

Inverse response is the dynamic behaviour of the system with a positive zero showing step response
in the opposite direction initially to that of the steady -state direction. Such a behaviour is exhibited
by processes such as (i) the level of a drum boiler to variations in the heating medium flow rate,
(ii) exit temperature of a tubular exothermic reactor to changes in the inlet reactant temperature,
(iii) the tray composition of a distillation column to variations in vapor flow rate, (iv) the
temperature of the municipal waste incinerator to variations in inlet load rate [1], and (v) recycling
of energy and material to a reactor makes poles and zeros move to the right half plane [2].
Methods of designing PI/ PID controllers for stable inverse response systems are Ziegler – Nichols
method [3], IMC method [4]–[6], Modified phase margin and Gain margin method [7], Extension
of Haalman method [8], Optimization method using artificial neural networks [9], Gain–phase
margin tester method [10], and extension of smith predictor using modern H∞ control theory
[11]. In all the above methods, the design procedures are somewhat complicated. Scali and
Rachid [4] have considered the design of PI/PID controller for the second-order inverse response
systems without delay. Luyben [7] proposed PI controller for the second-order inverse response
system with delay. PI tuning parameters are functions of the positive zero and dead time and are
given for critically damped open loop system. The servo responses for various combinations of
dead time and positive zeros are compared with that of the Ziegler–Nichols method. Jyothi
et al. [8] also extended the method proposed by Haalman [12] to design PID controller to second
-order systems with a positive zero and with delay. The performance of their method is almost
same as that of Ziegler–Nichols method.

In the present work, a simple method is proposed for the design of PI/PID controller for
first-order inverse response systems with and without delay. Chemical reactor examples exibiting
such transfer function models have been studied [8], [13]–[17].
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Recently, a simple method has been proposed by Chidambaram et al. [18] to design PID
controller for stable first-order plus time delay (FOPTD) system by equating the coefficients of
the corresponding powers of s in the numerator and in the denominator of the closed loop transfer
function for a servo problem. Performance of the controller designed by this method is shown to
be similar to that of the controller designed by Ziegler–Nichols method. Since the performance
specifications for stable systems cannot be met for the unstable systems, Chidambaram et al.
[18] have used one tuning parameter, α (i.e. each term in the numerator is equal to α times the
corresponding term in the denominator). The performance of the controller designed by the
method is significantly better than that of the controller designed by pole placement method.
Later, Chidambaram and Padma Sree [19] have extended the method to an integrating system
with dead time and the performance of the controller designed is significantly better than that of
the controller designed by optimization method proposed by Visioli [20].

In the present work, the simple method [18] is extended to design PI controllers for stable
first-order inverse response systems. Since the system with a zero shows an initial inverse response,
it is proposed in the present controller design method to use this value and also to match coefficient
of power of s in numerator with α times that of denominator of closed loop transfer function for
a servo problem. A method of designing PI controllers by IMC principles is also proposed. The
performance of the controllers designed by both the methods is compared.

2. The proposed method-1

2.1. First-order inverse-response system without delay

Let us consider a stable first-order system with a positive zero [kp Gp = kp (1 – ps)/(τ s + 1)]. Let us
design a PI controller. The closed loop transfer function relating the output variable (y) to the set
point (yr) is given by

 y/yr = kckp 
(1– p s) (τI s +1)/[τI s (τ s + 1) + kc kp 

( 1 – p s) (τI s +1)]. (1)

Equation (1) can be written as

y/yr = (1+ a1s + a2 s2) /(1+ b
1
s + b

2
s2). (2)

Let α = a1 /b1 
and β = a2 /b2 (3)

where

a
1
= (τ

I
 – p) (4a)

 b1 = [τI + kc kp 
(τI – p )] / {kc kp} (4b)

a2 = – pτI (4c)

 b2=[τI (τ – kc kp 
p)] / {kc kp} (4d)

and α, β are the ratios of the corresponding coefficients of s and s2 in the numerator with that
of the denominator.

The response of the under-damped closed loop system is given by

 y (t) = 1– k [cos (qt) +{(x1–ζ )/q}sin(qt)]  (5)
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where, k =1–β ; q = (1– ζ 2)0.5; x1= b1 (α–β )/(1–β).  (6)

Therefore, the servo response of the system is a function of the ratio of the corresponding
coefficients of s and s2 in the numerator and denominator, respectively. By selecting appropriate
values of α and β (and hence the values for the controller parameters), we can shape the response.

y (t) at t = 0 gives the value of the inverse jump. From the initial value theorem, we know
that y(t) at t = 0 can be obtained from the limiting value of value of [s y(s)] as s tends to infinity.

