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Discussed here is Q computational procedure for the inverse of a square 
lnairix by using a power series method' that f i r f t  trariflorms a matrix into one 
whose inverse can be eqdated ro a convergent power series and then finds the 
inverse by a procedure reverse lo the aforesaid one that rests on only matrix 
addition, sdbtraction and mulriplication but no inversion. 

Cofactor method or triangular decomposition methodsz obtain the 
inverse of a matrix directly. Almost all these methods are variants of the 
Cmuss's m e ~ h o d  and they are very susceptible for the ill-conditioned (with 
respect to inverse) matrices. A suggested method of Maulik3, since i t  is 
independent of the the spacing of the characteristic roots of the matrix and 
since it does not demand division except at the last step and avo~ds  redundant 
multiplications, is much more rapid as also more acculate than the co-factor 
method. This novel method, though not a variant of Gaussian type, can be 
applied only to matrices of older Ln, n being a positive integer. The present 
method cannot be classified in either of the aforesaid two categories. The 
method, in the first phase, converts any arbitrary square matrix into one whose 
inverse is replaced by a convergent power series. This inversion then allows 
the method, in the second phase, 'to obtain the inverse of  the original matrix, 
that requires matrix addition, subtraction andmultiplication but no inversion. 

The general form for the conversion of the original matrix A (=a , , )  of 
crder n into one whose inverse is approximated by a convergent power series js 

where A, is identically equal to  A,., excepting the p - t h  diagonal element of 
A,_, and A,=A and 

B, = up v, [1.2] 



whe'se the coh~mn vector up and row vector vP ore 

i t  I 

i i o  J 

dPp is she p-th diagonal element of A, and 

app-aLp in u, and I in v, are the p -  th elements of up and v,, respectively. 
We take a;, such that A, possesses only non-zero diagonal elements. This 
is very easy since we are at liberty to choose ah satisfymg condition [1.4]. 
The matrix A, ,  thus obtained, is the final transformed matrix. For the 
above procedure of conversion the following theorem will be true. 

Theorem : In an arbitrary raw, if the diagonal element of a matrix is 
greater than n times the sum of the moduli of the off-diagonal elements, the 
inverse of the marrix can be equated to a convergent power series. 

We write A,=P+Q 

where P is a diagonal matrix having the diagonal elements identical to those 
of A, whose diagonal elements are already non-zero as a', has been chosen 
in the manner where no zero can appear on t h e  diagonal of A, . Q is a 
matrix identical to A ,  excepting its diagonal elements which are exactly zeros. 

In Newton-Horner's scheme4 

We determme first P-' Q (I+ P-' Q )  and call it X. We then obtain 
P-' Q ( I + X )  and call it X,. Next we find P - l  Q ( I t X , )  and call i t  X, and 
so on. We stop this procedure when the Erhard-Schmidt's norm5 of 
X j - X $ - ,  :.e., 

11 xi-x,-, 11 < a pre-assigned accuracy, say, 10-'0 

1, 1 E.5 



Hence 
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A ; ' - ( I - P - l  Q&) P-' for su9iciently large i 12. lb] 

~h~ of A;' from [2.!a1 is preferred to that of  A['fi.omp f ]  :I-$ 

~ ~ ~ t ~ n - H o r n e r ' s  scheme requires less arithmetic operations (n matrix multi- 
plications and n additions) and consequently results in less rounding errors. 

It is easy to see that I P-'Q I,.,. < I. Ic can, furthermore, be noted 
that we can increase the speed of convergence indefinitely by takidg the 
diagonal elements of A, sufficiently large. We should, however, refrain from 
taking too large d~agonal  elements for too rapid convergence, since these 
introduce rounding errors due to matrix addition operations the effect of 
which, however, is very much dependent on the precision of the computer 
employed. This fact is illustrated through numerical examples that find 
description in subsequent pages. 

The method, in the second phase, obta~ns A-I using the knowledge of 
A .  The general form of the recurrence relations for obtaining A - ~  is 

The above recurrence relations demand only simple matrik m ~ l t i ~ i c a t i o n s  
and additions and no inversion. We can, moreover, see that number of 
multiplications and additions are only a few because, all elements are zeros 
except one In up and one vp. An efficient computer program is easy to prepare 
for the afo~esaid procedure. 

(I) Store A = A ,  = (aij) i-1.2, , . , n ;  j=1,2, . . , n 

(11) cp=opp p= 1,2, . . . , n 
cp (P= 1,2, . . . , n) are the diagonal elements a,, (i- 1, 2, . . . , n) of A. 

( If  d, - 0 for any p, put d,=any non-zero number, say, 1. 

d q ( p =  1,2, . , . , n) are the diagonal elements a:, ( i -  1,2, . . . , n) of P 
which 1s a diagonal matrix. 
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( I )  0 p=1, 2,.  . . , n 

The matrix Ais now our Q. The problem is  to find A;'.  

) and (b,l) are,the elements of lnalrix -P-'Q 

Now (bJ are the elements of the matrix I 4- (-P"Q). The following two 
steps, namely, steps V f I l  and lX obtain the value of (I + P-'Q)-~ using 
Newton-Homer's scheme. 

( I X )  & = e n  i =  I ,  2,. . . , n ;  j-1, 2 , .  . . , n 

if k r 1 go to step (Xr), if k b 1, replace k by k +  I and go to  I step p l u .  

f3 - mod (f, -f,) 

i f f ,  < lod8 say, go to step (XII) otherwise go to step (VI). 

