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ABSTRACT

Discussed here is «a computational procedure for the inverse of a square
matrix by using a power series method' that firct transforms a matrix into one
whose inverse can be equated 1o a convergent power series and then finds the
inverse by a procedurc reverse to the aforesaid one that rests on only matrix
addition,. subtraction and muliiplication but no inversion.

1. DiscussioN

Cofactor method or triangular decomposition methods® obtain the
inverse of a matrix directly. Almost zll these methods are variants of the
Gauss’s method and they are very susceptible for the ill-conditioned (with
respect to inverse) matrices. A suggested method of Maulik? since it is
independent of the the spacing of the characteristic roots of the matrix and
since it does not demand division except at the last step and avoids redundant
multiplications, is much more rapid as also more accuiate than the co-factor
method. This novel method, though not a variant of Gaussian type, can be
applied only to matrices of oirder 2", n being a positive integer. The present
method cannot be classified in either of the aforesaid two categories. The
method, in the first phase, converts any arbitrary square matrix into one whose
inverse is replaced by a convergent power series. This inversion then allows
the method, in the second phase, to obtain the inverse of the original matrix,
that requires matrix addition, subtraction and multiplication but no inversion.

The general form for the conversion of the original matrix 4 (=a,) of
crder n into one whose inverse is approximated by a convergent power series Js

A,.y=A,+B,, p=12, .., n 11
where A, is identically equal to A,., excepting the p—th diagonal elément of

A,y and 4y=4 and
B,=u,v, 1.2}
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where the column vector 1, and TOW vecior v, are

upzi(' 0 , L=[0 0.. 10 .0 {1.3}
i 4]
i :
’app a;w
; 0
|
]

18 the p-th diagonal element of 4, and

a, >n(Eal,) q#=p [t4]

B, 4y, in u, and | in v, are the p—th elements of u; and v,, Tespectively.
We take a such that A possesses only non-zero diagomnal elements This
is very easy since we are at liberty to clioose am, satisfymg condition [1.4).
The matrix 4, , thus obtained, is the final transformed matrix. For the
above procedure of conversion the following theorem will be true.

Theorem : In an arbitrary raw, if the diagonal element of a matrix is
greater than » times the sum of the moduli of the off-diagonal elements, the
inverse of the matrix can be equated to a convergent power series.

We write A, =P+Q
ie. A = (I=P~ ' Qe (P QP (PTIQP + (P Q) . ) P! 2.1

where P is a diagonal matrix having the diagonal elements identical to those
of 4, whose diagonal elements are already non-zero as a’,, has been chosen
in the manner where no zero can appear on <the diagonal of 4, . O is a
matrix identical to 4, excepting its diagonal elements which are exactly zeros.

In Newton-Horner's scheme*
A7 ={~PQU+PPQUAPT QUL 0+ . )IDIPT [214])
We determmme first P71 Q (J+ P71 Q) and call it X. We then obtain
P Q+X) and call it X;. Next we find P~ Q (I+X,) and call it ¥, and

so on. We stop this procedure when the Erhard-Schmidt’s norm® of

X-X,_, e,
1 - H -1
{l Xi—X,_, { < a pre ass:gneq accuracy, say, 10710

i=2 3,
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Hence 1=(I—P~1 QX,) P~ for sufficiently large i [2.19]

The evaluation of 47 ! from [2.1a] is preferred to that of A;!from {21]. 3
Newton-Horner’s scheme rtequires less arithmetic operations (n matrix multj-
plications and n additions) and consequently results in less rounding errors.

It is easy to see that |P"'Q|rs < I. It can, furthermore, be noted
(hat we can increase the speed of convergence indefinitely by taking the
diogonal elements of 4, sufficiently large. We should, however, refrain from
taking too large diagonal elements for too rapid convergence, since these
introduce rounding errors due to matrix addition operations the effect of
which, however, is very much dependent on the precision of the computer
employed. This fact is illustrated through numerical examples that find
description in subsequent pages.

The method, in the second phase, obtains A~! using the knowledge of
A;'. The general form of the recurrence relations for obtaining A-tis

T=t4v, 470y, 3.1 »
B,=uy, (3.2}
AL =47 =( V)47 1B, At {3.3]

p=n,n-1, ..., 1

The above recurrence relations demand only simple matrix multipications
and additions and no inversion. We can, moreover, see that number of
multiplications and additions are only a few because, all elements are zeros
except one 1nu, and one Vp- An efficient computer program is easy to prepare
for the aforesaid procedure.

2. PROGRAMMING ASPECT
(N Store A = A, =(a;) i=1.2,,.,n;j=12, .., n
() c,=a,, p=12, ..., n

¢, (P=12, ..., n) are the diagonal elements a, (i=1, 2, . . ., #) of 4.