[s  y(s)] = – [ kc kp 
p /(τ – kc kp 

p)] = – φ. (7)

                                          Lt s → ∞

Here φ (= –β ) is initial jump of the closed loop system.

From eqn (7), we get

 kc = φ τ/[(1 + φ) kp 
p]. (8)

The overshoot and settling time for systems with positive zero is large. The numerator
term of the coefficient of s is made equal to α times that of the corresponding denominator term.
By doing so, we get

 kc kp 
(τI – p) = α [τ

I
 + kc kp 

(τ
I
 – p)].  (9)

From eqn (9), we get

 τI = kc kp 
p (1–α)/ [ kc kp 

(1–α) – α ].  (10)

For a stable system we can specify the value for φ. The limits of φ and α can be obtained
by using Routh array stability criteria for the characteristic equation of the system as

φ > 0

α < [φ τ / (φ τ + φ p + p)]. (11)

For stability φ should be greater than 0. But if the initial jump is allowed to be small, the
overshoot will be large. Basically we have to compromise between initial jump and overshoot.
We can get the starting value of φ (closed loop inverse jump) from the knowledge of open loop
jump, which is equal to (kp p/τ). If open loop jump is less than 1, then φ = 0.3 is suggested. On the
other hand if open loop jump is greater than 1, then φ = 0.25 is recommended. α value is tuned
less than the value obtained from the RHS of eqn (11). From simulation studies it is observed
that if the ratio of (p/τ) is less (i.e. of the order of 0.1–0.3), α value is recommended as 0.96 to
0.98 times the value of α obtained by eqn (11). On the  other hand,  if the ratio of (p/τ ) is large
(i.e. of the order of 1 or more), α value is recommended as 0.1 to 0.3 times the value of α
obtained by eqn (11). The value of φ dictates the value of kc and the value of τI depends both on
φ and α.

2.2. Stable FOPTD system with a positive zero

Let us consider stable first-order plus time delay system with a positive zero. The transfer function
of the process is given by kp Gp= kp (1– p s) e–Ls / (τ s +1). Let us use a PI controller. The closed loop
transfer function relating the output variable (y) and set point (yr) is given by
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 y /yr = kc kp 
(1– p s) (τI s+1) e–Ls/[ τI s (τ s + 1)+kC kp 

(1– p s) (τI s +1) e–Ls ] . (12)

In the above equation we shall not consider e-Ls term in the numerator for further analysis, since
this will only shift the corresponding time axis. Using Pade’s approximation for e–Ls in the
denominator, the order of the numerator is made same as that of the denominator.

y (t) at t = L gives the value of the inverse jump. From the initial value theorem, we know
that y (t) at t = L can be obtained from the limiting value of  [sy(s)] as s tends to infinity.

[s y(s)] = –[ kc kp 
p/τ] = – φ . (13)

                                                  Lt s →�

From eqn (13), we get

kc = φ τ /[kp 
p]. (14)

By equating the coefficient of s in the numerator with α times that in the denominator we get the
following equation:

kc kp 
(τI – p + 0.5L ) = α [τI + kc kp 

(τI – p – 0.5L) ]. (15)

From eqn (15), we get

τI = kc kp 
[p (1–α)–0.5L (1+α)]/[kc

 kp 
(1–α) –α]. (16)

The limits of φ and α can be obtained by using Routh array stability criteria for the characteristic
equation of the system as

φ > 0

α < [φ τ / (φ τ + p)].  (17)

From the analysis of the closed loop system it can be shown that the initial jump is less for system
with delay than system without delay. From the stability analysis φ should be greater than zero.
We can get the starting value of φ (closed loop inverse jump) from the open loop jump, which is
equal to (kp p/τ). Therefore, the starting value of φ should be less than (kp p/τ). α is tuned less than
the value α obtained from the RHS of eqn (17). From simulation studies it is observed that if
the ratio of (p/τ) is less (i.e. of the order of 0.1–0.3), α value is recommended as 0.95 to 0.98
times the value of α obtained by eqn (17). On the other hand, if the ratio of (p/τ) is large (i.e. of
the order of 1 or more), α value is recommended as 0.1 to 0.3 times the value of α obtained
by eqn (17).

