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ABSTRACT

The buckling problems of skew plates with different edge support conditions
involving simple support and clamping are considered. The in-plane stresses gr
represented in terms of oblique components.  Rayleigh-Ritz method 15 used
employing a double series of functions appropriate to the combination of the edge
conditions. Numerical results are presented for severdl combinations of side
1ativ, skew angle and different loadings.

1.  INTRODUCTION

Skew plates have their application in construction of modern swept
wing aircraft. The buckling problems of plates of such shape are of
interest to the designer. The boundary conditions obtaining on individual
panels are more nearly in the nature of elastic restraint against rotation.
Analytical treatment of this boundary condition, however, is somewhat
tedious and it is even more so for skew geometry. Consequently, the ideal
boundary conditions of simple suppert or clamping are usually analysed.

While considerable literature is available on buckling of rectangular
plates under different loadings (Refs. 1,2,3) yet buckling coefficients fory the
many different combinations of edge conditions involving simple support
and clamping are not fully available.

The problem of buckling of clamped skew plate under uniform compre-
ssion was studied by Guesi®. He applied the Lagrangian Multiplier method
10 get upper bounds and rather doubtful lower bounds (see Ref.5). In |
another paper® he considered the buckling of clamped rhombic plate under
bending and compiession. - Using Rayleigh-Ritz method, Wittrick studied
the buckling problem of clamped skew plates under uniform compression’
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and pure shear®. He used Iguchi functions and found that the convergence
was slow particularly in the case of positive shear. Hasegawa® calculated
the buckling coefficients of clamped rhombic plate under the action of pure
shear by the Rayleigh-Ritz method using polynomials. Hamada'® used
Lagrangian multiplier method to study the problem of buckling of clamped
skew plates under the actioa of uniform compression and oblique shear.
Matrix methods have also been applied!! to find the buckling coefficients of
the parallelogramic plates under the action of shear and compression.
Durvasula’® investigated the above problem using Galerkin Method and
expressing the deflection as a series of beam characteristic functions. The
buckling coefficients have been calculated when direct and shear forces are
acting either individually or in combination. Ashton!? also investigated the
problem using beam characteristic functions and Rayleigh-Ritz method.
Mansfield”® obtained a rough estimate for the buckling coefficient under

uniform compression.

Yoshimura and Iwata'¥ obtained the buckling coefficients for the simply
supported skew plates under oblique shear and compression. Durvasula'®
solved the problem using double Fourier sine series and Rayleigh«Ritz
method with in-plane stresses expressed in terms of orthogonal components.
Durvasula and Nair'é have also considered the buckling problem of simply
supported skew plates with in-plane stresses expressed in terms of oblique
compounents. Extensive numerical results ware presented for various com-
binations of skew angles and side ratios. [nteraction curves have also been
given.

In this paper, the buckling problems of skew plates supported differ-
ently on different edges are considered. The support conditions considered
are confined to different combinations of simple support and clamping on
the four edges. The in-plane stresses are represented in terms of oblique
components. Rayleigh-Ritz method has been used with the buckling mode
expressed as a double series of beam characteristic functions appropriate to
the combinations of the edge conditions in each case. Numerical calcula-
tions have b2en made to obtain the buckling coefficients mainly when each
of the stress components is present individually for different combinations
of side ratio, skew angle and boundary condition and for a few combined
loadings. Convergence has bzen examined in a few typical cases and is
found to be satisfactory.
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dimensions of the plate

Coefficient in the series expansion of deflection
flexural rigidity of the plate. [EA3/12(1~3%)]
Young’s Modulus of the material of the plate
Matrices defined in Equation [15]

matrix defined in Equation [18]

plate thickness

integrals defined in Equation [14]

maximum value of indices m, r

maximum value of indices n, s

midplane forces (oblique components), kg, & a, ha
respectively

B4

integers

normal bending moment

non-dimensional midplane force parameters o, b%h/n? D,
a,bhn? D, o, b* hjx?® D respectively.

non-dimensional midplane force parameters
(o,a*h cos’$)[D, (o, a* h cos™) [D, (o, a*h cos*f)/D,
respectively.

