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The buckling prol~lems o f  skew plates with di@rent edge suppo,.t conditions 
involving simple support and clamping are considered. The in-plane stresjn 
represented in terms of oblique components. Rayleigh-Kitz method 13 wed 

a double series offunctions appropriate to the combinarion of the edge 
conditions. ~Vumerical results are presented for several cornbi~mtiorrs of side 
rariu, skew angle and different loadings. 

Skew plates have their application in construction of modern swept 
wing aircraft. The buckling problems of plates of such shape we of 
interest to rhe designer. The boundary conditions obtaining on individual 
panels are more nearly in  the nature of elastic restraint against rotation. 
Analytical treatment of this boundary condition, however, is somewhat 
tedious and it is even more so for skew geometry. Consequently, the ideal 
boundary conditions of simple support or clamping are usually analysed. 

While considerable literature i s  available on buckling of rectangular 
plates under different loadings (Refs. 1,2,3) yet buckling coefficients foqj the 
many different combinations of edge conditions involving simple support 
and clamping are not fully available. 

The problem of buckling of clamped skew plate under uniform compre- 
ssion was studied by Guesl'. He applied the Lagrangian Multiplier method 
to get upper bounds and rather doubtful lower bounds (see Ref. 5). In i 
another p p e r 6  he considered the buckling of clamped rhombic plate under 
bending and comp~ession. . Using Rayleigh-Ritz method, Wittrick studied 
the buckling problem of clamped skew plates under uniform compression7 

*Paper presented at the 21nd Annual General Meeting of the Aeronautical Society of 
India held at Hyderabad on :be 20th and 2 1 s  March 1970, 
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and pure shears. H e  used Iguchi functions and found that the convergence 
was slow particularly in the case of positive shear. H3segawag calculated 
the buckling coefficients of clamped rhombic plate under the action of pure 

by the Rayleigh-Ritz method using polynomials. Hamada'o used 
Lagrangian multiplier method 10 study the  problem of buckling of clamped 
skew plates undsr the action o f  uniform compression and oblique shear. 
Matrix methods have also been applied" to find the buckling coefficients of 
the parallelogrami~ plates under the action of shear and compression. 
~ u r v a s u l a ~  investigated the above problem using Galerkin Method and 
expressing the deflection as  a series of beam characteristic functions. The 
buckling coefficients have been calculated when direct and shear forces are 
acting either individually o r  in combination. Ashton" also investigared the 
problem using beam characteristic functions and Rayleigh-Ritz method. 
~ansf ie ld"  obtained a rough estimate for the buckling coefficient under 
uniform compression. 

Yoshimura and IwaraC4 obtained the buckling coefficients for the simply 
supported skew plates under oblique shear and compression. D u r v a s ~ l a ~ ~  
solved the problem using double Fourier sine series and Rayleigh-Ritz 
method with in-plane stresses expressed in terms o f  orthogonal components. 
Durvasula and Nair16 have also considered the  buckling problem of simply 
supported skew plates with in-plane stresses expressed in terms of oblique 
components. Extensive numerical results w x e  presented for various com- 
binations of skew angles and side ratios. Interaction curves have also been 
given. 

In this paper, the  buckling problems of skew plates supported differ- 
ently on different edges are  considered. The support conditions considered 
are confined to different combinations of stmple support and clamping on 
the four edges. The in-plane stresses are represented in terms of oblique 
components. Rayleigh-Ritz melhod has been used with the buckling mode 
expressed as  a double series of beam characteristic functions appropriate to 
the combinations o f  the edge conditions in  each case. Numerical calcula- 
tions have bsen mlde  to  obtain the buckling coeffi:ients mainly when each 
of the stress components is present ind~vidually for different combinations 
of side ratio, skew angle and  boundary condition and for a few combined 
loadings. Convergence has been examined in a few typic31 cases and is 
found to be satisfactory. 
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Notario~~ : 

a,b dimensions of the plate 

c , ~  Coellicient in the series expansion of deflection 

D flexural rigidity of the plate. [Eh3/12 !I --vs) ] 

E Young's Modulus of the material of the plate 

G, h"'), H(", H@' Matrices defined in Equation El51 

matrix defined in Equation [18] 

piate thickness 

integrals defined in Equation [I41 

maximum value of indices m, r 

maxtmum value of indices n, s 

midplane forces (oblique components), h u,, h a,, h o, 

respectively 

integers 

normal bending moment 

non-dimensional midplane force parameters u, b2h/x2 D, 
a, h2h/m2 L), uxy bZ h / l t2  D respectively. 