{ umlzZ] ag| P=12,...,n, g#p

I
@ 1 m> 1, m=35, say

If d, = O for any p, put d,~any non-zero number, say, 1.

. 4 {p=12, ., ., n) are the diagonal elements a}, (i=1,2, ..., mof P
which is a diagonal matrix.
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av) G,,=0 p=1,2,...,n
The matrix 4is now our Q.  The problem is to find 4!,

{aﬁ=0 i=1,2...,n

) N

a,j=b,j=—‘—1:—:- P=1, 2 ..o s =12,
(a;) and (b,j) are the elements of malrix—P“’Q.

(VD) k=1

(VII) by=1+by, i=1,2,.... 1

Now (b,) are the elements of the matrix I+ (—P~!Q). The following two
steps, namely, steps VIII and IX obtain the value of (I + P7'0)~1 using
Newton-Horner’s scheme.

(VITD) ¢, = 2 a,b, i=L, 2 ...,0;j=L,2 ... &
=1
(IX)brj=EU i=1,2,...,n;j=1,2 n

Ly o v n s

fi= (2 2 pnym

1=1 j=1
X)
ifk> 1 go to step (XD), if k > 1, replace & by k+! and go 1o
step (VII).
Ja = mod (f, 1))
(XD

if £3 < 1078 say, go to step (XII) otherwise go to step (VI).

(XII) b, = V48, i=1,2...,n

Now (b,;) produce the 4, 'P mairix.

by
4

(XIIN) B, = i=L,2% ..., n:7=1,2....n

(b,) are now the elements of 4% matrix.
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k=nn-1,...,1

V=14 by (G —d)

(XIV) b.. (c.—d.
e,.j=~'—k—(—$——'°’bk,,i=1, % mi =12
®
by =b,—¢, i=1,2 ...,n;j=01,2,...,n

Relations [3.1], [3.2] and [3.3] are computationally represented in step (XIV).
(byy) thus obtained are the elements of 45" or 47'. For k=n, we determine
7, all gs and all b7s. We then take k=n—1, and obfain 7, ;, all ¢'s
and then all b”’s and so on. Thus for k=1, we calculate 7,, all e,,’s and
subsequently &,’s.  The latest §;’s are the elements of A" matrix. The * = *
sign in all the aforesaid computational steps has the identical meaning as
that in Fortran.

Numerical Results: 8 dit floating point arithmetic has been employed
for all the calculations.

Example 1. A matrix that does not satisfy row (or column)-sum criterion.

r 4 3
4 2 1
L3 2 2

Three times the sum of the off-diagonal elements in the first, second and
third rows are 21, 15 and 15 respectively. 1f we choose their multiplying
factor 10, the mumber of effective terms in the power series becomes 6
and the final inverse (4™") is correct up to & significant figures. '

Any additional terms in the power series will not contribute anything
towards improving or diminishing the accuracy of A,,‘,‘. An extra term in
the series does, however, improve the accuracy when the precision of
calculations is considerably increased.

If the multiplying factor (m.f.) is 103, the A~'is correct up to 5
significant figures. Th= number of effective terms in this power series for
A7V is 4., For the m.f. 103, A~! becomes less accurate and the accuracy is up
to 4 significant figures. When the m. f. is 104, 4~'is correct up to 3 significant
figures, the number of terms in the power series for 4! being 3. The
inverse is, for m.f.=1.1, ‘ ’

[ —.1666667 x 10° .1666667 x 10° 1666667 x 10°
4166667 x 10¢ .5833333x 10°  —.9166667 x 10°
L - 1666667 x 1(° —.8333333 x 10° .1166667 x 10! J L
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and 44™! is
( 1000000 x 10t 1862645 x 10-8 3725290 % 1078
~.2680232x 10°7 1000000 x 10} —.1490116 x 1077
L .1490116 .« 10~7  -0000000 x 10* .1060000% 10 * }

The number of terms in the series for the aforesaid m.f. is 16 and the
result is correct up to all significant figures noted. When m. f. is 105, the
accuracy of 4~* comes down still further and it is correct up to 2 significam
figures. When it is 105, the 4~ is correct up to 1 significant figure.

The m f., when increased, reduces the nwmber of terms (in the power
series) and consequently the computing time at the cost of introducing more
error due to matrix addition. The other examples which we have dttempted
produce good results for m. f. lying between 1.1 and 10.

