Short Communication

Some results on the independence number of a graph

Dănut Marcu

Str. Pasului 3, Sector 2, 020795-Bucharest, Romania emails: drmarcu@yahoo.com, danutmarcu@romtelecom.ro

Abstract

In this paper, we give new lower bounds for the independence number $\alpha(G)$ of a finite and simple graph G.

Keywords: Graphs, independence number, lower bounds.

Graphs, considered here, are finite and simple (without loops or multiple edges), and [1], [2] are followed for terminology and notation. Let G = (V, E) be an undirected graph, with the set of vertices $V = \{v_1, v_2, ..., v_n\}$ and the set of edges E, such that |E| = m.

We denote by d(v) the degree of a vertex v in G. It is well known (e.g. see [2]) that $\sigma(G) = d(v_1) + d(v_2) + \ldots + d(v_n) = 2m$.

Let $\delta_i(v)$ be the number of vertices having the distance *i* from a vertex *v* of *G* and let $\alpha(G)$ be the independence number of *G*.

LEMMA 1. If G is a triangle-free graph, then

$$\alpha(G) \ge \alpha^*(G) = \sum_{v \in V} \delta_1(v) / (1 + \delta_1(v) + \delta_2(v)).$$

Proof. We randomly label the vertices of *G* with a permutation of the integers from 1 to *n*. Let $S \subseteq V$ be the set of vertices *v* for which the minimum label on vertices at distance 0, 1 or 2 from *v* is on a vertex at distance 1. Obviously, the probability that *S* contains a vertex *v* is given by $\delta_1(v)/(1+\delta_1(v)+\delta_2(v))$ and, therefore, the expected size of *S* is equal to $\alpha^*(G)$. Moreover, *S* must be an independent set of *G*, since, otherwise, if *S* contains an edge it is easy to see that it must lie in a triangle of *G*, contradicting the hypothesis. Thus, the lemma is proved.

THEOREM 1. If G is a triangle- and pentagon-free graph with m edges, then $\alpha(G) \ge \sqrt{m}$.

Proof. Let d(G) be the average degree of vertices of *G*. Since *G* is a triangle- and pentagonfree graph, then we have $\alpha(G) \ge \delta_1(v)$, by considering the neighbours of *v*, and $\alpha(G) \ge 1+\delta_2(v)$, by considering *v* and the vertices at distance 2 from *v*, for any vertex *v* of *G*. Thus, by the above lemma, $\alpha(G) \ge \alpha^*(G) \ge \sum_{v \in V} \delta_1(v)/2\alpha(G)$, that is,

$$\alpha(G)^2 \ge nd(G)/2$$
 or $\alpha(G) \ge \sqrt{nd(G)/2}$.

But, $d(G) \ge \sigma(G)/n = 2m/n$ and, therefore, $\alpha(G) \ge \sqrt{m}$, the theorem being proved.

LEMMA 2. If G is a graph with an odd girth 2k+3 ($k \ge 2$) or greater, then

$$\alpha(G) \ge \sum_{v \in V} \left(\frac{1}{2} \left(1 + \delta_1(v) + \ldots + \delta_{k-1}(v) \right) \right) / \left(1 + \delta_1(v) + \ldots + \delta_k(v) \right).$$

BÂNUT MAREU

Proof. We randomly label the vertices of G with a permutation of the integers from 1 to n. Let $S_1 \subseteq V$ (respectively $S_2 \subseteq V$) be the set of vertices v for which the minimum label on vertices at distance k or less from v is at even (respectively odd) distance k - 1 or less. It is easy to see that S_1 and S_2 are independent sets and that the expected size of $S_1 \cup S_2$ is given by

$$\sum_{v \in V} (1 + \delta_1(v) + \dots + \delta_{k-1}(v)) / (1 + \delta_1(v) + \dots + \delta_k(v)),$$

the lemma being proved.

THEOREM 2. If G is a graph with an odd girth 2k+3 $(k \ge 2)$ or greater, then $\alpha(G) \ge 2^{-(k-1)/k} (\sum_{v \in V} \delta_1(v)^{1/(k-1)})^{(k-1)/k}$.

Proof. By Lemma 1 and applying Lemma 2 for all the values between 3 and k, we have,

$$\alpha(G) \ge \sum_{v \in V} \{ \delta_1(v) / (1 + \delta_1(v) + \delta_2(v)) + \frac{1}{2} ((1 + \delta_1(v) + \delta_2(v)) / (1 + \delta_1(v) + \delta_2(v) + \delta_3(v))) + \dots + \frac{1}{2} ((1 + \delta_1(v) + \dots + \delta_{k-1}(v)) / (1 + \delta_1(v) + \dots + \delta_k(v))) \} / (k-1).$$

Since the arithmetic mean is greater than the geometric mean, then

$$\alpha(G) \ge \sum_{v \in V} \left((\delta_1(v) 2^{-(k-2)}) / (1 + \delta_1(v) + \dots + \delta_k(v)) \right)^{1/(k-1)}$$

Since the vertices at even (odd) distance less than or equal to k from any vertex v of G form independent sets, then

$$2\alpha(G) \ge 1 + \delta_1(v) + \ldots + \delta_k(v).$$

Thus,

$$\alpha(G) \ge \sum_{v \in V} (\delta_1(v)/2^{k-1}\alpha(G))^{1/(k-1)}$$

or
$$\alpha(G)^{k/(k-1)} \ge \frac{1}{2} (\sum_{v \in V} \delta_1(v)^{1/(k-1)})$$

or
$$\alpha(G) \ge 2^{-(k-1)/k} (\sum_{v \in V} \delta_1(v)^{1/(k-1)})^{-(k-1)/k},$$

the theorem being proved.

COROLLARY. If G is a regular graph of the degree r(G) and with an odd girth $2k+3(k \ge 2)$ or greater, then

$$\alpha(G) \ge 2^{-(k-1)/k} n^{(k-1)/k} r(G)^{1/k}.$$

Proof. It follows, immediately, from Theorem 2.

Remark. Marcu [3] presents an algorithm with a computer program which for a given graph G finds all its maximal independent sets and the exact value of $\alpha(G)$.

Acknowledgements

I wish to express my gratitude to the referees for their useful suggestions and interest concerning this paper.

References

- 1. C. Berge, Graphes et hypergraphes, Dunod, Paris, 1970.
- 2. J. A. Bondy and U. S. R. Murty, Graph theory with applications, Macmillan, 1976.
- D. Marcu, Finding all maximal independent sets of an undirected graph, Bul. Inst. Politechn. Bucureşti Ser. Metal., 50, 21–27 (1988).