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The present rpporl consists of a brief v; .sunth of the properties of microwave 

resonators, such as,.moc!e dege~leracy, coupling of compsrnion modes etc , and the 

derivation of the equivalent circuit ~ J I  using Lagrangiau me~hod. After making a 
cornpa,-urine study of the Sommerfeld and Harms--Gbubau surface wave lines, 

the report deals with the theory of surface wove resenator excited in E, and E H  
and H E  modes. As each of the Iatler two modes are coupled modes it is expected 

that the Q fuclor will be very low, so emphasis is Iuid on the E, -mode resonator, 

which may be called the Sommerfeld surface wave resonator. Numer id  

Computarions for Q (E,) and guide wavelength A, (E,) as function of the length I 
of the resonaror and frequency of excitarion for the Sommerfeld resonator show 

shut Q (E,) increases linearly with increasing length of the resonaror for diflerext 

frequencies of excitation, whereas, A, decreases almost expnnenriafly with increase 

in frequencj'. 

The study of electromagnetic oscillations in resonators is inherently 
associated w t h  Maxwell's equations and the concept of standing waves. 
The study of standing waves in resonant cavities first made by Lord Rayleigh 
remained for mdny years a subject of theoretical speculation. Almost half a 
century elapsed before the p~actical importance of standing waves could be 
realised and resonators became very useful practical tools for microwave 
work. The obvious answer as to why standing waves were for such a long 
period of only academ~c  interest is that the technique of generation of 
microwave power was not sufficiently advanced so as.to make microwave 
work possible ; and yet this is hardly a n  adequate answer as the original 
experiments of Hertz were done with millimeter wa~ves. The practical 
- 
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app\icarion of resonalors to microwave work wiismride poss~ble  due mainly to 

the work of Southworth and SchelkunoK at rile Beli Telephone Laboratories, 
2nd Barrow, C hu  and Srrarton a1 the Massachusetts Institute ~ f T e c h n ~ ] ~ ~ ~  
j, the middle of 1930's. 

The resonance phenomena in microwave resonarors of simple and sorne 
conlplicated shapes have been studied by several au th~rs ' ' ~* .  The concepr 
of resonance in enclosed type of microwave cavities has been uiilised by 
several a u t h o r P  4' to study 'the surface-wave properties of SOmmerfe]d 
al!d Warms-Goubau lines. The investigations on electromagnetic wave 
propagation" initiated by Sommerfied and Z e n n e ~ k ~ ~  and followed by 
~ a i r ' d - ~ ~ ,  Bowwkamp4', Barlow and many ~thers~'-~"ave led to the 
modern concept of surface-waves and the evalution of different types or 
surface-wave structures which can be med  as waveguides or antennas 
depending on the nature of surface-reactance. 

The present investigations have been motivated with the object of 
making a theoretical study of the resonance properties of a surface-wave 
iesonator :consisting of Sommerfeld surface-wave line of radius termmated 
by identical plane metalic circular plates of  each of  radius a ( a =. > d )  ar 
both ends such that the surface-wave line forms the axis of the resonator 
(Fig. 1). The resonator has been developed with a vrew to make a systematic 
experimental study of the surface-wave properties such as field distribution, 
attenuation constant, etc. of  a corrugated cylindrical metallic structure. 
The present study is the first step towards undertaking the more involved 
problem of surface wave modulated structures. It is thought worth while to 
give a brief re'sume' of some of the fundamental properties of a microwave 
cavity resouatorZ1 which will have some bearing on the study of the 
resonance properties of the Sommerfeld surfwe wave resonator. 
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2.1 Equivalent Circuit 

A microwave cavity resonator, l ~ k e  the conventional resonant circuit, 
can be described as composed of an inductance-capacitance network with 
the help of the Lagrangian equation, which for a holonomic system is expressed 
as follows, in terms of  he generalised co-ordinates q , ,  q2, q3 . . . qn and the 
corresponding velocities q , ,  q,, q,  . . . q,, 

where, p-d/r l t .  F,  represents the dissipative forces and any external applied 
forces present in the system. The symbol L representing the Lagrangian is a 
function of q and q and is expressed in terms of the kinetic energy T and the 
potential energy V of the system as L-  T- I/. The charges Q,, Q,, Q, . . . . . .  
Q, and the currents Q,, Q,, Q3 . . . Q ,  in an electrical network can be 

. . 
considered as equivalema to q,,  q,, q,, . . . q, and q , ,  42, 43 . . . 4. 
respectively. So, the Lagrange equation for a single lossless cavity can be 
written as 

P (a Tla Q) t (a c/a Q )  = o PI 

The kmetic and the potential energies of the cavity of volume V can he 
written as 

?'=I12 P Z k20, k = l p  2 2, &, v=r/z 6 Z k t u ,  Q;-l/2 2 (Q:/C.) [31 

where k, represents the wave number for the ath mode of oscillation. The 
constants of the medium inside the cavity are representcd by P and 6. The 
equivalent lumped inductance and capacitance of the cavity are represented 
by L, and C, rspectwely. 

From equations [2] and [3], the differenlial equation for a lossless cavity 
is obtained as follows : 

which represents a parallel inductance and capacitance network having 
resonant frequency. 