3. The proposed method-2

3.1.  Modified IMC method for first-order system with a zero

The process transfer function is kp (1–ps)/(τ s + 1).

The process transfer function is factored as

P= PA PM = [(1– ps) /(1+ ps) ] kp [(1+ ps)/(τ s +1)]. (18)

The IMC controller is



76TUNING PI CONTROLLERS FOR STABLE INVERSE RESPONSE SYSTEMS

Q = P
M

–1 f = [(τ s + 1)/{kp (1+ps)}] (1/[λ s +1]). (19)

The equivalent feedback controller Gc can be written as

Gc = Q/(1– PQ). (20)

Substituting eqn (18) and eqn (19) in eqn (20), we get

Gc = (1/kp) (τ s + 1)/[(2p + λ ) s +λp s2 ] = kc  (1+{1/τI s}) (1/[τf s +1]) (21)

with

kc = τ/[kp(2p +λ )]; (22)

 τI = τ (23)

 τf 
= λp/(2p+λ ). (24)

We get a PI controller with first-order filter and the value of λ filter time constant is selected
by simulation.

3.2. FOPTD system with a positive zero

The process transfer function: kp (1–ps) e–Ls/(τ s + 1). Here e–Ls is approximated as (1–Ls).

The process transfer function is factored as

 P = PA PM = [(1– ps)(1 – L s) /(1+ ps)] kp [(1+ps)/(τ s + 1)]. (25)

The IMC controller is

Q = P
M
–1  f =[(τ s + 1)/{kp (1+ ps)}] (1/[λ s +1]). (26)

The equivalent feedback controller Gc can be written as [eqn (20)]

Gc = (1/kp) (τ s + 1)/[(2p +λ + L)s +(λp–pL) s2 ] = kc (1 + {1/τI s}) (1/[τf s +1]) (27)

with

 kc = τ /[kp(2p +λ + L)] (28)

 τI = τ (29)

τf = (λp – pL)/(2p +λ + L). (30)

In this method, filter constant (λ) is a tuning parameter and is selected by simulation. For
large value of λ, the response of the system is sluggish and the controller is robust. On the other
hand, for small λ values the response is fast at the expense of robustness. Hence there is a trade
off between these two values.

4.  Simulation results

4.1.  Case Study 1

Let us consider a first-order stable system with a positive zero where kp= 1, τ =1 and p = 1. The
open loop jump for the system is –1. Therefore, closed loop jump is taken as 30% of the open
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loop jump. For a value of φ = 0.3 and the value of α from the RHS of eqn (11) is 0.188. α value
is varied as 0.1, 0.2 and 0.3 times the α value obtained from eqn (11). The corresponding value
of kc 

[from eqn (8)] is 0.2537 and τ
I
 values [from eqn (10)] are 1.0428, 1.0903 and 1.2, respectively.

Servo response of the system is shown in Fig. 1. Since the larger value of τI gives sluggish
response, the lower value of τI is selected. In the IMC method, λ is selected by simulation by
giving different values for λ. Among these values, the value of λ that gives the best performance
is selected. For this case study, λ = 1, 1.5, 2 and 2.5 are tried. Among these values, the value of
λ = 2 gives the best performance. However, it is observed that suitable value of λ cannot be
selected which will give a similar performance as that of the simple method as the latter method
has two tuning parameters, whereas IMC method has one. The performance of the controller
designed by the present method is compared with that of the controller designed by modified
IMC method {eqn (22)–eqn (24)} [For λ = 2, kc 

= 0.25 and τI  
= 1,τf 

= 0.5]. Comparison of servo
responses by the two methods is shown in Fig. 2. IMC method gives less undershoot. Table I
shows that the performance of the controller designed by the present method is comparable with
that of the controller designed by the modified IMC method. The present method gives lesser
ISE value compared to IMC method. The regulatory response of the system is shown in Fig. 3.
Simple method does not have any filter; however, if we use the same filter as the IMC method,
the servo and regulatory responses are similar. The PI controller is designed for nominal value of
p, whereas we use +20% or –20% perturbation in p while simulating. Table II shows the robust
performance of the present method in terms of ISE values for uncertainty in p. Similar response
is obtained for uncertainty in model parameters τ  and separately in kp 

also (refer to Tables III
and IV).
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Table I
Comparison of the performance (ISE) of the present
method with IMC method (for case studies 1, 2 and 4)

Case   Perfect parameter
study

Present method Modified IMC method

Servo Regulatory Servo Regulatory

1 2.964 2.964 3.005 3.005

2 3.133 0.915 3.505 0.973

4 0.0206 3.73 × 10–4 0.0223 4.08 × 10–4

FIG. 1. Servo response of the system:
(1–s) /(s+1) k

c
= 0.2537. Solid: τI  

=
1.0886, chain: τI = 1.1994, dash: τI  

=
1.3418.

