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ABSTRACT

Presented in this paper is a simple extrapolation technique to obtain numerical
derivative of an analytic function, complex or real. The function may be in
tabular form or in funétional form. A few numerical examples are added for the

purpose of illustration.

{.  DiscussioN

The method of finding the temperature at which the volume of a gas
becomes zero (a situation which cannot be reached in practice) by extrapola-
ting the curve of relative volume versus temperature (°C) to zero volume,
prompted the idea of obtaining the numerical derivative of a function (that
cannot be obtained numerically using the theoretical definition.

Ay _dy

Lt >
Ax""oi Ax dx

for any analytic functien because of the precision limitation of any arbitrary
compuier used) by extrapolation.

Let us first consider a real function of a single real variable. The
generalization to many variable functions and to complex functions then
follows readily from it. Let Ax,, AX,, Axs be three small positive real
numbers satisfying the inequality

Axy> Axy> AXxg
and Jet xq be the point at which we want to obtain the derivative of f(x).
The problem is then posed as follows :
S(x [ AX ) ~f (%[ Ax,/2])
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A FLAX/21) ~f (5~ [ Axy/2])
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Evidently, the answer to the guestion mark (?) is the numerical derivative of
the function at x,, and it can be obtained only by extrapolation since the
quantities
S (g #00,/2) — F {2 —10./2])
Q

.

S +10./2]) — f (% —[0./2])

or 5

cannot be obtained numerically due to obvious physical limitation,
(0, indicates that Ax —— 0 from the positive direction and 0_ indicates
that A x—— 0 from the negative direction.)

2. EXTRAPOLATION METHOD

The aforesaid problem Is one of quadratic extrapolation since r. h.s.
informations are provided corresponding to three quantilies Ax;, AXy
Ax; only. One can as well pose the problem as cubic, biquadratic or any
other extrapolation considering 4, 5 or more r.h.s. informations corresponding
to 4, 5 or more quantities Ax,, AX;, Axy, AXs, Axsete. It s, however,
the fact that the use of biquadratic or higher-order extrapolation does not
offer any significant advantage over quadratic or cubic extrapolation which is
simpler and more economic'. [t is worth mentioning that the aforesaid
situation is analogous to the fact that the Wilkes-Harvard and Newton-
Raphson iterative division scheme with an order of convergence more than
two or three are uneconomical for realization in computers!. We therefore
restrict ourselves to the discussion of quadratic and cubic extrapolation.
The next problem is how to choose Ax,, Ax,, AX, etc. Since we do
not possess definite knowledge about whpt Ax’s should be so that the
numerical derivative turns out to be the most accurate within the allowed
precision of the computer, we devise the f:}glowing iteration process.

We exirapolate the r.h.s. quantities toAx=O, using Lagrange’s inter-
polation formula of order 2 or 3.. We chbose for this purpose AXx, as
[AX/2], Ax;as [Axy{2], Axsas[Ax,/2] and so on. We can, however,
choose any other spacing of Ax’s, equidistant or non-equidistmmt. After
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obtaining the numerical derivative of f(x) by extrapolation, we reduce A xy
to half and pass through the identical procedure to obtain the second
\teration value of numerical derivative. The process is repeated, halving
e interval A, at each iteration till the continuously increasing or
continuously decreasing numerical derivative attaing a maximum or
minimum value. The maximum or minimum value is the required numerical’
derivative.  For greater accuracy, Ax; should be small (starting with, say,
1 or 2) but not too small.

It can be seen that we have used in [I] the central difference scheme
and not forward or backward difference schemes for initial approximate
derivatives. This is because central difference scheme produces a truncation
error of the order of A while forward or backward difference scheme produces
an error of the order of A.

The suggesied lechnique is also true for complex functions. The
arithmetic employed here has to be complex.  Functions of many variables
do not pose any extra problem; in this case we obtain numerical partial
derivatives.

If we use both the quadratic and cubic extrapolations, then the difference
between the values of f' (x,), so obtained, provides us in the first place an
idea of the accuracy and also an idea about the interval size 1o be chosen
for the argument of the function. If the interval is big, so far as the nature
of the variation of A f(x)/Ax is concerned, both quadratic and cybic
fittings may produce results almost completely different, thereby indicating
that the interval should be reduced.

A function f'(x) is said to be ill-<conditioned with respect to its deriva—
tives if f(x) 1s violently fluctuating, i.e, a little change in x causes a very
large change in f(x). The degree of ill-conditionmg? is dependent on the
degree of fluctuation of f(x). Such a function of f(x), however, is a
problem under any treatment. The basic fact 1s that the function f(x) is a
near approach to a discontinuous function.

If we denote AXx,, AX; AXx; byp,, p, p; respectively and the
corresponding right hand quantities in [I} by ¢,, ¢,, ¢; respectiaely, we then
write, by Lagrange’s interpolation formula, the extrapolated numerical
derivative as
Y BE g )
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The formula in [TI] is the result of quadratic fitting. Similarly we can obtain

' (x) using cubic fitting. -
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3. NUMERICAL RESULTS

We have taken the Bessel functions Jy (x), J; (%), Yy(x), ¥} (x), Ty (o)
I, (x), Ky{x) and K, (x} with real argument x as examples. The calculationg
are carried out in about 8 dit floating point arithmetic. The computer uged
is National Ellioti 803 computer with fixed word-length of 40 bits. Numeri-
cal derivatives of the aforesaid functions at x=2, obtained by the presen
method are presented in Table 1. The starting value of Ax, is 2 in each
case. The calculation of the functions Jo, J;, Yo Yy, Iy I, Ko K, ane
carried out using Chebyshev polynomial expansion®.

Tasie I
Function Quadratie Fittings Cubic fitting
F(xe) 57 (xo) No, of iteration £’ (xe) mimﬁ
Js(D --.5767243% —.57672486
(min) (max)
(@ — $4470331x1077 —.64471851x10?
. {min) {max)
Yo (2 .10703253 10703247
{min}) {max})
Y, (D .56389175 56389244
(mm) (max)
I (2) 15906365 x 1O 15906397 < 10
{min) (max)
I, (2} 14842662 x 10 14842662 x 10
(min) {max)
K, (2} —.139%6553 ~ 13986603
(min) {max)
X (2 - .18382511 - .16382710
(min} (max)

1t is noted that in the quadratic fitting the derivative value decreases
with iterations and after attaining a minimum Malue with 4 or § iterations
starts increasing. The situation is just reverse in case of cubic fitting. In
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Table [ the word ‘min’ within closed parenthesis under the Leading * quadra-
tic ftting * indicates the minimum valué attainéd By the derivative at the
corressonding number of iteralions mentioned alongside} this minimum
value is our required numerical derivatve. Similarly, in the case of cubic
fiiting, the maximum value of the derivative 1s the required derivative. The
results are seen fo be correct up to about 6 sigmificant figures.
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