%=%'~llc CJ PI 
A microwave cavity is usually coupled to external circuits by means Of loops 
or coupling holes. The equivalent circuit of a s~ng le  or a double loop 
coupled cavity can be similarly found with the help of Lagrange's equation. 
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Let us consider the case of an  ideal right circular cylindrical cavity 
havihg infinitely conducting walls and end-plater and enclosing completely a 
lossless dielectric. fiatural electromagnetic oscillations once started in such 
a cavity will persist indefinitely and would be subject to Maxwell's equalions 
e*pressed as follows in m.k.s. rationalised units. 

-6 -, -+ -' 
p x ~ = - - i r ( a ~ / a t ) ;  p x H = c ( a E / a t ) ;  

inside the volume of the cavity. Thc following 
be satisfied. 

-+ 
n . H = O ;  nxE=C. 

at  the inside surface of the cavity. The syn~bols  have their usual significance. 

Let i ~ s  assume that an oscilating eleclromagnetic field whose ;and 
components are given by the following equations has been set up inside the 
savitv 
' I - '  + E=- e sin ----t+# ) ; f f = S I ; " ~ s ( ~ &  t + + )  1x1 

where, the electric and the magnetic field configurations are given by the 
-e -t 

mode vectors e and h which are vector functions of position only. k and gl 
are constants. 

The field satisfies Maxwell's equations 
if + + -, -. 

V x h - k e ;  V x e - k h  

within the volume of the cavity and 

a t  the boundary wall of the cavity. 
I 

These equations when solved show that any given cavity can sustain an 
infinite number of modes of oscillation having eigen frequencies k, 12 d h P ,  

kz12 d c r .  . , , , . , k, 1 2 n d ~ ~  with eigeuvalues k,, k,, k, . . . k,. 

The resonant frequencies of a cavity depend on the manner in which the 
cavity is excited. Broadly, two general classifications are made, namely 
transverse electric (H), having the electric field transverse to the axis, and 
transverse magnetic (E) having the magnetic field transverse to the axis. The 
resonant frequencies of a cavity whether it is excited in the H or  E mode is 
given by 

fhfl -di@/2W+ (f,)f 1 [111 
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where, 
 length of the cavity 

Isnumber of full period variation of E, along the angular 0 cordinate. 

rn-number of half period variations of Eg along the radial r cordinate. 

n=number of half period variations of E, along the axial or  z cordinate. 

c-velocity of electromagnetic waves in free space. 

The cut-off frequencies (f,),,, are given by 

Where, a represents the radius of the cavity. The quantities Vl,, and k,., 
are the roots of the following equations : 

J', (k' , , , )  = O ;  for HI,, modes ; Jl ( k L m )  =O ; for El,, modes [I31 

There will be a distinct resonance for each combination of I, m, n, which is 
referred t o  as a resonant mode of the system. Theoretically, a triple 
infinity of modes for each class is possible, but only the several lowest 
modes are of practical interest. 

2.3 Mode Degeneracy 

In experimental work on cavity resonators, generally the Ha, mode is 
used, whereas, for surface-wave work, the mode of primary interest is Eo, 
since all the other modes have very high attenuation. From eqn. [13], 
kl ,, - - k  - ,, - - 3.832 as J', (x) = - J,  (x). So, the resonant frequencies eqn. [ I  11 
folr and f,,, for the H,,, and E,, ,  modes respectively are identically the 
same. This is an important case of double degeneracy. When a cavity is 
excited in the desired mode H,,, the other mode E,, which is the companion 
mode invariably appears. 

2.4. Field Components 

The Field components for these two modes are given by the following 
expression. 

Ha,, mode : 

fi, = Ez= H, = 0 ; Eg = JOr (k lP)  sink,: ; H, - (k , /k)  J,' (k,P) cos k,z ; 

Hz = ( k , / k )  J, ( k i p )  sin k , z  [I41 



S. K .  CHATTERJBE, et. a!. 

El, ,  mode,: 

E, - (k3 /k )  Jl1 (k ip)  cos 8 sin k,z 

E, ==(k,/k) IJ, (k,P)/klP] sin e sin k3z 

E, = ( k , / k )  J ,  (klP) cos @COS k3Z 
H, - - [J , '  (k,P)/k,P] sin 6' cos k,z 

H@ - -J1' (kip) cos 8 cos k g  

H,-0  1151 

2 5 H,, mode 

I n  spite of the double degeneracy, the  Ha, mode is invariably used for 
cavity excitation for the following reasons : 

(i) The field distribution of the H,, mode shows that the wall currents 
flow in  circles perpendicular t o  the axis of the cylinder and 
hence no current can cross the cant-ict surface of an adjustable 
plunger used to  resonate the cavity to the cxcita~ion frequency. 
So, a non-contact type of plunger can be used for turnmga 
cavity, This avoids any fluctuating loss taking place at rhe 
surface of contact with the walls of rhe cavity. 

(ii) When a cavity is excited in any desired mode, a number or 
crossipg and interfering modes appear depending on the volume 
of the cavity and the wavelength of excitation. For  a cav~ty of 
of volume V and wavelength h of excitation, the number of 
modes N that can appear is given approximately by the followm: 
relations 

But the Q of the cavity is given by the following relation : 

As the mean energy W stored in the resonator is given by a volume integral, 
whereas, the rate o f  dissipation of energy P is given by a surface integral, it 
is evident from eqn. [I71 that, in order t o  obtain high Q, the volume of the 
cavity must be large. This is undesirable as it will make a larger number of 
spurious modes appear in a cavity. I t  can also be shown that Ho, is the 
mode which gives the highest possible Q with minimum volume of the cavity. 

