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ABSTRACT

The present repori consists of a brief ve .sume of the properties of microwave
resonators, such as, mode degeneracy, coupling of companion modes etc , and the
derivation of the equivalent circuit by using Lagrangian method. After making a
comparative study of the Sommerfeld and Harms--Goubau surface wave lines,
the report deals with the theory of surface wave resenator excited in E, and EH
and HE modes. As each of the latter two modes are coupled modes it is expected
that the Q fuctor will be very low, so emphasis is luid on the E, —mode resonator,
which may be called the Sommerfeld surface wave resonator.  Numerical
Computations for Q (E,) and guide wavelength A, (E,) as function of the length |
of the resonator and frequency of excitation for the Sommerfeld resonator show
that Q (E,) increases linearly with increasing length of the resonator for different
Jrequencies of excitation, whereas, A, decreases almost exponentially with increase
in frequency.

{. INTRODUCTION

The study of electromagnetic oscillations in resonators is inherently
associated with Maxwell’s equations and the concept of standing waves.
The study of standing waves in resonant cavities first made by Lord Rayleigh
remained for many years a subject of theoretical speculation. Almost half a
century elapsed before the piactical importance of standing waves could be
realised and resonators became very wuseful practical tools for microwave
work. The obvious answer as to why standing waves were for such a long
period of only academic interest is that the technique of generation of
microwave power was not sufficiently advanced so as.to make microwave
work possible ; and yet this is hardly an adequate answer as the original
experiments of Hertz were done with millimeter waves. The practical
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application of resonators to microwave work was made possible due mainly tg
the work of Southworth and Scheikunoff at the Beli Telephone Labaoratories,
and Barrow, C hu and Stratton at the Massachuselts Institute of Technology
in the middle of 1930’s, )

The resonance phenomena in microwave resonators of simple and some
complicated shapes have been studied by several authors'=®.  The concep
of resonance in enclosed type of microwave cavities has been urilised by
several authors® % to study ‘the surface-wave properties of Sommerfeld
and Harms-Goubau lines. The investigations on electromagnetic wave
propagation®® initiated by Sommerfied and Zenneck®® and followed by
Wai-% Bowwkamp', Barlow and many others®~® have led to the
modern concept of surface-waves and the evalution of different types of
surface-wave structures which can be used as waveguides or antennas
depending on the nature of surface-reactance.

“The present iavestigations have been motivated with the object of
making a theoretical study of the resonance properties of a surface-wave
tesonator ;consisting of Sommerfeld surface-wave line of radius terminated
by identical plane metalic circular plates of each of radius a (a>> d)a
both ends such that the surface-wave line forms the axis of the resonator
(Fig. 1). The resonator has been developed with a view to make a systematic
experimental study of the surface-wave properties such as field distribution,
attenuation constant, etc. of a corrugated cylindrical metallic structure.
The present study is the first step towards undertaking the more involved
probiem of surface wave modulated structures. It is thought worth while to
give a brief ré'sume of some of the fundamental properties of a microwave
cavity resouator’ which will have some bearing on the study of the
resonance properties of the Sommerfeld surface wave resonator.
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2. MICROWAVE RESONATOR-—BRIEF RESUME

9.1 Equivalent Circuit

A microwave cavity resonator, hike the conventional resonant circuit,
can be described as composed of an inductance—capacitance network with
the kelp of the Lagrangian equation, which for a holonomic system is expressed

as follows, in terms of the generahsed co-ordinates g, 4, 45 . . . g, and the
corresponding velocities g, g2 91 - -« dn
pRLBG)—BL2g)=F,; k=1, 2, 3. .. n M

where, p=d[dt. F, represents the dissipative forces and any external applied
forces present in the system. The symbol L representing the Lagrangian is a
function of ¢ and ¢ and is expressed in terms of the kinetic energy 7 and the
potential energy ¥ of the system as L=T-V¥. The charges Q,, O, Q5 ...

Q, and the currents Ql, Qz, Q3 Q'n in an electrical network can be
considered as equivalem® to g, ¢, 93, ... g, and ¢y g3 43+ -+ 4
respectively. So, the Lagrange equation for a single lossless cavity can be
written as

PRTBYD+(V/3Q)=0 [2]

The kinetic and the potential energies of the cavity of volume V can be
written as

T=1/2 2 kz.) Q2_1/7z£ 0% V=1/2¢€ ko, 02=1/2 2 (Q¥C,) (3]

where k, represents the wave number for the a® mode of oscillation. The
constants of the medium inside the cavity are representcd by w and €. The
equivalent lumped inductance and capacitance of the cavity are represented
by L, and C, respectively.