FIG. 2. Servo response of the  system:
(1–s)/(s+1). Solid: optimization
method, chain: present method,  dash:
IMC method.

FIG. 3. Regulatory response of the
system: (1–s)/(s+1). Solid: optimi-
zation method, chain: present
method, dash: IMC method.



78TUNING PI CONTROLLERS FOR STABLE INVERSE RESPONSE SYSTEMS

A numerical optimization (leastsq of Matlab) method is used to minimize ISE value to
obtain optimal values for φ and α. This method uses the initial guesses for the values of φ and α
from the above simple method. For the case study 1, the optimal values obtained are φ = 0.9621
and α = – 0.0097 and hence kc = 0.49 and τI = 0.98. Using the optimized values, the responses are
evaluated and shown in Fig. 2. The results show that though the initial jump is large compared to
the previous methods, the settling time is significantly improved and hence gives a lesser ISE
value (= 2.0198). Figure 3 shows the regulatory response of the system (for case study 1). Here
also the optimal values by optimization method give the lower ISE (=2.0197).

In the present work, the tuning parameters are selected based on performance for servo
problem. The settings may not be optimal for regulatory problem. To get a better performance
for regulatory problem also, the controller has to be detuned.

4.2.  Case Study 2

Let us consider a first-order stable system with a positive zero. kp = 1, τ =10, p = 1. The open loop
jump is 0.1. If the value of φ is taken equal to open loop jump sluggish response is observed.
Therefore in the present work a value of 0.25 is suggested. The value of α obtained from the
RHS of eqn (11) is 0.67. α value is varied as 0.94, 0.96 and 0.98 times the value obtained from
eqn (11). The corresponding value of kc 

[from eqn (8)] is 2 and τI values [from eqn (10)] are 6.22,
9.0 and 17.3, respectively. Since larger values of τI 

give sluggish response and smaller values

Table II
Robustness comparison in terms of ISE values for uncertainty in p

Case     ISE values for uncertainty in p
study

Servo problem Regulatory problem

+20% –20% +20% –20%

Present MIMC Present MIMC Present MIMC Present MIMC

1 2.951 3.2192 2.6059 2.8175 3.28 3.5412 2.3913 2.5943

2 3.239 3.6892 2.913 3.338 0.858 1.0030 0.811 0.9462

MIMC: Modified IMC.

Table III
Robustness comparison in terms of ISE values for uncertainty in τττττ

Case     ISE values for uncertainty in τ
study

Servo problem Regulatory problem

+20% –20% +20% –20%

Present MIMC Present MIMC Present MIMC Present MIMC

1 2.86 3.117 2.69 2.894 2.625 2.872 3.016 3.2052

2 3.409 3.86 2.74 3.167 0.828 0.9649 0.84 0.9863

MIMC: Modified IMC.
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lead to large overshoot, the value of τI 
= 9 is selected. Servo response of the system for different

values of τI 
is shown in Fig. 4. The performance of the proposed controller is compared with that

of the controller designed by modified IMC method {eqn (22)–eqn (24)} [For λ = 3, kc = 2, τI

=10 and τf 
= 0.6]. Figure 5 shows the servo responses of the system by both the methods. IMC

method gives lesser undershoot. Figure 6 shows the regulatory response of the system. Performance
comparison of the two methods in terms of ISE values is shown in Table I. The proposed method
gives lesser ISE values compared to IMC method. Robustness of the controller under parameter
uncertainty in p is shown in Table II. Similar results are observed for uncertainty in parameters τ
and kp separately (refer to Tables III and IV).

The optimal values obtained by using numerical optimization method are φ = 0.9777 and
α = 0.8162 and hence kc

 = 4.9436 and τI
 = 9.8349. Using the optimized values, the responses are

evaluated (Fig. 5). The results show that though the initial jump is large compared to the previous
method the settling time is significantly improved and hence gives a lesser ISE value (= 2.0199).
Figure 6 shows the regulatory response of the system. The controller designed by optimization
method gives much improved performance (ISE value is 0.2012).