2.6 Interaction of H,, and Ell modes 

In  the absence of perturbation, it can be  shown6', that there is very 
little interaction between the t y o  modes H,,, and El, so that the two modes 
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co-exist without interacting with each other. It has been shown by Wien3' 
,hat the mteraclion between the free v~brations of two resonators depend 

the coupling coefficient k' and the ratio of the resonance frequencies of 
t h e  two resonators. We shall calculate the coupling coeRcient k' of the two 

modes under normal cond~i ion with the help of  the field theory. 

The coupling coefficient between the two modes is defined broadiy a s  
follows : 

Where, W ,  and W2 represent the energies stored in the He, and El, modes 
respectively and W1,,= W,,, represents the mutuaI energy, o r  the energy 
interchanged between the two modes. The total energy of  the two modes in 
the resonaior is given by the following re la lion^^ in 1n.k.s. rationalised units, 

The first and the last terms of the right hand side in eqn. 1191 give the 
energy stored in the desired and the companion modes respectlvely. The 
second term gives the energy used in bringing the two modes into interaction, 
or, in other words, the mutual energy betyeen the two coupled modes. 

Hence 

WI,, = P HI  . H, do 

For a cylindrical cavity resonator having radius a and length L, the expression 
equation [20] for the mutual energy becomes 

The expressions For the components H, and Hz for the two modes Ho, and 
El, are 



Substituting eqns. [21! and [221 in [201 and integrating and making some 
approximations, the following expression for the  mutual energy w,,* 
obtainedz1 

3 3 3 + --a2 sin 2k,a i- -a cos 2k,u - ----sin X , a  
8k,' 8kk3 1 6ka4 ] P3i 

The maximum energies stored in the electric field of the resonator opcrafing 
in the Ho, and E, ,  modes respectively aregiven by the following expressions" 

a 2 7  L 

W ,  =f I I P [.I: (k1f)I2 sinz k3r d P  118 di ' 

0 0 0 

The coupling coefficient k" between the  two modes is found from equations 
[It?], [23-251 as follows : 
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2.7. Coupled Frequencies : 

When the two modes H,,, and El , ,  coexist, the cavity will oscillate in 
different resonant frequencies, one slightly above and the other slightly 

below tbe uncoupled resonant frequencies f,,,=f,,,=f, of the two individual 
modes. These coupled frequencies depend on the coupling coefficient k' and 
are given by 

L, =foiv'c 1 + w ; fez =faid(l -k')  1271 

If the coupling is loose these two coupled resonance frequencies may be 
quite close together and the effect is that the the cavity will oscillate over a 
band of frequencies A f given by the difference of the two frequencies 
fe2-fc,. This can be reduced to A f =k' f J l / [ l  - ( J C ' ) ~ ] ,  provided k' is small. 

Sommerfeld surface waveguide (see Fig. 2) consists of an infinitely 
long straight metallic wire of circular cross-section having finite conductivity 
imbedded in a dielectric of infinite extent and excited by E,, wave. Treating 
this as a boundary value problem and matching the fields at the surface 
(p -a), the following characteristic equation for the Eo wave is obtained. 

The following cases are of  interest: 

For o*== eqn. [28] reduces to 

FIG. 2 
Sommcrleld surfaoe wave guide: Coordioats sptnm 



If v is small i.e. for a very thin conductor 

The pr jnc~pal  branch of H,""v) vanishes at a i l  infinite points of the positive 
jmaginary half-plane. The roots of only the principal branch of the multi. 
valued Hankel function are  of interest, but the principal branches of HJI)(,) 

and H j l ) ( o )  have no roots so, 

where, Y = 1.781 

possesses the only solution 0-0  i.e. h=k,. 

This means that when a cylindrical conductor of  infinite conductivity 
imbedded in a dielectric medium is excited by the fundamental E wave, 
the field is propagated in the axial direction with a velocity which is solely 
determined by the characteristics of  the external medium. I f  the conductor 
is imbedded in free space, the field is propagated along the cylindcr without 
attenuation and with phase velocity equal to the free space velocity c .  

If o is large but not equal to  infinity, h # k,  but the difference 
h - k, for E, wave is very small. SO, o is small but Ik, I > > kk, since 
k, I h 1 and u -- k ,  d r > I .  Therefore, representing J,  (u) and J ,  (u) by 
asymptotic expansions and H:) (o)  and Hi1'  (o) by small argument approxim- 
tions, the following equation is obtained from equation [2R]. 

which reduces to ,t In f =  [XI 

where, 

Equation [33] 1s the b x i c  Sommerfeld equation which when solved gives the 
characteristics, such as the propagation factor in the axial direction, 
attenuatlon constant, phase constant and phase velocity of the Sommerfeld 
surface wave . 
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sommerfel@s analysis leads to  the following conclusions. 

(i) A solid cylindrical conductor of  circular cross-section can support 
an infinite number of propagating modes. The amplitudes of 
these modes are coefficients involved, in the field components. 
These coefficients are determined by the nature of the source, 

(ii) of all the modes, only the Eo mode possesess relatively low 
attenuation. All the other symmetric E and symmetric H and 
all the asymmetric modes suffer rapid attenuation within a very 
short distance from the source, even at very low frequencies, 
and as such are of no practical interest. 