From equations [2] and {3}, the differential equation for a lossless cavity
is obtained as follows :

£.Q+Q/C-0 {4

which represents a parallel induclance and capacitance network having
resonant frequency.

wa=V(1/£,C,) (5]

A microwave cavity is usually coupled to external circuits by means of loops
or coupling holes. The equivalent circuit of a single or a double loop
coupled cavity can be similarly found with the help of Lagrange’s equation.
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2.2 Resonani Fregquencies of aCavity

Let us comsider the case of an ideal right circular cylindrical cavity
having infinitely conducting walls and end-plates and enclosing completely 5
lossless dielectric. Natural electromagnetic oscillations once started in sycp
a cavity will persist indefinitely and would be subject to Maxwell’s equations
expressed as follows in m.k.s. rationalised unils,

yx}'f=-~p(a?1/a:); 7><?I=e(a—§/at); 7-—;1=0; y-%:o 16

inside the volume of the cavity. The following boundary conditions shoulg
be satisfied.

TRy
n.H=0; nxE=0. m

at the inside surfuce of the cavity. The symbols have their usual significance.

Let ©is assume that an oscilating electromagnetic field whose Eand i
components are given by the following equations has been set up inside the
eavity

> 1> [k R k
E=—\7ze5m('\/eut+¢>’ H~thos(ve—l—‘f+¢> it

where, the electric and the magnetic field configurations are given by the

- -
mode vectors ¢ and h which are vector functions of positiononly. k and¢
are coustants.

The fleld satisfies Maxwell’s equations
if - -~ - -
V xh=ke; V xe=kh 9]

within the volume of the cavity and

> -
nhnxe=0 110}
at the boundary wall of the cavity.

Al
These equations when solved show that any given cavity can sustain an
infinite number of modes of oscillation having eigen frequencies k1{2m/€,u,
kl2nven. .., ., k| 2rnVen with eigenvalues &y, &y, k; . . . Ky

The resonant frequencies of a cavity depend on the manner in which the
cavity is excited. Broadly, two general classifications are made, namely
transverse electric (H), having the electric field transverse to the axis, and
transverse magnetic (£) having the magnetic field transverse to the axis. The
resonant frequencies of a cavity whether it is excited in the H or E mode is
given by

Sima =V {en[2LY+ (£)}a) (1
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where,
L-Length of the cavity

J=number of full period variation of F, along the angular ¢ cordinate.
m=number of half period variations of E; along the radial  cordinate.
n=number of half period variations of E, along the axial or z cordinate.

c=velocity of electromagnetic waves in free space.

The cut-off frequencies (f;);, are given by
dm = (€ k' /2 ma) for Hp, mode

and
(f)im = (ckypm[ 2 7a) for E;,, mode [12]

Where, « represents the radius of the cavity. The quantities k', and &,
are the roots of the following equations :

J (k' )=0; for H, modes; J,(k,,)=0; forE, modes [13]

There will be a distinct resonance for each combination of I, m, n, which is
referred to as a resonant mode of the system. Theoretically, a triple
infinity of modes for each class is possible, but only the several lowest
modes are of practical interest.

2.3 Mode Degeneracy

In experimental work on cavity resonators, generally the H, mode is
used, whereas, for surface-wave work, the mode of primary interest is E,
since all the other modes have very high attenuation. From eqn. [13],
k'gy=k=3.832as Jg(x)=—J (x). So, the resonant frequencies eqn. [11]
Soa and fy,, for the Hy, and E,,, modes respectively are identically the
same. This is an important case of double degeneracy. When a cavity is
excited in the desired mode Hy,, the other mode E;; which is the companion
mode invariably appears.

2.4. Field Components

The Field components for these two modes are given by the following
expression.

Hyyy mode :
E,=E,=Hy=0;  Ey=Jy (k,0)sinkyz;  H,=(kafk} Jy' (k;P) cos kyz;
H, = (k,[k) Jy (k,P) sink,z [14]
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E,,y mode:
E, =~ (ky/k) Jy' (k,0) cos O sinkyz
Eg=(ky/k) [J; (k\P)/k,P] sin @ sin kyz
E,=(k;Jk) J, (kP) cos 8 cos kyz
H,=~[J, (k,P)[k;*] 5in 0 cos kyz
Hy=~Jy' (k,P) cos Bcos kyz
H,=0 | "

25 Hy mode

In spite of the double degeneracy, the Hyy mode is invariably used for

cavity excitation for the following reasons :

(i) The field distribution of the Hy mode shows that the wall currents
flow in circles perpendicular to the axis of the cylinder and
hence no current can cross the contact surfice of an adjustable
plunger used to resonate the cavity to the cxcitation frequency.
So, a pon-contact type of plunger can be used for turninga
cavity, This avoids any fluctuating loss taking place at the
surface of contact with the walls of the cavity.