non-dimensional midplane force parameters 
(u,a3h cos3#)/D, (uy  (12 h cos3$) ID, (uxy a2h cos3$/~, 
respectively. 

strain energy of the plate 

potential energy of rhe middle surface forces. 

deflection of the plate 

beam characteristic functions 

oblique cooldinate system d&nd in Fig. 1 

non-dimensional coordinates, x/a and y/b respectively 

Poisson's ratio 

oblique stress components defined in Fig. 1 

Skew differential operator - Seca $ [a2/axa-2 Sin $(allax ay) + (a2/ap) ] 
Non-dimensional skew differential operator - Sec2 4 ta2/a5'-2A Sin $ (a21aEas) + A2 (al/avl) I 

Skew angle as defined in Fig. 1 

a/b. Side ratio 



A sketch of the skew plate is shown In Fig. 1 along with the jn-plane 
'Stresses represented in terms o f  obliquz components. Since the geometry of 
the plate is oblique in nature, the Usc o f  oblique stress components instead 
of usual orthogonal components is preferable. I n  terms of oblique 
componeqts, expressions for the strain encrgy of the plate and the potential 
energy of the middle surface forces are simpler and the structure of 
these expressions is similar to those in  the case of  rectangular plates with 
orthogonal stress components. The plate is assumed to be thin, uniform 
and isotropic. 

Using the classical, small deflection thin plate theory, the differential 
equalion for the deflection of a plate of constant thickness under the  action 
of middle surface forces is given by ", 

In terms of oblique coordinates, the boundaries of the skew plate are 
given bv. 

FIG. 1 
Sketch of the Skew Plate and the in-plane Stress System (Oblique Components) 
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The boundary conditions considered are  confined to combinations 
silmple support and clamping. These conditlonc, a r e  stated as  follows: 

Simple support : W -  M, - 0 Pa l  

o r  alternatively for a polygonal 

Clamping : 

I f  the edge x-a, for example, is sinlply supported, then boundary 
condition, Eq (3b) takes the form, 

W=[ (bZ/axZ) -2 sin $ (b2/ax ay)] W-0 141 

If the edge y - b  is clampcd, then the boundary condition Eq. (3c) takes 
the form'. 

w - [ ( a w a y ) ] =  0 Is1 

I n  this paper, t he  buckling problems with different edges supported 
differently are considered. An approximate solution o f  the buckling problenl 
slated by Equation [I], together with boundary conditions such as given by 
Equations [3b, 3c] appropriate to each edge is solved using the Rayleigh-Ritz 
method. 

Non-dimensional coordinates f and 7 a re  defined as  follows : 

For  the stress system shown in Fig. 1. the expressions for the strain energy 
of the plate and the potential energy of the middle surface forces are given 
respectively by '', 

For  polygonal bounddries with W - 0  along the  edges the expression for 
U reduces to "*' 
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The deflection W is expressed as :I double serles in terms of " admissible 
tllnctions ", i . e . ,  functions which satisfy the geometric boundary conditions. 
Beam charac~eristic functions which have been widely used in the literature 
have been made use of in the present analysis. The serles is written as, 

where X, ( f ) ,  Y, ( 7 )  are the beam characteristic functions Which are appro- 
priate to the particular bounda~y  condit~ons specified. For example, if the 
edges f -0  and 5- 1 are both clamped, the clamped.clamped beam functions 
are taken for X, (f). Similarly, i f  the edge 11 -0 is clamped and edge 7 = 1 
is simply supported, the clamped-simply supported beam functions are  taken 
for Y, (7). 