(iii) In  order that the Eo  mode may be bound to  the surface of the 
conductor. the conductivity of  the conductor can be high but 
must be finite. 

(iv) The electric lines of forces outside the conductor are almost 
perpendicular but not exactly to the surface of the conductor. 
The wave front in the external medium is slightly tilted forward 
in the direction of propagation. The Poynting vector being 
directed towards the conductor, the energy flow into the 
conductor accounts for the Joule heat losses. 

(v) The phase velocity of the wave is slightly less than the free 
space velocity for conductors having high conductivity and 
radius of curvature greater than the skin depth. 

(vi) The radial field decay in the region outside the conductor is 
governed by the Hankel function.H,(,") (Y,P). The field extension 
in the radial direction is large and can be reduced by decreasing 
the conductivity and radius of the conductor and by increasing 
the frequency of  excitation. 

(vii) Since the wave is guided along the conductor, its attenuation in 
the x-direction is produced solely due to  definite conductivity of 
the wire. In the conceptual limit of  infinite conductivity, 
the E wave passes to a T-wave and decreases in amplitude in the 
radial dircction as 1/P 

(viii) An ohmic loss on  the surface of the guide is essential for the 
Sommerfeld surface wave to  be supported by the conductor. 

Sommerfeld surface waveguide is not of much use in practice. as'the 
Eo wave supported by the structure is not tightly bound to the surface i .e. 
the extent of the field in the radial direction is inconveniently large. AS such 
any dmcontinuity in the path of the wave such as a bend or  kink in the wire 
produces considerable loss of power by radiation. The inherent short-coming 
of the Sommerfeld guide is that its ohmic loss is essential to  its operation 
in contrast with the conventional waveguide for which the ohmic loss is only 
incidental. This difficulty has been 0bv.iated.b~ ~ o u b a u ~ ~  by coating the 
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wire with a thin layer of dielectric. The dielectric coating loads the surface 
in such, a way that the Eo wave is guided by the structure and the extent of 
the field spread in the radial direction is comparatively much smaller even 
in the case of  the conductor having infinite conductivity. In a surface wave 
structure of this type, the ohmic loss is only incidental and the extent of the 
radial field spread is controlled solely by the thickness and dielectric constant 
of the dielectric film. The characteristics of the dielectric coated structure 
was first studied by and then more exhaustively by Goubau'6. 

~ a r r n s ~ '  made a theoretical study of the problem of wave propagation 
along a cylindrical wire of radius d coated with a dielectric of thickness 
(b-d) and dielectric constant El (see Fig. 3). O o ~ b a u " ; ~ ~  made a detailed 
theoretical and experimental study of the problem and evaluated its practical 
usefulness as a transmission line for microwaves. Treating this as a boundary. 
value problem and using the impedance matching technique at P -6 for E~ 
wave, the following characteristic equation isobtained. 

which yields the following equations6 after some simplication. 

(,u~/c,)'!' (7:/k2) b In 0,89 Y2b= - ( f i , / ~ , ) " ~  (Tl/kl) b In (bla) 1351 

In order that the radial impedances at P - b  be continuous, it is necessary 
that the axial propgation constant in the two media be the same, i .e .  

F I ~  3 
Harms-Ooubau snrfaco wave guide 
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~h~ radial constant Y, and hence the phase velocity 0 , - 0 2 / ( k , ' + Y l f )  of the 
wave can be determined from equations [35] and [36]. Since, Y ,  is positive 
and real V ~ < W / ~ ,  which is the free space velocity in the case of the medium 
2 being air. 

The division of power between the two media 1 and 2 is calculated from 

the Goubau relation 

where, Pi represents the power of the surface wave which is contained in the 
external medlum. This equation is used to determine the thickness of the 
dielectric coating (b-d) required for a dieleciric material to constrain a 
certain percentage of power of the surface wave within a specified distance 
from the surface of the st'ructure. The above results are derived on the basis 
of no loss. The effect of dissipation is determined by using the perturbation 
method i e .  by assuming ihai the field distribution in an tquiphase plane is 
the same as that in the case when there is no loss. The conclusions drawn 
from the foregoing analysis are : 

(i) The field structlire of Harms-Goubau guide is the same as that 
of Sommerfeld guide. 

(ii) The extent of the field spread in the radial direction decreases 
with increasing dielectric constant and thickness of coating i.e. 
the radial extension of the field can be controlled by modifying 
the surface of Sommerfeld guide. 

(iii) In the case of Sommerfeld guide, if the couductivity is increased 
indefinitely, the radial extension of the field would increase in 
such a way that the power carried by a wave of finite amplitude 
would become infinite whtch is physically inadmissible. But in 
the case of Harms-Goubau guide, the wave will still remain a 
guided wave with a limited rad.al extension of the field, even in 
the case when the conductivity of the wave is increased 
indefinitely, The field 1s only slightly affected, 

(iv) Compared to c he Sommerfeld guide the Harms-Goubau guide 
possesses higher loss. Losses of this type of guide consists of 
(a )  the ohmic loss in the conductor which is also present in the 
Sommerfeld guide (6) the loss in the dielectric film which is not 
present in the Sommerfeld guide (c) the loss due to  the finite 
size of the launching device. As the radial field spread is more 
in Sommerfeld guide, it requires a much longer dimension of the 
launching device than Goubau guide. For the same dimension 
of the launching device, Somrnerfeld line will have more loss. 