(i) When a cavity is excited in any desired mode, a number of
crossing and interfering modes appear depending on the volume
of the cavity and the wavelength of excitation. For a cavity of
of volume ¥ and wavelength A of excitation, the number of
modes N that can appear is given approximately by the following
relation®*

Nz (87/3) (u/X) [16]
But the Q of the cavity is given by the following relation :
Q=2 f (W/P) (17

As the mean energy W stored in the resonator is given by a volume integral,
whereas, the rate of dissipation of energy P is given by a surface integral, it
is evident from eqgn. [17] that, in order to obtain high Q, the volume of the
cavity must be large. This is undesirable as it will make a larger number of
spurious mocdes appear in a cavity. It can also be shown that Hy is the
mode which gives the highest possible Q with minimum volume of the cavity.

2.6 Interaction of Hy and E,, modes

In the absence of perturbation, it can be shown®’, that there is very
little interaciion between the two modes Hy, and E;; so that the two modes
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can co-exist without interacting with each other. It has been shown by Wien®
that the interaction between the free vibrations of two resonators depend
on the coupling coefficient &” and the ratio of the resonance frequencies of
the two resonators. We shall caleulate the coupling coefficient &' of the two
companion modes under normal condition with the help of the field theory.

The coupling coefficient between the two modes is defined broadiy as
follows :

K= (W, DIV (7 W) 118}
Where, W, and W, represent the energies stored in the H,, and E;, modes
respectively and W, ,=W,, represents the mutual energy, or the emergy

interchanged between the two modes. The total energy of the two modes in
the resonalor 1s given by the following relations® in m.k.s. rationalised units,

o
j (B +By) « (By+B,) dy

i1

[
[

vl ®

{Jﬂ‘zdo-flj._]:ﬁ-l{zdu%- '(szdv} [19]

v L3

The first and the last terms of the right band side in eqn. [19] give the
energy stored in the desired and the companion modes respectlvely. The
second term gives the energy used in bringing the two modes into interaction,
of, in other words, the muiual energy between the two coupled modes.

Hence
W= u[ H,+« H,dp [20]

For a cylindrical cavity resonator having radius a and length L, the expression
equation [20] for the mutual energy becomes
a 2r L -
W1.2=“6f [ [ H-Hpdrddd&
0 )

The expressions for the components H, and H, for the two modes Hy and
E,, are

H = (18 Uy ()T cos? ksz + (k7M7) JgF (Ryf) sin® gz} (21]

| Hy | = {30k P) 207 sin®0 cos? kyz + U, (yPYF cos? cos kyz} 2 [22]
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Substituting eqas. [217 and [22] in [20] and integrating and making some
approximations, the following expression for the mutual energy Wiy is

obtained?
. 2reuk® [ L sin2k,L 128k, {a* &°
B AL U N % ol
W= —— Tz v o TS 2kya
3, 3 3
+ -—\_)—a sin 2k, ﬂ'sk‘ad £0s 2kya — I-6%:4_3111 ZA]a} 123}

The maximum energies stored in the electric field of the resonator opcratmg
in the Hy, and E,, modes respectively are given by the following expressions™

2n L
w, =_2€j J jp (T, (k)] sinkyz db dB dz
0

0 4

-+ S0 (24
Parey:
W, =§.[_§ f '( J-P L] (k@) cos? 8 sin’k,z dp d dz
o 0
a2 L
- %% f J f i (k P inte sinkyz 7 d9 dz
v 0%
a 2m L&
+ %; J J j‘ p JZ(kyP) cos?B costkyz dp dO cz]
3 8 %
o i et R &)

The coupling coefficient &' between the two modes is found [rom equations
[18], [23-25] as follows :

sin 2k, L]

L
k=256 wit | £
. ‘[2 A,

y {[a‘/8~(l/4k Da*cos 2k a-+ (3/8k})aPsin 2k a - (3/8k3)a cos 2k,a — (3/16k%) sin 2k4)

Saec LkkyJy (ko) T (k“)\/{vr(wa‘“? wIE[RE + ki k) } o
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2.7, Coupled Frequencies :

When the two modes Hg,, and Ey,;, coexist, the cavity will oscillate in
iwo different resonant frequencies, one slightly above and the other slightly
pelow the unceupled resonant frequencies fg,,, = /iy, =/o of the two individual
modes. These coupled frequencies depend on the coupling coefficient k' and
are given by

Ju=fVU+E); fa=RW(1-k) [2n

If the coupling is loose these two coupled resonance frequencies may be
quite close together and the effect is that the the cavity will oscillate over a
band of frequencies A f given by the difference of the two frequencies
fa—fe.  This can be reduced to A f=k' SV 1= (k')?], provided &’ is small.

3. SOMMERFELD SURFACE "WAVEGUIDE

Sommerfeld surface waveguide (see Fig. 2) consists of an infinitely
long straight metallic wire of circular cross-section having finite conductivity
imbedded in a dielectric of infinite extent and excited by E, wave. Treating
this as a boundary value problem and matching the fields at the surface
{p=a), the following characteristic equation for the E, wavé is obtained.

