Short Communication

Some results on the independence number of a graph

Dãnut Marcu
Str. Pasului 3, Sector 2, 020795-Bucharest, Romania
emails: drmarcu@yahoo.com, danutmarcu@romtelecom.ro

Abstract

In this paper, we give new lower bounds for the independence number $\alpha(G)$ of a finite and simple graph G.

Keywords: Graphs, independence number, lower bounds.
Graphs, considered here, are finite and simple (without loops or multiple edges), and [1], [2] are followed for terminology and notation. Let $G=(V, E)$ be an undirected graph, with the set of vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the set of edges E, such that $|E|=m$.

We denote by $d(v)$ the degree of a vertex v in G. It is well known (e.g. see [2]) that $\sigma(G)=d\left(v_{1}\right)+d\left(v_{2}\right)+\ldots+d\left(v_{n}\right)=2 m$.

Let $\delta_{i}(v)$ be the number of vertices having the distance i from a vertex v of G and let $\alpha(G)$ be the independence number of G.

LEMMA 1. If G is a triangle-free graph, then

$$
\alpha(G) \geq \alpha^{*}(G)=\sum_{v \in V} \delta_{1}(v) /\left(1+\delta_{1}(v)+\delta_{2}(v)\right) .
$$

Proof. We randomly label the vertices of G with a permutation of the integers from 1 to n. Let $S \subseteq V$ be the set of vertices v for which the minimum label on vertices at distance 0,1 or 2 from v is on a vertex at distance 1 . Obviously, the probability that S contains a vertex v is given by $\delta_{1}(v) /\left(1+\delta_{1}(v)+\delta_{2}(v)\right)$ and, therefore, the expected size of S is equal to $\alpha^{*}(G)$. Moreover, S must be an independent set of G, since, otherwise, if S contains an edge it is easy to see that it must lie in a triangle of G, contradicting the hypothesis. Thus, the lemma is proved.

THEOREM 1. If G is a triangle- and pentagon-free graph with m edges, then $\alpha(G) \geq \sqrt{m}$.
Proof. Let $d(G)$ be the average degree of vertices of G. Since G is a triangle- and pentagonfree graph, then we have $\alpha(G) \geq \delta_{1}(v)$, by considering the neighbours of v, and $\alpha(G) \geq$ $1+\delta_{2}(v)$, by considering v and the vertices at distance 2 from v, for any vertex v of G. Thus, by the above lemma, $\alpha(G) \geq \alpha^{*}(G) \geq \sum_{v \in V} \delta_{1}(v) / 2 \alpha(G)$, that is,

$$
\alpha(G)^{2} \geq n d(G) / 2 \text { or } \alpha(G) \geq \sqrt{n d(G) / 2}
$$

But, $d(G) \geq \sigma(G) / n=2 m / n$ and, therefore, $\alpha(G) \geq \sqrt{m}$, the theorem being proved.
LEMMA 2. If G is a graph with an odd girth $2 k+3(k \geq 2)$ or greater, then

$$
\alpha(G) \geq \sum_{v \in V}\left(\frac{1}{2}\left(1+\delta_{1}(v)+\ldots+\delta_{k-1}(v)\right)\right) /\left(1+\delta_{1}(v)+\ldots+\delta_{k}(v)\right) .
$$

Proof. We randomly label the vertices of G with a permutation of the integers from 1 to n. Let $S_{1} \subseteq V$ (respectively $S_{2} \subseteq V$) be the set of vertices v for which the minimum label on vertices at distance k or less from v is at even (respectively odd) distance $k-1$ or less. It is easy to see that S_{1} and S_{2} are independent sets and that the expected size of $S_{1} \cup S_{2}$ is given by

$$
\sum_{v \in V}\left(1+\delta_{1}(v)+\ldots+\delta_{k-1}(v)\right) /\left(1+\delta_{1}(v)+\ldots+\delta_{k}(v)\right)
$$

the lemma being proved.
THEOREM 2. If G is a graph with an odd girth $2 k+3(k \geq 2)$ or greater, then $\alpha(G) \geq$ $2^{-(k-1) / k}\left(\sum_{v \in V} \delta_{1}(v)^{1 /(k-1)}\right)^{(k-1) / k}$.

Proof. By Lemma 1 and applying Lemma 2 for all the values between 3 and k, we have,

$$
\begin{gathered}
\alpha(G) \geq \sum_{v \in V}\left\{\delta_{1}(v) /\left(1+\delta_{1}(v)+\delta_{2}(v)\right)+\frac{1}{2}\left(\left(1+\delta_{1}(v)+\delta_{2}(v)\right) /\left(1+\delta_{1}(v)+\delta_{2}(v)+\delta_{3}(v)\right)\right)+\ldots+\right. \\
\left.\frac{1}{2}\left(\left(1+\delta_{1}(v)+\ldots+\delta_{k-1}(v)\right) /\left(1+\delta_{1}(v)+\ldots+\delta_{k}(v)\right)\right)\right\} /(k-1) .
\end{gathered}
$$

Since the arithmetic mean is greater than the geometric mean, then

$$
\alpha(G) \geq \sum_{v \in V}\left(\left(\delta_{1}(v) 2^{-(k-2)}\right) /\left(1+\delta_{1}(v)+\ldots+\delta_{k}(v)\right)\right)^{1 /(k-1)} .
$$

Since the vertices at even (odd) distance less than or equal to k from any vertex v of G form independent sets, then

$$
2 \alpha(G) \geq 1+\delta_{1}(v)+\ldots+\delta_{k}(v) .
$$

Thus,

$$
\begin{gathered}
\alpha(G) \geq \sum_{v \in V}\left(\delta_{1}(v) / 2^{k-1} \alpha(G)\right)^{1 /(k-1)} \\
\text { or } \\
\alpha(G)^{k /(k-1)} \geq \frac{1}{2}\left(\sum_{v \in V} \delta_{1}(v)^{1 /(k-1)}\right) \\
\text { or } \\
\alpha(G) \geq 2^{-(k-1) / k}\left(\sum_{v \in V} \delta_{1}(v)^{1 /(k-1)}\right)^{(k-1) / k},
\end{gathered}
$$

the theorem being proved.
COROLLARY. If G is a regular graph of the degree $r(G)$ and with an odd girth $2 k+3(k \geq$ 2) or greater, then

$$
\alpha(G) \geq 2^{-(k-1) / k} n^{(k-1) / k} r(G)^{1 / k}
$$

Proof. It follows, immediately, from Theorem 2.
Remark. Marcu [3] presents an algorithm with a computer program which for a given graph G finds all its maximal independent sets and the exact value of $\alpha(G)$.

Acknowledgements

I wish to express my gratitude to the referees for their useful suggestions and interest concerning this paper.

References

1. C. Berge, Graphes et hypergraphes, Dunod, Paris, 1970.
2. J. A. Bondy and U. S. R. Murty, Graph theory with applications, Macmillan, 1976.
3. D. Marcu, Finding all maximal independent sets of an undirected graph, Bul. Inst. Politechn. Bucureşti Ser. Metal., 50, 21-27 (1988).