(v) The phase, velocity of the wave guided by the dielectric coated 
structure is less than the free space velocity. 

(vi) AS H,(') ( i  Y2 b) is negative imaginary and H,(') ( i  Y2 b) is negative 
real for positive imaginary argument, it follows that the surface 
impedance is negative imaginary, i. e. the surface impedance of 

this guide is purely inductive. Or, in other words, coating the 
wire with a dielectric amounts to loading inductively the surface 
of the conductor. 

(vii) The axial component of the Poynting Vector integrated over a 
plane perpendicular to the axial direction yields a finite value 
which leads to the physical realisability of Goubau wave. 

5.1 Sommerfeld Line : 

* From the relations 

and assuming that at microwave frequencies 

.k,2 > r (a;-b:) ; a2 2' 2 4 

the attenuati.on constant of the ~omrnerfeld' line is", 

5.2 Harms-Goubau Line 

Assuming that there is no loss due to radiation, the total loss in 
Harms-Goubau line is due to the ohmic loss in the wire (a3 and dielec~ic 
loss in the coating (a,). The attenuation constants a, and ad ares6 

The radial propagation factor is obtained from 
- G (7,b) - - ( 7,b/2 n), In (0.89 7,b) 

where, 
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The attenuation Constant or (Warms-Goubau line) - a, i. a, 
where, 

k = free space wave propagation 

constant - w (I+, 

E,-dielectric constant of the dielectric coating 

6. COMPARATIVE STUDY OF THE SOMMERFELD AND HARMS GOUBA~T LINES 

A comparative study of the characteristics such as radial decay factor ( 7 )  
as a function of the radius of the Sommerfeld line and as a function of the 
dielectric constant for different coating thickness in the case of the Harms- 
Goubau line for different wavelength of excitation, ratio of the radii of the 
constant percentage power contour as a function of coating thickness b - d - n  
for different wavelength of excitation and percentage reduction in phase 
velocity as a function of wire radius are presented in figures (4-7) respectively. 
Fig. 8 shows the percentage power flow for the Harms Goubau and Sommerfeld 
line as a iunction of the radial distance from the line. Fig. 9 shows a com- 
parative study of the conduction and dielectric loss in the case of ihe Harms- 
Goubau line as a function of dielectric coating thickness in the X and K band. 

7. THEORY OF THE SURFACE WAVE RESONATOR 

The resonator (see Fig. 1) consists of a metallic wire of radius d termi- 
nated at both ends by large circular metallic plates each of radlus a > > d. 
The length 1 of the wire is adjusted such that it is an integral multiple of half 
the guide wavelength A, corresponding to the mode of excitation. The 
resonator is open on all sides except ar the two ends. 

7.1 field Components o f  Resonant Waves 

The components of resonant waves, when the resonator oscillates in pure 
E or H modes are re~~ect ively '~.  

E mode : 

E,, (P)=2Xcos 0 cos (m,.rr/l) z J, (Yep) 

Epr (P) -2 j  (h T,/wZ poco) XCOS % sin (m,.rr/l) z J,' (7, P) 

E8, (P) = - 2j X (hi w2 P ~ E ~ )  l/P sin 0 sin (m,.rr/l) z J, (Yep) 



FIG. 4 
Radial decay factor as a functnon o f  dielectric consianl of the c ~ a t i n g  

Ior d1Eeren1 wavelengths Wbre radlus, o=O I 0  cm. 



RADIUS OF THE SOMMERFELO LlNC 1U Cn 

FIG. 5 
Radial decay factor as a function of wire radius for different wavelengths. 
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DIELECTRIC COATIbAG THUltYLSS W C m  

Frc. 6 
Ratioof  radii of the censtant percentages power contoar as a function of the d t r l e c h  

eoarlng thickness for different wyek~lgths  o=O.LOcm. e=2.4. 
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0.0. 0.10 0.15 0.: 

RADIUS OF THC WIRE IU Cm 

FIG. 7 

Percentage reduction in phase v~locity an a function of wire radius 
for different wavelengths. ~ = 2  4. 



RADIAL DISTANCE IN CM 

FIG. 8 
Power distribufion curves for a wire o f  radius a=0.08 cm, 

coating thickness a"=O.OOS cm. A0=3.57 cm. 



- GONDUCTION LOSS ---- D I L C C T N  LOSS i 
$ 

I 

o f l  0.004 0 4 0 8  Q 4 3 l Y  

DIELECTRK. COATINO THICUNCSS (Y cm 

Fro. 9 
Menuation wnstitnt as n funciion o f  dielecfrrcoatlng thsknoss for di5ercn6 

dielectric constants and wavelengths. Wire radius a-QIOcm. 
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The above field components are derived on the assumption that the 
energy is contained wholl' within the  volume n $ 1  of the 

resonator and that there is no loss of energy by radiation. 