K aw_ K OH 28]
By Jy (W) sy0 BV (o)

where
u=Yd; o=Yd; Vi=K-R; Vi=ki-K;
Be=o?u e+ive, 4 ; kB=o?ue.

h=axial propagation constant.

The following cases are of interest :
For oy~ o= eqn. (28] reduces to

H{Y (p) -0 29]
H,“) (o) . .
€y

o MED § 3 y.0% &,

FiG. 2
Sommerfeld surface wave guide: Coordinats system
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If v is small i.e. for & very thin conductor
2, 9
—_lln—_f’

HEY (o=
o 1]

2i
. [43] A
3 Hll (l)) = ;; [3G]

The principal branch of H" (g} vanishes at all infinite points of the Positive
imaginary half-plane. The roots of only the principal branch of the myl.
valued Hankel function are of interest, but the principal branches of HiY (5)
and H{ (v) have no roots so,

H{V () _ coln 2P0 B

Hl(l) (v) 2%

where, ¥=1.781
possesses the only solution »=0 i.e. A=k,.

This means that when a cylindrical conductor of infinite conductivity
imbedded in a dielectric medium is excited by the fundamental £ wave,
the field is propagated in the axial direction with a velocity which is solely
determined by the characteristics of the external medium. If the conductor
is imbedded in free space, the field is propagated along the cylindsr without
attenuation and with phase velocity equal to the free space velocity c.

If ¢ is large but not equal to infinity, A = k, but the difference
h~k, for Ey wave is very small. So, p is small but |k | > >k, since
k, =~ |h|and u = k,d >>1. Therefore, representing Jy (1) and J, (u) by
asymptotic expansions and H" (v) and H{" () by small argument approxima-
tions, the following equation is obtained from equation [28].

To M kid

! ln 32
Cle Tl k, (32
which reduces to £ Iné=y [33)
where,
Y o\?
E=f 2=
(%)
2 2
and p= —'_..y_ Bl ﬁi’
2wy kK

Equation [33] 1s the basic Sommerfeld equation which when solved gives the
characteristics, such as the propagation factor in the axial direction,
attenuatlon comstant, phase constant and phase velocity of the Sommerfeld
surface wave
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Sommerfeld’s analysis leads to the following conclusions.

()

(i)

(iii)

A solid cylindrical conductor of circular cross-section can support
an infinite number of propagating modes. The amplitudes of
these modes are coefficients involved, in the field components.
These coefficients are determined by the nature of the source,

of all the modes, only the Eo mode possesess relatively low
attenuation. All the other symmetric £ and symmetric H and
all the asymmetric modes suffer rapid attenuation within a very
short distance from the source, even at very low frequencies,
and as such are of no practical interest.

In order that the Eo mode may be bound to the surface of the

conductor. the conductivity of the conductor can be high but
must be finite.

(iv) The electric lines of forces outside the conductor are almost

(vi)

(vii)

(viii)

perpendicular but not exactly to the surface of the conductor.
The wave front in the external medium is slightly tilted forward
in the direction of propagation. The Poynting vector being
directed towards the conductor, the energy ﬂow into the
conductor accounts for the Joule heat losses.

The phase velocity of the wave is slightly less than the free
space velocity for conduoctors having high conductivity and
radius of curvature greater than the skin depth.

The radial field decay in the region outside the conductor is
governed by the Hankel function H,™™ (7,#). The field extension
in the radial direction is large and can be reduced by decreasing
the conductivity and radius of the conductor and by mcreasmg
the frequency of excitation.. .

Since the wave is guided along the conductor, its attenuation in
the x-direction is produced solely due to definite conductivity of
the wire. In the conceptual limit of infinite conductivity,
the E wave passes to a T-wave and decreases in amplitude in the
radial dircction as 1/p

An ohmic loss on the surface of the guide is essential for the
Sommerfeld surface wave to be supported by the conductor.

Sommerfeld surface waveguide is not of much use in practice, as'the
Eo wave supported by the structure is not tightly bound to the surface i.e.
the extent of the field in the radial direction is inconveniently large. As such
any discontinuity in the path of the wave such as a bend or kink in the wire
produces considerable loss of power by radiation. The inherent short-coming
of the Sommerfeld guide is that its ohmic loss is essential to its operation
in contrast with the conventional waveguide for which the ohmic loss is only

incidental.