strain energy of the plate

potential energy of the middle surface forces.
deflection of the plate

beam characteristic functions

oblique coordinate system defind in Fig. 1
non-dimensional coordinates, x/a and y/b respectivaly
Poisson’s ratio

obligne stress components defined in Fig. 1

Skew differential operator
=Sec? g [3%/ax? 2 Sin ¢(d%ox ay) + (3Y/3)3) |
Non-dimensional skew differential operator
- Sec? § [2%/0£7 - 22 Sin ¢ (3%adan) + A (3%/27) ]
Skew angle as defined in Fig. 1
a/b. gide ratio
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2. TFORMULATION OF THE PROBLEM

A sketch of the skew plate is shown i Fig. 1 along with the in-plane
ktresses represented in terms of oblique components. Since the geometry of
the plate is oblique in nature, the use of oblique stress components instead
of usual orthogonal components is preferable. In terms of oblique
components, expressions for the strain encrgy of the plate and the potential
energy of the middle surface forces are simpler and the structure of
these expressions is similar to those in the case of rectangular plates with
orthogonal stress components. The plate is assumed to be thin, uniform
and isotropic.

Using the classical, small deflection thin plate theory, the differential
equation for the deflection of a plate of constant thickness under the action
of middle surface forces is given by 17,

Deos f p* We —h (o, (3*W/ox™) +20,, (3*W/[3x 3y) + o, (32W/ay)]  [1]

In terms of oblique coordinates, the boundaries of the skew plate are

given by,
x=0, x=a; y=0, y=b. 12}

Oy

Z
Oxy

= X,X{ 8

0
e —| X
Fic. 1

Sketch of the Skew Plate and the in-plane Stress System (Oblique Components)
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The boundary conditions considered are confined to combinations of
simple support and clamping. These conditions are stated as follows :

Simple support: W=M,~0 3]

ar alternatively for a polygonal plate’®
W=p! W=0 [3b]
Clamping : W=[(aW/om ]=0 13¢]
If the edge x—a, for example, is simply supported, then boundary
condition, Eq (3b) takes the form,
W= (3%/3x%) 2 sin¢f (3%/5x ap)] W=0 [4]

If the edge y=b is clamped, then the boundary condition Eq. (3¢) takes
the form¢*.

W={ (3W/ay)]=0 {5

In this paper, the buckling preblems with different edges supported
differently are considered. An approximate solution of the buckling problem
stated by Equation [1], together with boundary conditions such as given by
Equations [3b, 3c] appropriate to each edge is solved using the Rayleigh-Ritz
method.

Non-dimensional coordinates £ and 5 are defined as follows :
E=xfa; y=y/b [6

For the stress system shown in Fig. 1. the expressions for the strain energy
of the plate and the potential energy of the middle surface forces are given
respectively by V7,

v Deosdb Df' f L W) 201 ) scc’z,b{W,gg W,,m—ngn} WE dy (7]

2a* °

hb o3}
Veir of of (0 W2y +2X 0 W, W, +Xa W2\ d¢ ay t3]

For polygonal boundaries with W=0 along the edges the expression for
U reduces to 1*

_ Dcosg b

U
24%

11
JJ(VlZW)zdfd? ]



Buckling Coeﬁ?ciems of Variously Supported Skew Plates 33

The deflection W is expressed as a double series in terms of ““ admissible
functions ', f.e., functions which satisfy the geometric boundary conditions.
Beam characleristic functions which have been widely used in the literature
have been made use of in the preseat analysis. The series is written as,

£
Wi )= = 2 oy X () Y, () oy

where X, (§), Y, () are the beam characteristic functions which are appro-
priate to the particular boundaly conditions specified. For example, if the
edges £=0 and £=1 are both clamped, the clamped:clamped beam functions
are taken for X,, (£). Similarly, if the edge »—0is clamped and edge p=1
is simply supported, the clamped-simply supported beam functions are taken
for Y, (1)

Substituting the expressions for W in Egs. [8] and [9], we‘get,

3 1 1 M N M N
g- PeC¥b pp 3 3 ¥ % ¢,c, [X,’,,’ Y,—2 Asin ¢ X7, Y/

2a3 0 0 m=1 n=l r=1 $=1
+A X, Y,,”] [X,” Y, =2Asing X Yo+ A X, Y;’] dé dy {111
hb 1 1 M N M Iy‘
Ve — [ [ 2 2 2 Z CuCy 0. X, X LY,
209 & m=1 n=1 r=1 s=1
+ 200, Xp X, Y, Y+ No, X, Y, X, Y]1dédy [12]

The coefficient C,,, are determined from the condition'?