7.2 Conditions o f  Resonance 

The conditions of no radiation leads to 

H,'" (Y,'f) - - H,"' (Y,d) 
which yields 

as the condition of resonance when the resonator is oscillating in a pure 
E-mode. The condition of resonance when the  resonator is oscillating in a 
pure H-mode and the energy is completely enclosed w ~ t h i n  the  volume of the 
resonator is 

HI'*" (Yhd) = -H](~)' (Y,d) 

which yields 

The eigen values Y,d which satisfy the above equation is obtained when 
J ,  (Y,d) is maximum i.e. Y,d= 1.84, 8.54, 14.86, etc. 

7.3 Coupled E and H mode! 

In the case of a co~~venl ional  type of cwi ty  resonator enclosed on all 
sides by highly conducting metallic walls, no loss of energy occurs by rad~at~on 
and E or H modes can exist independeiiily, whereas,. In the case of an open 
type resonator, due to  the discontinuity which is invariably present at the 
edge (P-a) of the end plates, some energy will be  10s. by ~ a d ~ a t i o n .  As the 
radiated wave in flee space is a T-wave, E; ,  If; and Eh,. H: o f  the E and H 
modes respectively, must vanish inside the resonator or approach zero value 
at P =a.  But the radial componen~s of E and H modes of the non-rad~ating 
standing wave part of the  total field w1th111 the reson..tor cdnnor independenlly 
become zero. So, it may be said that 
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p=a, which signifies that the E and H modes are coupled 

The characteristic equation f d r  the coupled mode obtained by imposing 
proper bourdary conditions on appropriate 'field components and utilising the 
no-radiati~n condition is.. :. . . , , 

. . 

where, 

and 

and Y - Y,, 

It can be shown that for the resonance conditions 5, (7, d) -0, x =  1 and! 
similarly y =  -1 from the definition of x and y. By using appropriate 
recurrence relations and x =  1, y =  -1 eqn. [50] reduces to 

which yields on differentiation with respect to. Y a  , , 

?aJ; (Ya) -2J l (Ya) . IO(Ya)+~aJ~(Ya)=O , . . [531 

since 

Jl<?L = constanis. 
Ya Jo ( Y o ) - J ,  ( Y a )  

Let the roots o f  eqn. [53] be 6, (,I= I ,  ?,3, . . . ). F3r m.h m,de, the eigen 
values Ye,= Y is given by Y,,-8,/a and the condition of resonance for the 
coupled mode is 

P ., .. 
since, m, =/l is positive and real (S,,,/a) c (Zx/Ao\  and (6;/a2) -= <(4n2/%. 
Hence, . . . . I  

I - nr, h,/2 .,.. . [55l 
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which states that th.: resonance condition is established, when the distande 
between the two terminating end plates is an integral multiple of half wavei 
lensh.  

In practice d c  <a and if Td, < 1, Then by making small argument 
approximation of JQ ( T d )  1 and J, (Td) a ?d/2, eqn. [52] reduces ro 

which gives the success!ve eigen values when resonator in osciilating under 
the condition that the modes are coupled, 

7.4. Q of the Resonator 

The Q of the resonator is defined as 

where, w is the angular frequency at resonance, WE and W, represent the 
maximum energy stored in the electric and magnetic fields respectively ins& 
~c resonator and P is the total power loss inside the resonator. 

The total power lost is equal to the sum of the power lost in the end 
( P J  and power lost in the Wire (P,) and the power lost by radiation> 

Assuming that there is no loss of power by radiation and that the resonator 
is oscillating in pure E or H modes and calculating 

far both the end 'plates and 
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Q H =  179 x 108,f" I [+ Y i  a2- I) J f  (?,,a) -I-+ Y?n2J; (7, a) 

-(+ ? i d 2 - I )  J: ( 7 , d ) - f  Y,2d2J; (Y,, d)]  

-: 1 6 9 4 . 2 2 ~  1022h2 f-'"[(* 7ha2-1) J :  (Yha)+:  Y ~ a 2 J ~  (Yhu) 

-(: ? i d 2 - I )  Jz  (Y,, d ) - -+  Yhd2J2 (Y,, d ) ]  

1-2 61 x 10-7dlf'"[52x 1029(k1/d) f- '-l lJJ: (Yhd)]  

The Q factor for the coupled EH and HE modes are respectively 

Q,=81.64x102yf-"'hZI[{2-72a'~ J : ( ? o ) - { : ! - - ~ ~ d ~ ]  J ?  ( Y d )  

+ { 7 ' d 2 - 1 - 2 7 - 2 )  J: ( Y ~ f ) + 1 . 5 7 f ~ ~ ~ I [ a ~ J :  (Yo) 

-d2J :  ( Y d ) + d Z J o ( Y d ) J 2 ( Y d ) ] c { - 1 2 0 . 3 1  X I O - ' ~ ~  

[ -  Y 2 d 2 J i  ( 7  d ) - t ( l  -(Yad2/2))J: (Y d ) - ( I  - : y2uZ) J :  (YCJ)] 

-52.2 ~ ~ d l : i  ln-39[J: (Yd)+(J:  ( 7  d ) / ??d2)  

- ( 2 J O ( ? d ) J I ( ~ t l ) / Y d ) l j  [611 

where, Y = Y,,, 
Q H E - - 1 7 9 ~  lO"f-'[(t ?'a2-I) J :  (Y a) 

- ( + Y 2 d - - l ) J ? ( Y d ) - :  7 ' d 2 J i ( ? d ) ]  

: 694.22 s 1022,f-712 h2 [(& ? l a 2 -  1) J i  (Ya) 