This difficulty has been obviated by Goubau® by coating the
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wire with a thin layer of dielectric. The dielectric coating loads the surface
in such a way that the Eo wave is guided by the structure and the extent of
the field spread in the radial direction is comparatively much smaller evey
in the case of the conductor having infinite conductivity. In a surface Wave
structure of this type, the ohmic loss is only incidental and the extent of the
radial field spread is controlled solely by the thickness and dielectric constapt
of the dielectric film. The characteristics of the dielectiic coated structure
was first studied by Harms® and then more exhaustively by Goubau’,

4. HarMmS-GOUBAU SURFACE WAVEGUIDE

Harms® made a theoretical study of the problem of wave propagation
along a cylindrical wire of radius 4 coated with a dielectric of thickness
(b—d) and dielectric constant Ey (see Fig. 3). Goubau®* made a detailed
theoretical and experimental study of the problem and evaluated its practical
usefulness as a transmission line for microwaves. Treating thisasa boundary.
value problem and using the impedance matching technique at P =5 for Ep
wave, the following characteristic equation isobtained.

19, 7o (,5) ¥ (Vyd) = o (hd) Jo (14D) - _11 _I_fﬂl_lg_b_)_ [34]
€0y (D) Yo (0, d)—Jp (,d) Y (VD) € H,\ V(1 ,b)

which yields the following equation® after some simplication.

(,u,/e,)""’ (72/ky) b 110,89 b=~ (u,/€ )2 (Ny/ky) b In (bfa) [35)

where k2=wiu €y and k2= wiuge,.

1o order that the radial impedances at P=b be continuous, it is necessary
that the axial propagation constant in the two media be the same, i.e.

V(2= 1B =V (k2 + 7D [36]

S et Fhitets
/ 7
wiet DIELECTRIK
COATING
Fia 3

Harms--Goubau surface wave guide
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The radial constant 7, and hence the phase velocity v,~ wV/ (k2 + 7,?) of the
wave can be determined from equations [35] and [36]. Since, 7, is positive
and real pp<u)/k2 which is the free space velocity in the case of the medium

2 being air.

The division of power between the two media 1 and 2 is calculated from

the Goubau relation

P& In(jd) :
a2 e 37
P, € In0897%,b105 371

where, P, represents the power of the surface wave which is contained in the
external medium. This equation is used to determine the thickness of the
dielectric coating (b—d) required for a dieleciric material to constrain a
certain percentage of power of the surface wave within a specified distance
from the surface of the structure. The above results are derived on the basis
of no loss. The effect of dissipation is determined by using the perturbation
method 7 e. by assuming thay the field distribution in an e2quiphase plane is
the same as that in the case when there is no loss. The conclusions drawn
from the foregoing analysis are:

(i) The field structure of Harms-Goubau guide is the same as that
of Sommerfeld guide.

(ii) The extent of the field spread in the radial direction decreases
with increasing dielectric constant and thickness of coating i.e.
the radial extension of the field can be controlted by modifying
the surface of Sommerfeld guide.

(iii) In the case of Sommerfeld guide, if the couductivity is increased
indefinitely, the radial extension of the field would increase in
such a way that the power carried by a wave of finite amplitude
would become infinite which is physically inadmissible. But in
the case of Harms-Goubau guide, the wave will still remain a
guided wave with a limited rad.al extension of ‘the field, even in
the case when the conductivity of the wave is increased
indefinitely, The field is only slightly affected,

(iv) Compared to the Sommerfeld guide the Harms-Goubaa guide
possesses higher loss. Losses of this type of guide consists of
(@) the ohmic loss in the conductor which is also present in the
Sommerfeld guide (£) the loss in the dielectric film which is not
present in the Sommerfeld guide (c) the loss due to the finite
size of the launching device. As the radial field spread is more
in Sommerfeld guide, it requires a much longer dimension of the
launching device than Goubau guide. For the same dimension
of the launching device, Sommerfeld line will have more loss.
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(v) The phase- velocity of the wave guided by the dielectric coated
structure is less than the free space velocity.

vi) As Hy® (i 7, b) is negative imaginary and H,"" (i 1, 5) is negative
real for positive imaginary argument, it follows that the surface
impedance is negative 1mag1nary, i. e. the surface impedance of
this guide is purely inductive. * Or, in other words, coating the
wire with a dielectric amounts to loading inductively the surface
of the conductor.

(vii) The axial component of the Poynting vector integrated over g
plane perpendicular to the axial direction yields a finite value
which leads to the physical realisability of Goubau wave,

5. ATYENUATION CONSTANTS

5.1 Sommerfeld Line:

From the relations

h=a+jB; Vomay— by kate wy Mg €= — (Bt T, 1)
and assuming that at microwave frequencies

kE > > (a—bR; 4> >b, [39]
the attenuation constant of the Sommerfeld line is™

a(sommerfeld) = (c/w) (a,h,) ' . {40
5.2 Harms-Goubau Line

Assuming that there is no loss due to radiation, the total loss in
Harms-Goubau lin¢ is due to the chmic loss in the wire (a,) and dielectiic
loss in the coating (a;). The attenuvation constants &, and a4 are®

sty 1 N 41
‘~2d\/ 2ige. T AB 058 CPersim t

z .