( X I I )  b ,  = 1 + b ,  i = 1, 2, . . . , n 

Now (b,.) produce the A i ' P  matrix. 

b 
(XIII) b,=* i =  1, 2,. . . , n ;  j -  I ,  2 , .  . . , n  

'5 

(bd) are now the elements of A;' matrix. 
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Relalions [3.1],  t3.21 and [3.3] are computationally represented in step (XIV). 
( b . )  thus obtained are the elements of A,' or A-'. For k=n ,  we determine 4 
y", all ei;s and all b,#'s. We then take k=n-1, and obtain ,-,, all ei;s 

then all bti's and so on. Thus Cor k =  I, we calculate Y,, all e,,'s and 
subsequently b,j's. The latest b,,'s are the elements of A-' inarrix. The ' = ' 
sign in all the aforesaid computational steps has the identical meaning as 
that in Fortran. 

Numerical Results: 8 dit floating point arithmetic has been employed 
for all the calculations. 

Example 1. A matrix that does not satisfy row (or column)-sum criterion. 

Three times the sum of the off-diagonal elements in the first, second and 
third rows are 21, 15 and 15 respectively. If we choose their multiplying 
factor 10, the number of effective terms in the powei series becomes 6 
and the final inverse (Ae') is correct up to 6 significant figures. 

Any additional terms in the power series wrll not contribute anything 
towards improving or diminishing the accuracy of A;. An extra term in 
the series does, however, improve the accuracy when the precisison of 
calculations is considerably increased. 

If the multiplying factor (m. f.) is lo2, the A-' is correct up to 5 
significant figures. The number of effective terms in this poder series for 
A;' is 4. 8 For the m.f. lo3, A-I becomes less accurate and the accuracy is up 
to 4 significant figures. When the m. f ,  is lo4, A-' i s  correct up to 3 significant 
figures, the number of terms in the power series for A;' being 3. The 
inverse is, for m. f. - 1.1, 
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and AA'qs  

j .1000000 x 10' .I862645 x lo-* ,3725250 x 

/ - ,2980232 x lo" .1000000 x lo1 - .I4901 I6 x 

i ,1490116.rlO-' ~OOOOOOOxlOo .1083000x101 

The number of Terms in the series for the aforesaid m. f. is 16 and the 
result is correct up to all significant figures noted. When m. f. is 105, the 
accuracy of A-' comes down still further and it is correct up to 2 significant 
figures. When it is 1b6, the A-" is correct u p  to 1 significant figure. 

The m f., when increased, reduces rhe number of terms (in the power 
series) and consetjuently the computing time a t  the cost of introducing more 
error due to marril addition. The ocher examples which we have attempted 
produce good results for m. f. lymg between I . I  and 10. 

Example 2 .  A matrix satisfying row (or column)-sum criterion 

( I 0  r; 3 1 
I 1 2  8 

1 3  19 7 

When m. f. - 10, number of terms in the power series is 5 and the inverse is 
correct up to 7 significant figures. When it is lo2, the result is correct up 
to 6 significant figures with effective number of terms in the series=4. The 
inverse, for m. f. 1 

1 ,1265405 x 1 Go 

- ,4467430 % 10-' 

- ,1980634 x lo-' 

. -.3603155 x lo-' 

and AA-I is 

[ .100uoo0x 10 ' 
93 13226 x 

0000000 x lo0 
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~h~ of  effective terms here is 12 and rhe restiit is correct in all the 
significant figures shown. For  m. f .=  1.5, the number of terms in the serics 
is 10 and the result is identical to  the above result up to  all  the significant 
figures retained. When m. f .=  los, number of terms in the power 
,, 2 and A - I  is correct up to 3 significant figures. 

~ ~ ~ ~ ~ l e  3. A near-singular matrik 

5 3 j: I I j  , 

1 -2  1 : 9.90 6 14 ,j / 
The (4,2)-th element is made 9.9 instead of 10 to make it slightly near- 
sinzular. 

When the inultiplying f;!cior - 10, nt~mber  of terms In the power series is 6 
and the inverse is correct up to 4 significant figures. The inverse is, for 
m f. 1 5  with number of terms in the series 12, 

and AA-' is 

When the (4,2)-th element is made 9 99, the inverse becomes, for  m, f. 10 
with number of  terms in the series 6 ,  

I 
.6076449x103 -.115021$x102 .5501015x10' -.30077l7xl@ 1 

.2000490x 10' -.7378161 x 10-3 ,3428161~  lo-' -.lo00242 x lo3 

.4060965 x 1 P  - ,9001453 x 101 .4000676 x 10' -.2000478 X I@ 

1 -.4035970 x lo3 .5501461 x 10' - ,250069 x 10' .2000480 x 1@ 



I 
j 

\Siben rhe m. f. = 1.5, the accuracy o f  A-' is nearly the sxmc as above ; 
cumber of eEecrive Terms, however, is doubled. 

When (4.2)-rh element is made 9.999, the inverse becomes, for m. f ,  

1.1 w!th number of effecrive terms 14, 
, ,6006932 x ilig 

' .1999305 x l G 4  
i 
1 .4005622 x ! @ 

1 -.400312Ox lo4 

and AA-' is 
; .loo0488 x 10' / .I678467 r lo-' 

,3204346 x lo-' 1 - .335%34 x lo-' 

Any result better than above can only be achieved by using higher 
precision arithmetic. 

We have, in all the aforesaid examples, used Newton-Horner's' scheme 
for the evaluation o f  the power series (I+P-'@-I .  

The author wishes to express his sincere gratitude to Prof. P. L. Bhatnagar 
and Prof. S. Dhawan for their constant encouragement. 
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