-(: Y2d2-I)J :  (Yd) -+Y2d2J ; (Yd) ]  

+2.61 x 10'71df1f2[52x 10'9f-'h2d-1-l]J: (Y d )  1 [621 

where, Y = Y,,, 

7.5 Guide Wuveleng~h 

The values of the axial propagation constant h in the case of the reso- 
nator oscillating in pure E or H mode are obtained from the condition 
WE= Wa at resonance from the following equations. 
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W mode : 

26x  l0Z9 f - ' h ' [ - Y ~ d 2 ~ ~  (Y,,d)-I2 (J: ( Y h d )  

The total propagation constants h for the coupled EH and HE modes is 
obtained from eqn. [55] and [561 respectively by replacing Y, by Y, and 7, by 
7, in equations [53] and 1541 respectively and using the resonance cond~rion 
J,, ( Y e , , 4 - 0 ~  

EN Mode : 

+ 2  J: ( Y a )  - J: (Yd) ]  + 2Y J: ( Y d ) - 2  J i  (Yd)] 

where, 7 = Y,, 
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HE Modode : 

26 x I U ' ~ J " ~ ~ [ - Y  ' d 2 J f  ( y d )  t 2 {J:(LYd)+9; ( ~ d ) )  + y2 0 2 ~ : ( y o )  

- 2  J: (Yo ) ]  

=22x  1 0 ' ~ f - ' [ ( Y ~  0'12) J : ( Y n ) - ( Y 2 d 2 / 2 )  { J ; ( Y d ) + J : ( Y d ) )  

- { J :  ( Y ~ ) - J : ( Y ~ ) ] ]  - f d 2  { J : ( Y ~ ) - J ~ ( Y ~ ) - J ~  ( 7 d ) J z  ( Y d ) )  

+ f  a 2 J : ( Y a ) - ( Y 1 / 2 )  { J : ( Y d ) - J ~  ( Y a ) t J , 2 ( Y d ) ]  

4-(l/-Y2) J: ( Y d )  [GI 

where, Y  = 7, 

I t  is evident that the guide wave length A, determined from h  in each case 
is a function of (1, a, and f,. 

When Y  nnd the argument o f  the Bessel functions are large equations 
[59] to [66] reduce respectively t o  

QEs { [-(2Yollr) ( c o s Z ( Y a - 3 ~ 1 4 )  +cosa (?a-m/4))  

4-27 J i  ( Y d ) ]  f - 3 f 2 h z I x 8 1 . 6 4 x  loz9 

- t [ (Za /xY)  (cos2 (Yo-3 m/4)1-cosl(Ya-714)) 

- (4/mY2)  COS (Ya -3x14)  cos ( Y a - x / 4 )  

- d 2  Ji ( ~ d ) ]  f5lZ 1  x 1.57) 

t { 120.31 x  [f Y2 d P  J: ( ~ d )  - t (Yn / l r )  cos 2701 

- 5 2 . 2 ~  7' d l  J i  ( Y d ) )  W I  
where, Y  - Y,  - 

QH-179x lo8 f  'I  I [ (Ya /m)  {cos2 ( Y O - ( 3 ~ 1 4 ) )  

+cos2 ( Y U - ( T / ~ ) > ]  - (+ Y ' ~ ~ - I )  J: ( 7 d ) - +  Y z d 2  Ji ( Y 4 1  

-. 1694.22 x  LOz2 h2 f  -7f2 [ (Ya /m)  (cos2 ( ? a - 3 ~ 1 4 )  + cos' (?a-.rr/4)) 

-($ Y2 d 2 - I )  J: (Yd)-+ y 1 d Z J : ( Y d ) l  

+2.61 x  1 d d ( f )  [52 x  loR9 (h2/d)  f  - 4 -  11 1 J: ( Y J ) ]  1681 

where Y  - Yh 

QEH=81.64x1029f-312hZl[{2-~2a2~ (2/mYa) cos"Ya-3x /4 ) -2J : (YJ j  

+(2Y -2).l:(Yd)]+1.57 f5 '21 ( [2a /mY)  cos2 ( Y a - 3 ~ / 4 )  

- d Z  J: ( ~ d )  - [ 2 ~ ,  ( Y d )  J ,  ( Y d ) / ( Y d ) l  + J :  ( 7 J ) ) )  

1 1120.31 x  lo-" [J: ( Y d )  - (2/m ?a) ( I  - f  Y2 a2) xcos2 (Ya -3%/4)1 

-52.2 Y ' d l  x  ( J i  ( Y ~ ) + - J :  ( ~ d ) / ( Y ' d ~ )  

-2 Jo ( Y d )  J ,  ( ? d ) l ( Y d ) ) j  I691 

where, Y  - Ye, 



where, Y - Yhr 

The var~atlon of A, and QE with respect to the ftequency of excitation and 
the varint~on of QE with respect to the length of the resonator are shown 
figures 10 and 1 1  respectively. The following values Sor the constants hdve 
been used in computing the results 

FIG. 10 
Variation of guide wayelength and Q factor of E mode with frequency of 

excilation of the resonator 
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Variation of Q (E-mode) with respect to the length of the resonator 
at different frequencies of excitation. 

n = l  metre ; d=lO-' metre ; u , ( A l )  53.54~ lo7 ulm; 

u, (Cu) =5.8 x 10' u/m ; r o - 4 n  x lo-' H/m : co=8.85 x lo-" F/m. 