4.3. Case study 3

Let us consider a second-order stable system with a positive zero and with a delay. kp = 1,
τ1 = 1,τ2 =1, p =1.6 and L = 0.2. Using model reduction method proposed by Sundaresan and
Krishnaswamy [21] to stable FOPTD system with a positive zero (kp= 1, τ = 1.4439, p = 1.6 and
L = 0.8327). The value of the open loop jump is 1.107. Closed loop jump is taken as 20–30% of
the open loop jump. For a value of φ = 0.3, the value of α obtained from the RHS of eqn (17) is
0.213. α value is varied as 0.1, 0.2 and 0.3 times the value obtained from eqn (17). The
corresponding value of kc 

[from eqn (14)] is 0.2707 and τI 
values [from eqn (16)] are 1.27, 1.37

and 1.51, respectively. The value of τI = 1.37 is considered. The performance of the proposed
controller is compared with that of the PI controller designed by the method of Luyben [7]
[kc = 0.3812 and τI = 1.5858] and PI controller with a first-order filter designed by IMC method
[kc 

= 0.261, τI = 1.4439, τf 
= 0.193] using eqn (28) –eqn (30). Figures 7 and 8 show, respectively,

the servo and regulatory responses of the system. ISE values of the present method, Luyben
method and IMC method for servo problem are 4.25, 4.09 and 4.36, respectively, and 4.59, 3.95
and 4.69, respectively, for regulatory problem. Luyben method gives the best performance.
Robustness of the controller under parameter uncertainty in p is shown in Table V. Similar results
are observed for uncertainty in parameters L and kp separately (refer to Table V).

Table IV
Robustness comparison in terms of ISE values for uncertainty in kp

Case ISE values for uncertainty in kp

study

Servo problem Regulatory problem

+20% –20% +20% –20%

Present MIMC Present MIMC Present MIMC Present MIMC

1 2.4564 2.743 3.262 3.4424 3.5319 3.95 2.0878 2.203

2 2.7067 3.1409 3.6256 4.082 0.892 1.051 0.759 0.8798

MIMC: Modified IMC
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The optimal values obtained (using leastsq of Matlab to minimize ISE) are φ  = 0.4999
and α = 0.19 and hence kc= 0.4508 and τI = 2.0606. Using the optimized values, the responses
are evaluated (Fig. 7). The results show that the inverse peak and the settling time are almost the
same as the other methods. ISE value for the servo problem is 3.9974. Figure 8 shows the regulatory
response of the system. The controller designed by optimization method gives improved
performance (ISE value is 3.8214).

4.4.  Case Study 4: Application to a nonlinear isothermal CSTR

Let us consider an isothermal CSTR wherein the following isothermal series-parallel reactions
are occuring. Here product B is the desired one.

The mass balance equations for the species A and B are given by

 dx1/dt = –k1 x1 – k3 x1
2 + (CAo – x1)u (31)

 dx2/dt = k1 x1 –k2 x2
 –x2 u (32)

Here, u = F/V, where F is the flow rate (l/min), V, the volume of the reactor (l), x1 and x2, the
concentration, respectively, of A and B in the reactor (mol/l) and CAo is the feed concentration of
A (mol/l). The parameter values considered in the present work are given by k1 = 0.8333 (l/min),
k2 =1.6667(l/min), k3 = 0.16667 (l/mol-min), CAo=10 mol/l. The plot of  x2s (steady-state value
of x2) versus u, shows steady state input multiplicities in u on the product concentration (x2s).
That is the two values of us 

give the same value of  x2s. For example  x2s= 1.117 can be obtained
at us= 0.5714 and also at us= 2.8746. The steady-state gain is 0.5848 at us= 0.5714 and gain is
–0.1208 at us = 2.8746. The transfer function relating the deviation variable (at each value of us)
is obtained from the linearized version of  eqn (31) and Eqn (32)[8].

∆ x2 /∆u = – 0.1208 (0.3546 s +1)/[(0.1742 s +1)(0.2202 s +1)] at us= 2.8746 (33)

 ∆ x2 /∆u =0.5848 (–0.3546 s +1)/[(0.4149 s+1)(0.4464 s +1)] at us= 0.5714 (34)

Combining the two terms in the denominator as a single term and considering a
measurement delay of 0.1min, the system in eqn (34) becomes

A�B�C
k1 k2

2A �D
k3

FIG.4. Servo response of the system:
(1–s)/(10s +1) kc = 2. Dash: τ

I 
= 6.22,

solid: τ
I 
= 9.0,   chain: τ

I 
= 17.3.