Qg

€y 0.5
1- tan§Neper/m 4]
LT ,2k €4~ €g ( ) P / ) [

In 1,b+0.38

The radlal propagauon factor is obtamed from

“ G (M) = ~(T,b[2 ) In (0.89 1,b) : 4]
where, )
6 (T8)= __In(ld)

(eaf€u~co) (NB)
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The attenuation constant &« (Harms-Goubau line) = a, +
where,
k = free space wave propagation
constant = w (4 €9)'2

¢ =dielectric constant of the dielectric coating

6. COMPARATIVE STUDY OF THE SOMMERFELD AND HARMS GOUBAU LiINES

A comparative study of the characteristics such as radial decay factor (7)
as a function of the radius of the Sommerfeld line and as a function of the
dielectric constant for different coating thickness in the case of the Harmss
Goubau line for different wavelength of excitation, ratio of the radii of the
consiant percentage power contour as a function of coating thickness b~d=a
for different wavelength of excitation and percentage reduction in phase
velocity as a function of wire radius are presented in figures (4-7) respectively.
Fig. 8 shows the percentage power flow for the Harms Goubau and Sommerfeld
line as a function of the radial distance from the line. Fig. 9 shows a com-
parative study of the conduction and dielectric loss in the case of ihe Harms-
Goubau line as a function of dielectric coating thickness in the X and K band.

7. THEORY OF THE SURFACE WAVE RESONATOR

The resonator (see Fig. 1) consists of a metallic wire of radius 4 termi-
nated at both ends by large circular metallic plates each of radius ¢ > > d.
The length [ of the wire is adjusted such that it is an integral multiple of half
the guide wavelength A, corresponding to the mode of excitation. The
resonator is open on all sides except at the two ends.

7.1 Fleld Components of Resonant Waves

The components of resonant waves, when the resonator oscillates in pure
E or H modes are respectively*?.

E mode :
E, (P)=2Xcos 0 cos (m, /D) 2], (7. P)
E,, (P)=2j (h 7,/ w? mg€o) X cos 0 sin (mym /D) z Jy' (7, P)
E,. (P)= —2j X (h]w® pg€y) 1/P sin O sin (m,x /1) z Jy (1.0)
H,, (P)=—21% (1/wry) (1/P) sin B cos (myw /1) 2 Jy (V. P)
Hy, (P) = =2 X (7, fwisg) cos 8 c0s [(m, %)) 2 Jy' (1.P) (44]
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H mode :
H,,(f)=—2jsin Osin(m,x[l) 2z T, (7, 0)
H,, (Py=24¢ (h 1,/ w?ugeq) sin 0 cos (m, w /1) 23, (7,9)
Hy, (P)=24 (hjwPugeq) (1/p) cos 8 cos (m, /1) z I, (V,0)
E,, (P)=—2¢ (I/weg) (1/P) cos @sin(m, /1) z I, (1,0)
Eg (PY =24 (V,/weg) sin B sin (m 7/l) 2 1) (F,0)
E,. =0
The above field components are derived on the assumption that the

electromagnetic energy is contained wholls within the volume = a¥ of the
resonator and that there is no loss of energy by radiation.

7.2 Conditions of Resonance
The conditions of no radiation leads to
HA (Y, d)=~HY (Y,d)
which yields
3, (t,dy=0 146}

as the condition of resonance when the resonator is oscillating in a pure
E-mode. The condition of resonance when the resonator is oscillating in a
pure H-mode and the energy is completely enclosed within the volume of the
resonator is

H® (0,d)=-H" (v, d)
which yields

J (7,d)=0 - o [47]

The eigen values 7V,d which satisfy the above equation is obtained when
J,(7,d) is maximum i.e. ¥, d=1.84, 8.54, 14.86, ctc.

7.3  Coupled E and H mode:

In the case of a conventional type of cavity resonator enclosed on ali
sides by highly conducting metallic walls, no loss of energy occurs by radiation
and E or H modes can exist independently, whereas,. in the case of an open
type resonator, due to the discontinuity which is invariably presemt at the
edge (P =a) of the end plates, some energy will be los. by rad.ation. As the
radialed wave in fiee space is a T-wave, Ef, HS and E’P', th of the Eand H
modes respectively, must vanish inside the resonator or approach zero valug
at P=a. But the radial componens of E and H modes of the non-radiating
standing wave part of the total field within the reson..tor cannot independeatly
become zero. So, it may be said that
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ES 4+ EN =0 [48]

or Hi+HEF=0 ’ {49]

at  =a, which signifies that the E and H modes are coupled.