8 .1 .  Field Components : 

The mode of practical intest in  cylindrical vurface wave transmission 
is rhe E, mode, since all other modes have very high attenuation. For  
Sommerfeld surface wave line having radius d and immersed in  air the field 
components for the resonant waves E, are4' 

H B , - 2  B ( w  c , / Y , )  H i l ' ( j  Y, P )  cos (n .tr :/I) 

where Y,=a,-jb, 



8 2 .  h4aximum Energy Stored ; 

- The maximum energy W ,  stored inside the resonator is 

8.4. Q Factor : 

The Q factor for the Sommerfeld surface wave resonator is 

Q ( E 0 ) = o  ( W , ' i p ~  +p& 

=2/0 , u , [ - j  Y; d H I 1 ) ( j  T Z d ) H i ( - j  7 :  d )  

- j  Y, dHil'  ( j  Y 2 d )  H ! ~ )  ( - j  Y; d ) ]  

-- [4/1 . \ / (20, ) ] [ - j  7 ;  d H , " ) ( j  Y , d )  H$ ' ( - j  Y; d )  

- j  Y 2 r i H ~ " ( j  Y 2 d ) H j 2 )  ( - j  Y; d ) ]  

- [ d ( Y ;  2 - ~ : ) / 4 ( 2  ow)  [ H i l ' ( j  Y, d )  Hi2) ( - j  7; d ) ]  [751 

The magnitude of the arguments of the Hankel functions in  most of the 
practical cases is less than 0.05. Therefore, using the following smzll 
argument approximations 

HI'' ( j  Y 2 d ) =  - ( ? / n Y , d )  

H $ ( - j Y : d ) = - ( 2 / x Y ; d )  

H:" ( I  Y? d )  = j  ( 2 1 ~ )  (m + i n) 

H'?) (- j 7 :  d ) - - , i ( 2 / n ) ( m t  j n )  

where, 
rn = In  [ (0  89 d j2  (u: f h:)] 

n n  arc tan (h,/a,) 
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the expression for Q ( E c )  reduces to 

where, the values of a, b, are determined from the solution of the following 
equation given by Barlow and Brown5' 

where, 7, is the radial propagation constant for the region inside the con- 
ductor and E, represents the dielectric constant of the conducting medium. 
By using large argument approximation Ij Y,dj > > 1 for the Bessel functions 
and small argument approximation Ij ?,d l  < 1 for the Hankel functions, 
eqn. [78] is solved to yield 

where, 

The Q (En) of the Sommerfeld resonator at/=9500 MHz and with 

which for 1 ~ 0 . 7 5  m and d -  1.1 x lo-' m yields 

Q (E,)= 18.830 and for I=0 I m Q (E,) - 14660. 

In deriving the expression For Q (E,,), it has been assumed that the only 
losses in the resonator occurs due to ohmic dissipation in the end plates and 
the wire surface and the loss due to the radiation has been ignored. An idea 
of the radiation loss can be gained from the power flowing outside a radius 
P. corresponding to the radius of the terminating end plates. 



The totai power flow F,  outside the Sommerfe'elc line i$ 

where, h= a +j/I,- jj3 and small argtmenr approxrrnativns for thc  Wankel 
functions have been used. 

Therefore, the percentage of eowcr Aoiv outside a radius 

P. is 

( P  ,JP$I x 100 

- loo(& (a: + t:) P.18 P )  
Rr [h  { j Y ;  H,'" ( j  'I, P,) H,"' ( -j 7",J 

The variation of the percentage of power flow outside a radins P,= 1 m and 
P,=0.45 m as function of the radius of  the Sommerfield line having d,and 
a, values same as stated previously is shown in fig. 12. Tt is found that for 
25 s.w.g. wire and end plate radius of 1 metre only about .03% power flows 
outside the resonator, whereas, for end plate of radius 0.45 meire, the per- 
ceniagc of power %ow outside the resonator, is about 1%. 
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B! 

RADIUS OF BARE CONDUCTOR IN NiCllbS 

FIG. 12 
Power flow outside a radius P,=lm and P,-0.45 rn as a function of 

the radius of Sommerfeld Line. 
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$'he following work in connection with the surface waiie resonator 
has been developed (see fig. 13) is under progress. 

(i) The effect of the tilt of one of the terminating end plates on the 
Q of the resofiator. 

(ii) The problem of edcitation of a metallic corrugated surface wave 
structure. 

(iii) Experimental study of the field decay guide wavelength, 
attenuation OF surface wave lines with metd disc loading. 

(iv) Extension of the surface wave resonator technique to the study 
of corrugated dielectric rod characteristic. 

The investigator-in-charge is grateful to Dr. S. Dhawan, Director of the 
Indian Institute of science for permission to accept the scheme and giving all 
facilities to conduct the Work. He expresses his deep gratitude to 
Dr. J. R. Wait, Monitor, denior Scientist ESSA for his unstinted support and 
encouragemeut and technical advice towards this project. He expresses his 
grateful thanks to U. S. Department of Comnierce for providing the necessary 
PL-480 funds for this project. His thanks are also due to U. G. C. New Delhi 
for permission to o'onduct the project. 
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FIG. 13 
Photograph of the experimental setup of Sommerfsld surface wave resonator 
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