
Short Communication

Some results on the independence number of a graph

DÃNUT MARCU
Str. Pasului 3, Sector 2, 020795-Bucharest, Romania
emails: drmarcu@yahoo.com, danutmarcu@romtelecom.ro

Abstract

In this paper, we give new lower bounds for the independence number � (G) of a finite and simple graph G.
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Graphs, considered here, are finite and simple (without loops or multiple edges), and
[1], [2] are followed for terminology and notation. Let G = (V, E) be an undirected graph, with
the set of vertices V ={ v1, v2, …, vn} and the set of edges E, such that |E|= m.

We denote by d(v) the degree of a vertex v in G. It is well known (e.g. see [2]) that
� (G) = d (v1) + d (v2) + … + d (vn) = 2m.

Let � i 
(v) be the number of vertices having the distance i from a vertex v of G and let

� (G) be the independence number of G.

LEMMA 1. If G is a triangle-free graph, then

 � (G) � ��*(G) = �v�V �1 (v)/(1+ �1 (v) +� 2 (v)).

Proof. We randomly label the vertices of G with a permutation of the integers from 1 to n.
Let S ��V be the set of vertices v for which the minimum label on vertices at distance 0, 1
or 2 from v is on a vertex at distance 1. Obviously, the probability that S contains a vertex
v is given by �1(v)/(1+ �1 (v)+ �2 (v)) and, therefore, the expected size of S is equal to ��*(G).
Moreover, S must be an independent set of G, since, otherwise, if S contains an edge it is easy
to see that it must lie in a triangle of G, contradicting the hypothesis. Thus, the lemma is
proved.

THEOREM 1. If  G  is  a triangle- and pentagon-free graph with m edges, then � (G)�

Proof . Let d (G) be the average degree of vertices of G. Since G is a triangle- and pentagon-
free graph, then we have � (G) � � 1(v), by considering the neighbours of v, and � (G) �

1+� 2(v), by considering v and the vertices at distance 2 from v, for any vertex v of G. Thus,
by the above lemma, � (G)� ��*(G)��v�V� 1 (v) /2� (G), that is,

                                 ��������� (G)2  �  nd (G)/2 or  � (G)  �

But, d (G) �� (G)/n= 2m/n and, therefore,�� (G) �     the theorem being proved.

LEMMA 2. If G is a graph with an odd girth 2 k+ 3 (k� 2) or greater, then

� (G) ≥ �v∈V (  (1+�1 (v) + …+ � k –1(v)))/ (1+ �1 (v) +…+ � k (v)).
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Proof. We randomly label the vertices of G with a permutation of the integers from 1 to n.
Let S1 ��V (respectively S2 ��V ) be the set of vertices v for which the minimum label on
vertices at distance k or less from v is at even (respectively odd) distance k –1 or less. It is
easy to see that S1 and S2 are independent sets and that the expected size of S1 � S2 is given
by

�v∈V (1+�1 (v) + … + �k –1 (v))/(1+�1 (v) + … +�k (v)),

the lemma being proved.

THEOREM 2. If G is a graph with an odd girth 2k +3 (k � 2) or greater, then α (G)� �

2 – (k –1)/k (� v∈V �1 (v)1/(k –1))(k -1)/k.

Proof. By Lemma 1 and applying Lemma 2 for all the values between 3 and k, we have,

��(G) �� �v�V{δ1 (v)/ (1+ �1 (v) +�2 (v)) +   ((1+ �1 (v)+ �2 (v))/(1+ �1 (v)+ �2 (v)+ �3 (v))) +… +

   ((1+�1 (v) +…+�k –1 (v))/(1+ �1 (v) +…+ �k (v)))}/ (k – 1).

Since the arithmetic mean is greater than the geometric mean, then

 α (G) � � v�V ((� 1 (v) 2 – (k –2) ) / (1+ �1 (v) +…+ � k (v))) 1/(k –1).

Since the vertices at even (odd) distance less than or equal to k from any vertex v of G form
independent sets, then

2� (G)�1+ �1(v)+…+ �k(v) .

Thus,

� (G) ��� v�V (�1 
(v) /2k –1�  (G))1/(k –1)

or

� (G)k/(k –1) �  (� v�V� 1 (v) 1/(k–1))

or

� (G)�2–(k –1)/k(� v�V�1(v)1/(k–1)) (k –1)/k,

the theorem being proved.

COROLLARY.  If G is a regular graph of the degree r (G) and with an odd girth 2k +3(k ≥
2) or greater, then

α (G) � 2 – (k –1)/k n (k –1)/k r (G)1/k.

Proof. It follows, immediately, from Theorem 2.

Remark. Marcu [3] presents an algorithm with a computer program which for a given graph
G finds all its maximal independent sets and the exact value of � (G).
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