[(8/2C,, 1(U+V) =0 form=1, 2....M, forn=1,2 ,.. N [13] .

The integrals involving the functions X, (£), ¥, () and their derivatives
are defined as follows :

I~ [ X&) X2@)dE; s = [ Yo(p) Ye(p) dy [14]
0 Q

where p and g represent the crder of the derivative. The formulae for such
miegrals were given by Felgar®® and the numerical values of some of these
integrals are given in Ref. 21. Using the expressions for U and V from
Eqs. {I1] and [12] in Eq. [13], and using the relationships between the
integrals, we get, finally, a set of linear simultaneous algebraic equations in
C,, which can be expressed in the form of a matrix equation as follows :

[6] {C.} =R: [HD] {C,}+R; [HP] {C.}+R5, (4] {C.} (15]
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where
Gmrg= {122 TS + A* (120 129 2 sin of 12 IS + 112 118 + A (230 12
19 I +2X (1+2sin? gy T1L 70 [16]
HO =13 00 Q) =N IRTI HG =200 T [

This is an algebraic eigenvalue problem. To get the bucklmg loads
when N,, N,, N,, are present individually or in combination, numerical

values are given to two of the three parameters R: . ﬁ; , R, and the third
is treated as the eigenvalue. For example, if we wish to determine the

buckling parameter ?2;, when both N,, and N, are acring, we assign appro-

priate numerical values to .-I-E; and J—i;y and obtain the G; matrix as,

[G)]=[G] — R} [H®] — K, [H®] 18]
Equation [15] then reduces to

16 {C.} =K2 [HY] {C,} 119
which can be written as,

(6,71 [H®) {C,} =(U/RS) {C,.}) [20]

For combinations of boundary conditions symuietric about the diagonals,
the Equation {15] splits, into two cases: (m+n) Even and (r+s) Even:
(m+n) Odd and (r+5) ©dd. The Even case corresponds to skew symmetric
case consisting of modes which are doubly symmetric and doubly antisym-
metric. The Odd case cotresponds to skew antisymmetric case consisting of
modes which are symmetric-antisymmetric and antisymmetric-symmetric. This
splitting reduces the order of the matrix to be considered for finding out the
eigenvalues and eigenvectors. If K(=MxN) is the order of the original
matrix, then the size of matrix for the even case will be (K+1)/2if Kis
Odd and K/2 if K is Even; and the matrix size for the Odd case will be
(KE—1)/2 if K is Odd and K/2 if K is Even.

The eigenvalue R} can nmow be determined by using any of the standard
methods. The two groups give two eigenvalues; the lower of the two is
the desired critical buckling load. Similar procedure can be adopted to
dstermine the eigenvalues for other combinations of loads.

For cases where such symmetry of boundary conditions about the
d:agonals is not present, this splitting is not possible and the full matrix of
ordesr K will have to be handled.
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3. NUMERICAL CALCULATIONS

Numerical calculations have been made for different combinations of
side radio a/b and skew angle ¢ for different edge conditions. Since the
accuracy of the eigenvalues decreases with increasing value of s, more terms
have been considered for higher skew angles. For skew ¢ = 30°, the
number of terms considered is upto M =N=6 except in the case of N, acting
alone in which case the number of terms considered is upto M=N=5 only.
For i =45°, terms upto M= N=38 have been taken. The calculations made
are mainly for N,, N, or N, acting alone, though the combined action of
N,. N, and N,, has also been siudied in a typical case. Convergence study
has been made for one representative boundary coadition when N, and N,,
are each acting alone. The numerical values are presented in Tables 1 to 5.