FIG. 5. Servo response of  the system:
(1–s) / (1+10s). Solid: optimization
method, chain: present method,
dash: IMC method.

FIG. 6. Regulatory response of the
system: (1–s)/(1+10s). Solid: opti-
mization method, chain: present
method, dash: IMC method.
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 ∆ x2/∆u = 0.5848 (–0.3546 s +1) e–0.1s/(0.8613 s+1) at us= 0.5714. (35)

PI controller settings calculated by the present method for the system in eqn (35)
are kc= 0.415 and τI = 0.6429 and controller settings by modified IMC method are kc= 0.5243,
τI = 0.8163 and τf = 0.2398 for a λ value of 2.

Using model reduction method proposed by Sundaresan and Krishnaswamy[21] for the
system in eqn (34) with a measurement delay of 0.1 min, we get

 ∆ x2 /∆u = 0.5848 (– 0.3546 s + 1) e–0.3567s/(0.6302 s+1) at us=0.5714. (36)

PI controller settings calculated by the present method for the system in eqn (36)
are kc= 0.3647 and τI = 0.5065 and controller settings by modified IMC method are kc= 0.42,
τI = 0.6302 and τf = 0.158 for a λ value of 1.5.

The servo response of the above two settings [one based on eqn (35) and the other based
on eqn (36)] on the actual nonlinear system is almost the same. Therefore, combination of both
the terms in the denominator is as good as model reduction method. The servo response of the
system with PI settings based on eqn (35) is shown in Fig. 9. However, in general, for any system
the second model reduction method [21] is recommended. ISE value comparison is shown in
Table I. Regulatory response is shown in Fig. 10. The proposed method shows the superior
performance over the IMC method both for regulatory as well as servo response.

FIG. 7. Servo response of the system: (1–1.6s) e–0.2s/(s +1)2.
Solid: Optimization method,  dash: Present method, chain:
Luyben method, long dash dot: IMC method.

FIG. 8. Regulatory response of the  system: (1–1.6s) e–0.2s/
(s +1)2. Solid: Optimization method, dash: Present method,
chain: Luyben method, long dash dot: IMC method

Table V
Robustness comparison in terms of ISE values for case study 3

Uncertainty ISE values 

Servo problem Regulatory problem

+20% –20% +20% –20%

P L I P L I P L I P L I

Process gain 4.25 4.16 4.46 4.73 4.33 5.20 5.96 5.77 6.28 2.95 2.68 3.26
Location of zero 4.90 4.77 5.14 3.94 3.59 4.32 5.36 5.3 5.56 3.47 3.08 3.88
Time delay 4.73 4.15 4.73 4.31 4.04 4.65 4.30 4.02 4.63 4.19 3.89 4.54
Time constant 4.51 4.22 4.83 4.21 3.97 4.56 4.17 3.83 4.52 4.34 4.1 4.68

P – Simple method, L–Luyben method, I–MIMC method
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5. Conclusions

Two methods are proposed to design controllers for inverse response first-order systems with
and without delay. The first method has two tuning parameters (φ and α). The tuning parameters
obtained by numerical optimization method (using the values of φ and α obtained by simple
method as initial guesses) gives an improved performance in terms of ISE. In the second method,
λ is a single tuning parameter. The tuning parameters are selected by simulation. Simulation
studies on two transfer function models for the first-order inverse response system, one transfer
function model for the second-order inverse response system and one on nonlinear CSTR, show
that first method is better than that of the second method in terms of ISE values. The proposed
methods are also comparable with that of the Luyben method [7].
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Nomenclature and Units:

CAo  Feed concentration, mole/l

k1 Reaction rate constant, l/min

k2 Reaction rate constant, l/min

k3 Reaction rate constant, l/mole-min

kc Controller gain

kp Process gain

L Time delay, s

p Inverse of process zero, s

t Time, s

u Ratio of feed flow rate to the volume of the reactor (manipulated variable)

us Steady-state value of u

x1 Concentration of A in the reactor, mole/l

x2 Concentration of B in the reactor, mole/l

x1s Steady-state product concentration of A, mole/l

x2s Steady-state product concentration of B, mole/l

y Output
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yr Set point

α Ratio of coefficient of s in the numerator to that of the denominator of closed loop
transfer function

β Ratio of coefficient of s2 in the numerator to that of the denominator of closed loop
 transfer function

τ Process time constant, s

τI Integral time, s

τf Filter time constant, s