Substituting the expressions for IV in Eqs. [8] and [9],  we get, 

The coefficient C,, are determined from the condition19 

[(a/aC,,](U-1-V) = G for m = 1 ,  2. . . .M, for n -1 ,  2 , . . N [I31 

The integrals involving the functions X,,, (f), Y, ( I )  and their derivatives 
are defined as follows : 

where y and q represent the order of the derivative. The formulae far such 
integrals were given by Felgarl" and the numerical values of some of these 
integrals are given in Ref. 21. Using the expressions for  U and V from 
Eqs. [Ill and [I21 in Eq. [13], and using the relationships between the 
integrals, we get, finally, a set of linear simultaneous algebraic equations in 
C, which can be expressed in the form of a matrix equation as follows : 
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This is an algebraic eigenvalue problem. TO get the buck11ng loads 
when N,, N,, N,, are present individually or  in combination, numerical - - -  
values are given to two of the three parameters Rz , R: , R:, and the third 
is treated as the eigenvalue. For  example, if we wish to deterni~ne the 

buckling parameter >:, when both iV, and N, are awing, we assign ap$ro- 

priate numerical values to 2; and $ and obrain the G, matrix as, 

Equat~on [I51 then reduces to 

For combinations of boundary conditions syrnrrietricabiout the diagonals, 
the Equation €1.51 splits into two cases : ( M f  n) Even and (r i -s)  Even: 
(m+n) Odd and ( r+s )  Odd. The Even case corresponds to skew symmetric 
case cons!sting of modes which are doubly symmetric and doubly antisym- 
metric. The Odd case corresponds to  skew antisymmetric case consisting of 
modes which are symmetric-antisymmetric and antiqmmetric-symmetric. This 
splitting reduces the order of the matrix to be considered for finding out the 
eigenvaiues and eigenvectors. If K ( = M x N )  is the order of the original 
matrix, then the size of matrix for the even case will be ( K f  1)/2 if K is 
Odd and K/2 if K is Even ; and the matrix size for the Odd case will be 
(K-1)/2 if K is Odd and K/2 if K is Even. 

The eigenvalue 2 can mow be determined by using any of the standard 
methods. The two groups give two eigenvalues; the lower of the two is 
the desired critical buckling load. Similar procedure can be adopted to 
determine the eigenvalues for other combinations of loads. 

For cases where such symmetry of boundary conditions about the 
dmgonafs is not present, this splitting is not possible and the full matrix of 
order K will have to ba handled. . 



Numerical calculations h a ~ e  been made for different combinations of  
side radio alb and skew angle $ for different edge conditions. Since the 
accuracy of the eigenvalues decreases with increasing value of fi, more terms 
hate been considered fur higher skew angles. For skew 4 e 30°, the 
number of terms considered is upto M = N = 6  except in the case of N, acting 
alone in which case the number of terms considered is upto M = N = 5  only. 
For I/ =45", terms upto M =  N-8  have been taken. The calculations made 
are mainly for N,, N, or Vxy acting alone, though the combined action of 
N,, y,, and :VXJ has also been studied in a typical case. Cmvergence study 
hes been made for one representalive boundary condition when If, and N,, 
are each acting illone. The numerical value% are presented in Tables 1 to 5. 

4. RESULTS AND DISCUSSION 

Results of the convergence study for one typical boundary condition in 
the case of a rhombic plate with f i = 3 O 0  are given in Tables 1 and 2. Table 1 

Convergence Study : Nx Acting Alone 

A-a/b-  I, I/-30" 
-- 

Boun3ary Eigen - value* 
CondltlOnS M N Matrix size 

Rr 

. - 

'These values are all from (M+N) ODD case; (M+N) EVEN case giver highcrvalues. 



TABLE 2 

Convergence S l ~ l d ?  : N ,  Acting Alone 

Wcgative Shear - 
Eigenvalue* H, 

Boilndary conditions M N Matrix slze ._ 
Positive Ncgatlve 

-- 

-- - These values arc all from (M+N) EVEN case. (M+N) ODD case gives higher values. 

gives the eigenvalues when N, alone is acting. Table 2 gives the eigen- 
values when N,, alone is acting; I1 can be seen from Table 1 that the 
convergence of the eigenvalues is satisfactory. When N, is acting the 
convergence is equally good for positive as well a s  negative shears (Table 2). 

The buckling coefficient >, has been obtained for sevcn different 
combinations of  boundary conditions for u/b equal to  0.5 and 1 and JI equal 
10 On, l j" ,  30" and 45". These are given in  Table 3 along with results, 
where available, for comparison. Similarly for the same combinations or 
a/b  and # and different boundary conditions, the buckling coefficients 

2, and 4 are given in Tables 4 and 5 respectively. In Table 6, the 

buckling coefficient & in  the presence o f  inplane forces N,, and N, is 
given for a rhombic plate with skew angle $=3O0 for a typical boundary 
condition. From Table 3 it may be seen that even for  rectangular plates 
complete results are not available. For  skew plates with different combina- 
tions of boundary conditions no results could be found in the literature for 
comjgjson:-  The-resul ts  o f j h e  present paper are in good agreemgt.with 
the available .rssulls. . .  - . . .  