4. RESULTS AND DIISCUSSION

Resutts of the convergence study for one typical boundary condition in
the case of a rhombic plate wilh ¢ =30° are given in Tables 1 and 2. Table 1

TABLE 1
Convergence Study : N, Acting Alone

A=afb=1, $=30°

conanrons M N Matrix size Eisengaiuc-

2 2 2 12.89

3 3 4 10.41

4 4 8 9.663

¢ 5 5 12 9,510

N a/S YA

< 6 6 18 9.391

7 7 24 9.352

8 8 32 9.302

9 9 41 9.282

*These values are all from (M--N) ODD case; (M-N) EVEN case gives higher values.
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TABLE 2

Convergence Study : N, Acting Alone

A=a/b=1; =30"

Positive Shear /{7} Negative Shear @

Eigenvalue* R,

Boundary conditions M N Matrix size — -
Positive Negative
2 —

ey 2 2 2 18.69 37.78
4 4 8 R.550 3434
6 6 18 8.314 3479

e m——
4 8 8 32 8.233  —34.75

= These values are all from (M-+N) EVEN case. (M--N) ODD case gives higher values.

gives the cigenvalues when N, alone is acting. Table 2 gives the eigen-
values when N, alone is acting: Ii can be seen from Table 1 that the
convergence of the eigenvalues is satisfactory. When N,, is acling the
convergence is equally good for positive as well as negative shears (Table 2).

The buckling coefficient -j(x has been obtained for seven different
combinations of boundary conditions for a/b equal to 0.5 and 1 and ¢ equal
to 0°, 15°, 30° and 45°. These are given in Table 3 along with resulis,
where available, for comparison. Similarly for the same combinations of
a/t and § and different boundary conditions, the buckling coefficients
Fexy and ﬁ, are given in Tables 4 and 5 respectively. In Table 6, the
buckling coefficient Rx in the presence of inplane forces N,, and N, is
given for a rhombic plate with skew angle =30 for a typical boundary
condition. From Table 3 it may be seen that even for rectangular plates
complete results are not available. For skew plates with different combina-
tions of boundary conditions no results could be found in the literature for
comparison. The results of the present paper are in good agreement with
the available results. - N
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The buckling coefficient R, =N, b*/n? D increases with the skew angle,
15 may be expected, and decreases with a/b. Also the values in Table 3 are
indicative of the relative stiffnesses of the plates with different combinations
of boundary conditions for a given combination of a/h and . One can
expect that for a given afb and i the buckling coefficient for a plate with
combination of clamped edge conditions (C) and simply supported ecdge
conditions (S) should be in between the values for a plate of the same
geometry with all edges clamped and all edges simply supported; this is
borne out by the present results except for a/b<=0.5, for the obvious reason
that in this case thé order of approximation is lower (M=N=4).

In Table 4, the buckling coefficients under positive and negative shears
. gré given along with some available results for rectangular plates. The
agreement between the present resulls and available results is quite good.
As in the case of T{x, the buckling coefficient }Xy decreases with a/b and
increases with 1.  The buckling coefficient I—Qxy for positive shear is less than
that for negative shear irrespective of a/b, ¢ and gboundary condition. This
js in conformity with the observation made previously'.

In Table 5, the critical buckling coefficient 1—’(,, is given for differnt com-
bination of a/b, and boundary condition. The buckling coefficient ']}y, for a
certain a/b and ¢ and boundary condition, can be related to ;tx for corres-
ponding b/a and , for appropriate boundary conditions. For example for
§=0°, a/b=0.5 foriboundary. conditions (Case 6) ﬁy can be interpreted as the
value of 11 for =0 and a/b=2 for boundary conditions (Case 5). For
this to be valid, the corresponding orders of approximations have to be
necessarily equal; the slight difference that is seen in the case of ix for
a/b=1(Table 3) and Ey for afb=1 (Table 5) is because the corresponding
orders are not the same.

In Table 6, the critical buckling coefficient }, in the presence of
different combinations of inplane forces N, und N, is given for a typical
combination of a/b, 4 and boundary condition. The computer programme,
however, can generate data for other combinations of a/b, ¢ and any

combined loading and is thus capable of generating interaction surfaces
which should prove useful in design.
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TABLE 3

Buckling Coefficient R. For Different Edge Conditions

- Bound V=00 PRYS ? Cus30e ; P
i oundary [

Cese | Comdition | gpos| 1 o5 | 1 | os | t?ﬁ

1x =k "fs' 625 400 684 432 917 555 157 g4

2 ;EEZ— 10.4 485 113 521 149 651 241 9p;
686 5S4 145 616 968 162 152 102
3 (685 (5.74)°