The characteristic equation for the coupled mode obiained by imposing
proper bourdary conditions on appropriate field components and utilising the

no-radiation condition is. .
_Joug ¥ HY (Ya) —HP (’yu) ~ j"/d @iy _y_H(lle (7d)—H@ (Vd) [50,]

Ha xHY (ay— H“’wa) I x H{ (Ya)—H2 (7d)
HP (v, &) .
here, =12 el sy
where, RO D) - - - ‘ {511
HY' (v,d)
and y= H(l)'(—y d)
and Y=Y

It can be shown that for the resonance conditions J,("/;d)=0, x=1 and
similarly y=—1 from the definition of x and y. By using appropriate

recurrence relations and x=1, y=—1 eqn. [50] reduces to
J, (Ya) o Ydly (Vd) T, (Yd) [SZj
Yal, (Vo) -1, (Ta) TN (vd)

which yields on differentiation with respect to. Ya ., R

YaT3(va)—27, (Ya) Iy, (Ya)+ Ya Bk (Ya)=0 - 1531
since

1 (0a) = constants.
Yalty (Va)—-J, (Va)

Let the roots of eqn. [S3]1 be §, (1=1,2,3, ...). For mh mrde, the eigen

values 7V, =" is given by ’7,,,— 3,/a and the condition of resonance for the
coupled mode is

[’”13 47 35]”2 - {54]

since, m, /I is positive and real (5, /a)<(21v/7\o\ and (32/az)< <(47"2/}‘o
Hence, Lt
I=p1, )\0/2 e ' {35}
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which states that the resonance condition is established, when the distance
between the two terminating end plates is an integral multiple of half waye:
length.

In practice d<<a and if Yd<<l, then by making small argumen;
approximation of Jg (Vd) 2= 1 and J, (7d) == 7d/f2, eqn. [52] reduces 10
Jy (Nyay=0 136)

which gives the successive eigen values whea resonator is oscillating under
the condition that the modes are coupled.

7.4. Q of the Resonator

The Q of the resonator is defined as

W W,
Q- Jeora B o

where, w is the angular frequency at resonance, Wy and W, represent the
maximum energy stored in the electric and magnetic fields respectively inside
the resonator and P is the total power loss inside the resonator.

The total power lost is equal to the sum of the power lost in the end
plates (P,) and power lost in the wire (P,) and the power lost by radiation.
Assuming that there is no loss of power by radiation and that the resonator
is oscillating in pure E or H modes and calculating

m a U
W;»%"—J |EP pdp db dx
§=0 pad z=0
27 e A
= j I [HPPdpdIdz
> p=  z=0

b €
P,—2xl/2,‘/f{_'i‘3j f |H.[* P d6 dp 158]

=0 p=d

for both the end plates and

2n !

P,=‘/3§.~_f“°j f [H.. ! dd0dz

w
§=0 =0
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the Q factor for the E(QF) and H (Q”) modes are
QF={{2- "} B (e = {Via~27 2} S (%, a)
A {V2dP 2%, =2} JR (Y. )] ST K] < 81.64 5 107
+[@ I () - Ty (V@) I, (Y, = IE (Y, )] [5 1.5
£ {—120.31x10°® [—4 V222 (V,d) ~ L 72 I3 (V, )
~(1=172a) J3 (Y, a)]-52.2x 107 Y2 4112 (7, d)} [59]

Q=179 10° /" I [E Y2 =D T2 (V@) + 1 72a? T2 (Y, a)
G- IF (N d) -+ AP I (1, d)]
= {694.22x 10212 /-T2 (3 V2 =1y J2 (Y, @)+ 3 V22 T2 (Y, @)
—G VR0 IE (v d) -3 VpdRIE (Y, d)]
+261x 1077 d 1V [52 % 107 (W*d) f~*~1112 (7, d)} {60]

The Q factor for the coupled EH and HE modes are respectively
Qpy=81.64x10¥ ¥ 212 -V} J2 (Ya)~ {2-724d?} I3 (v d)
+{1?d®+27-2} IZ (Y d)+1.57f5fi1[a11,2 (Ya)
—d? 32 (Vd)+d* Iy (V) T, (Y d))+ {12031 x 10" ¥ x
[—L Va1 (vad)+ (1= dY2) 12 (vd)— (1~ § V¥ T 2 (Va)]
=522 VI 107¥ U2 (vd)+ (JE (v dY A
~QI, (Y)Y (Yd)Yd) 1} [61]
where, Y=",,
QUE-179 < 10°1F (L V2 a®—1) I} (Y a)
—E V2D I2(vd)-y 12 d* I (Vd)])
69422 x 102 F-T2 2 (L V22 1) J} (T a)
(I a1 (vd)-L ¥ a?I2 (vd) ]
+2.61x10°T 1A Y [52x 10® £ =9 d =112 (Y d) } (62

where, ¥ =",,

1.5 Guide Wavelength

The values of the axial propagation constant k in the case of the reso-
nator oscillating in pure E or H mode are obtained from the condmon
We=W), at resonance from the following equations.
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£ mode :
26 10% F 4R 12 a* 37 (V. a)+IE (7, a)}
+N2AYIE(Y, )25 (Y, 427, (R (.
+I2( )} 2 TR, @-I2 (V. d) } ]
=22 %10 £ 232 (7, a) +4 12d2 T2 (Y, d) = [(V2aD)[2)
*» {33 (L3O I3
~L {32 (v, @) -1y (", ) LV a)} —Ld2I (Y, d)
H mode :
26 x 10P f 42 [ = Y2A2TE(V,d) -2 {3} (", d)