- 
t h e  buckling coefficient R,= N, b2/*' D increases with the skew angle, 

o~ may be expected, and decreases with alb. Also the values in Table 3 are 
indicative of the relative stiffncsses of the plates with different combinations 
of boundary conditions for a given combination of a/b and JI. One can 
expect that fof a given 4 6  and JI the buckling coefficient for a plate with 
conibihation of clamped edge conditions (C) and simply supported edge 
"onditions ( S )  should be in between the values for a plate of the same 
geometry with all edges clamped and all edges simply supported ; this is 
borne out by the present results except for alb-0.5, for the obvious reason 
that in this case thk cirder of approximation is lower ( k f = N = 4 ) .  . 

In Table 4, the buckling coefficients under positive and negative shears 
are given along with some available results for rectangular plates. The 
agreement between the present results and available results is quite good. 

L 

As in the case of R,, the buckling coefficient R ,  decreases with a/b and 

~ncreases with 4. The buckling coefficient R, for positive shear is less than 
that for negative shear irrespective of a/b, J I  and :boundary condition. This 
is in conformity with the observation made previously'6. 

In Table 5, the critical buckling coefficient x, is given for differnt com- 

bination of alb, and boundary condition. The buckling coe5cient R,, for a 

cerlain a/b and $ and boundary condition, can be related to x, for corres- 
ponding b/a and $, for appropriate boundary conditions. For example for 

- 
JI=O0, a/b= 0.5 for:boundary, conditions (Case 6) R, can be interpreted as the - 
value of R, for 9-0 and a/b=2 for boundary conditions (Case 5). For 
this to be valid, the correspondmg orders of approximations have to  be - 
necessarily equal ; the slight difference that is seen in the case of  R, for  

a/b= I (Table 3) and zy for a/b= I (Table 5) is because the corresponding 
orders are not the same 

- 
In Table 6 ,  the critical buckling coefficient R, in the presence of 

different combinarions O F  inplane forces N,, und N, is given for a typical 
combination of 016, $ and boundary condition. The computer programme, 
however, can generate data for other combinations of alb, and any 
combined loading and is lhus capable of generating interaction surfaces 
which should prove useful in design. 



(0) Ref. 18 (Levy's Method) (c)  Ref. 2 ITak-n from the graph) 
@The eigenvalues corresponding t o  this caseare taken from R e f .  16 

(ndc that for alb-a5, M-N=4 and for a/b=l, M=N-6.)  



Buclt-jing Coej?cienfs of Variously Supported Skew Plate, 

Positive Shear 

ljuckling ~oeeicient  k.* For ~ifferent  Edge conditions 

9=0° 1 *=IS0 1 ' 4 4 0 "  #=lSO . B o u m k ~  1 
Conditions a/b=0.5 ( 1 ( 0.5 ( 1 0.5 1 1 1 0.5 1 1  

-. 

- 
' Eigro~alues for this case are taken from Ref. 16 ; a) Rei. 23. b) Ref. 3. 



Buckling CoemEient :,.;.For Different Edge Conddion 

+=15" 
Boundary 

1 0.5 / I 1 - X  1 I 1 0.5 17 

* Thesevalues are taken from Ref. 16 

. . 
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TABLE 6 
Buckling Coefficieot~; under combined Loading for SCSC case 

a/h=l  ; $=30°; N?=aN,;N,=/N, 

goundary conditions iu fi R critical 
. , , 

The buckling problems of skew plates with different edge conditions 
involving simple support and clamping are considered with the in-plane 
stresses represented in terms of oblique components. Rayleigh-Ritz method 
is used expressing the deflection in terms of beam characteristic functions in 
oblique coordinates. Buckling coefficients have been obtained mainly when 
the in-plane forces N,, N,,, N, are acting individually for different combi- 
nations of a/b,  $ and boundary condition and for a few combined loadings. 
For buckling under shear loading (oblique components) two critical values 
exist; the positive shear (acting in a way so as to reduce the skew angle) 
IS found to be less than the negative shear in magnitude for all the plale 
configurations and boundary conditions considered. The compute1 programme 
developed can be used for generating extensive design data in the form of 
buckling charts and interaction surfaces for buckling under combined loading. 
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