4 ﬂ 109 622 18 655 153 787 243 104
s ﬂ 182 675 198 714 256 851 380 113

(6.74)°

6 ﬂ 770 176 §30 810 105 951 159 120
(7.69° (7.69)°
7 ﬂ 18.7 807 202 847 259  9.83 383 125

19.4 10.1 20.8 10.5 263 11.8 388 143

B

(@) Ref. 18 (Levy's Method) (¢) Ref. 2 (Tak=n from the graph)
The sigenvalues corresponding to this caseare taken from Ref. 16
(note that for a/b=0.5, M=N=4 and far a/b=1, M=N=6.)
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Positive Shear

TaBLE 4

7

Biickling Coefficient R,y For Different Edge conditions

Negative Shear

Boundary
Conditions

39

¥=0° | =150 $==30° ¥=150
alb=0.5 1| es | 0.5 1 I 05 |1
+9.40 7.15 6.52
—14.71 —27.4
+26.5 310.7 20.3 8.05 17.8 7.09 180 7.26
(26.88)° (1098 —40.3 —16.7 ~725 -30.6 ~-163 -70.0
+32.4 +10.7 24.6 8.05 217 7.09 222 7.76
(33.72)+ (10.98)° -49.6 —16.7 —89.5 —-30.6 —199 -70.0
33.1 11.7 24.9 8.79 21.9 7.63 224 7.66
-33.2 -11.9 —-50.9 -184 -—-90.7 -33.6 —-201 -76.2
+40.1 +12.6 30.8 952 26.7 8.31 268 8.37
(40.16)° (12.6)"’b —60.3 —-19.3 —107 -—34.8 —238 -73.5
+26.9 +12.6 205 9.52 18.2 8.31 183 8.37
(2.688)* (12.6)** —41.0 —19.3 —-73.9 -348 ~166 -78.5
+40.5 +13.4 30.9 10.1 270 875 269 8.71
—6l.1 —205 —109 —37.0 —242 -831
+342 +13.4 25.7 10.1 223 875 225 8.71
—~51.8 =205 -91.7 ~37.0 -203 -—83.1
+14.7 31.2 11.1 27.2 9.50 27.1 935
~622 =223 —111 —400 -246 -—893

! +41.0

* Bigenvalues for this case are taken from Ref. 16 ; a) Ref. 23, b) Ref. 3.
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TipLe §

Buckling Coeffigient R, For Different Edge Condiiion

l Y0 \ ¥=15 | $=30° | e
Case CE%‘&?&%;\}; ‘* T P N e T
ap=0s| 1 | 0s [t [ o5 [t s [
, T e——
£

1* /é‘ 4 4.00 43 5.55 8.40

2 ﬂ 24 574 235 615 273 156 345 102

170 485 180 519 215 646 280 9qy

3

4 227 6.22 26.1 6.53 27.8 7.80 348 104
5 27.¢ 7.70 294  8.08 34.2 9.39 423 120
6 19.4 6.75 202 713 23.0 847 285 113
7 289 8 09 30,3 8.56 346 101 428 131
8 24.9 8.07 259  8.46 29.3 978 360 125
% 316 10.1 325 105 358 118 431 143

* These values are taken from Ref. 16.
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TABLE 6
Buckling CoefficientR, vnder combined Loading for SCSC case

ojb=1; $=30°; N;=al N, =pN,

Boundary conditions & B R critical
0 0 9.51
0 0.5 6.66
] 10 493
0.5 0 6.77
0.5 0.5 5.08
0.5 1.0 3.96
1.0 0 4.87
i 1.0 0.5 3.96
10 1.0 3.27

5.  CONCLUSIONS

The buckling problems of skew plates with different edge conditions
involving simple support and clamping are considered with the in-plane
stresses represented in terms of oblique components. Rayleigh-Ritz method
is used expressing the deflection in terms of beam characreristic functions in
obligue coordinates. Buckling coefficients have been oblained mainly when
the in-plane forces N,, N,,, N, are acting individually for different combi-
nations of e/b, # and boundary condition and for a few combined loadings.
For buckling under shear loading (oblique components) two critical values
exist; the positive shear (acting in a way so as to reduce the skew angle)
1s found 1o be less than the negative shear in magnitude for all the plate
configurations and boundary conditions considered. The computer programme
developed can be used for generating extensive design data in the form of
buckling charts and interaction surfaces for buckling under combined loading.
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