Example 2. A matrix satisfying row (or column)-sum criterion

|10 3 3 1
E 2 8 2 -3
I3 3 7
\‘ 5 2 115 ]

‘When m. f. =10, number of terms in the power series is 5 and the inverse is
correct up to 7 significant figures. When it is 10% the result is correct up
to 6 significant figures with effective number of terms in the series=4. The
inverse, for m. f. 1. 1, is

.1265405 x 10° —.7185299 % 1077 — 1149868 x 10~!  — 1744058 x 107!
—.4467430 < 10~! .1462368 x 10° —.1028829 % [0-! 3702685 x 107"
~.1980634 x 10~2  — 5831866 x 10~2 .5496259 x 107! — 2668354 x 10~
—.3609155 x 10~} .4841349 %< 102 1540493 x 10-2 .6932218 x 107!

and 447! is

1000000 % 10 ! .3259629 % 108 .1804437 x 10~ .1862645 x 1078 1
9313226 x 107° .1000000 x 10* ~.1746230% 10~ .0000000 x 108
.0000000 x 10° —.4656613 x 10~° .1000000 x 10* —.1862645x 107%

\‘1862645><l"’° —.1862645 % 10~ — 4656613 x 1072 .1000000x 10"
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The number of effective terms here is 12 and the result is correct in all the
sigmificant figures shown.  For m. f.= 1.5, the number of terms in the series
is 10 and the result is identical to the above result up to all the significant
figures retained. When m. f.=10°, number of terms in the power serics
1s 2 and A™! is correct up to 3 significant figures.

Example 3. A near-singular matrik
i 5 3 7
2 4 1 6
3 1 -2 3 ' \ ‘
2 9.90 6 14

The (4,2)<th element is made 9.9 instead of 10 to make it slightly near-
singular.

When the moltiplying [actor=10, number of terms in the power series is 6
and the inverse is correct up to 4 significant figures. The inverse is, for
m. f. 1 5 with number of terms in the series 12,

(6750068 x 10
l 12000022 x 10?
‘ 4600046 x 10?
| —.4350045 » 10°

and 44" is

[ 1000003 x 10!
| 11072884 % 1073
{ 2145767 % 10-5
| —.2145767 % 10~3

When the (4,7)-th element is made 9 99,

—. 1150010 x 10?

—.3179908 x 104

—.9000064 x 10
.5500064 « 101

—.3814697 x 10~°
.9999990 % 1¢°
—.1907349 x 10-3

9536743 x 1076

with number of terms in the series 6,

.5500045 x 10!

.1478940 x 10-*

.4000030 x 10!
—.2500030 < 10!

~.1907349 % 10°5
— 4768372 % 10°6
9999981 + 10°

1907349 x 10~5 -

~.3000031 x 10?
~.1000010 x 10?
—.2000021 x 10%

.2000021 x 10%

—~.1335144 < 1074

—.3814697 x 10~%

~.1144409 x 10~4
1000010 x 10

4

the inverse becomes, for m,f. 10

[ .6076449 x10° —.1150218 x 10? .5501015 = 10* —.3000717 x 10* )
2000490 x 108 —.7378161 x 102 .3428161% 1077 —.1000242 x 10*
4060965 x 10 - .9001453 x 10! 4000676 x 10" —.2000478 x 10°

[ —-4035970 x 103 5501461 x 10 - .2500679 x 10! 2000480 x 1¢°
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snd AA7Y is

{ .1000088 x 10t 4577637 % 107%  .7629394 107> — 1831055 x [9~3 )
; 2670288« 107* .1000004 x 10! 0000000 x 10° —.7629395 « 10~ %
i 5531311 x 107 (1525879 % 107%  ,1000008 x 10} —. 1525879 x 10~3

{

| —.5722046 x 10-¢  —.2288818 % 107  .7629394 x 10~7 1000137 < 1ot j
When the m. f.=1.5, the accuracy of 477 is nearly the same as above ; the
rumber of cffective terms, however, is doubled.

When (4,2)-1h element is made 9.999, the inverse becomes, for m.f,
1.1 with number of effective terms 14,

6006932 % 10¢ — 1150117 x 1? 5500659 « 10! —.2999716 « 108
f 1999808 % 104 —.3841519 % 10~? 2170578 x 1078 —.9%99039 x [(®
i
'{ 4005622 x 10* - .9000781 x 10} 400044 x 104 —. 1999811 x 10¢
{ —.4003120 x 10* 5500776 % 10! 2500438 x 10! 1999810 x 104
and AA7' is
7 1000488 » 10 0000000 x 10° 0000000 x 10° 9765625 % 103
E 1678467 x 1073 1000061 x 10? 3051758 < 1074 .3662109 % 103
t .3204346 x 10 0000000 x 10° . 1000061 % 10° 6103516 x 1072
[ 3356934 x 10°*  —.1220703 x 10~* - .6103516 x 10~%  .9992676 x 10°

Any result better than above can only be achieved by using higher
precision arithmetic.

We have, in all the aforesaid examples, used Newton-Horner's® scheme
for the evaluation of the power series (I+P~'Q)~%.
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