AT (N d)t R @ 91 (G @)+ I3 (@)} =2{3} (Y @) 12 (Y0}

=22% 10" £-2{V2a%2) {1} (Y, @) +J2 (V,0)}

— (12D (TP D+ A} - {02(7,0)

~ 12 (-1 dP I (,d) g (Y, d)

I (N DI (Y d +1a (12N, @) ~ T, (Y, Q)
LN}V T a)y~TE (V,a) -T2 (7, a)

+12 (0} — (V2R (pe) 33 (Y, )}

(63}

{64

The total propagation constants k for the coupled EH and HE modes is
obtained from eqn. [55] and [56] respectively by replacing 7, by 7, and 7, by
v, in equations [53] and {34] respectively and using the resonance condition

Jo (V@) =0,

EH Mode :

26 x 10% f~4 {32 a2 J2 (V) + Y2 A2 {2 (Nd) + 33 (Vd))

+2 {32 (Yay -3} OV} + 27 IE (vd)—2 12 (Vd))

= -2 x 10N FO{IF (V) =T} (Va)} =2 4P (B (v +L B ()}

(P22 I (Ta)]—1 & B (Ya)+1 @ {2 (vd)
~Jo () 1 (Vd)}

where, Y=17,,

[63]
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HE Mode :

26 % WEB 4R (= Va2 (vd) + 2 {F (V&) + 2 (vd)} + 2 2?32 (va)

~2J; ()]
=22 10% £72 (V2 2(2) J2 (Ya) (V2 d¥/2) { B2 (V) + T3 (Vd)}

—{B(a) -1 (d)}] - L2 { RO -R(Od)~1, (V) 1, (Yd)}
+3 a1 (Vo) — (VY2 { T () - I (Yay + 33 (v}
+ (17 I3 (vd) [661

where, V=",

It is evident that the guide wave length A, determined from £ in each case
is a function of d, a, and f.

When ¥ and the argument of the Bessel functions are large equations
i59] to [66] reduce respectively to

QF= {[—~(27a/r) {cos? (Ya—3r/[4) +cos? (Ya—m[4))
F2Y R (UL FY IR 181,64 10°
+[(2a/7rY) {cos? (Ya—3 r[4) +cos? (Ya—"7/4))
— {4/ 7?) cos (Ya—3n[4) cos (Ya—n/4)
~d* B (V)] f52 1% 1.57)
+ {120.31 x107% {1 v2 d* JF (7d) -+ (Va/x) cos 27a]
—522x10°® V 711 ()} (671

where, 7=7,
Q=179 % 10° £~ I{(Va[x) {cos? {Va—(3n/4))
+oos? {Va~ (/P ~ & d?-1) B () -1 P21 (1d)]
= {694.22 % 102 12 £ =72 [(Yajm) cos? (Ya~3r/4)+cos? (Ya—m[4))
~E M -1) B(ra)-4 *d? g (d)}
+2.61 x 10771 d V/(f) [52% 10% (B[d) =4 =11 » I} (d)} {68}
where V=17,
Q@ =81.64x 107 £ ~32 2 [ ({2 7} 4%} (2/nVa) cos? (Ya~3w/4)—2 1} (dj
+(27-2) 3 ()] +1.57 f521 {2aj= V) cos* (Ya—3x/[4)
—d? {33 (vd) —(23, (Vd) Iy (Yd)/ (YD) + 5 (Yd)} )
+ {12031 1079 J2 (d) — (2/m Va) (1 -+ 7 a?) x cos? (Ya~In [4))
=522 Y41« 107® (3 (vd)+ 8} (Y)Yt d®y
=23 (0d) 3, (Y (vd) )} [69)
where, Y=,
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QFF =179 < 1P L~V (L Y2 a?~ 1) (2/m Va) cos® {Ya—(3m/4) + 33 (V)
< {69422 102 B £~ (£ V2 a?—1) (2w Ya) 3 cos? (Ya—3)4)
+ R (VD261 1077 1 d f112
%[52% 102 B? f~4 -1 1] I2 (7d)} 7]
where, T="7,,

The variation of A, and QF with respect to the frequency of excitation and
the variation of QE with respect to the length of the resonator are shown in
figures 10 and 11 respectively. The following values for the constants have
been used in computing the results
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Q OF SOMMERFELD SURFACE WAVE RESONATOR

8.1, Field Components :

The mode of practical intest in cylindrical surface wave transmission
is rhe E, mode, since all other modes have very high attenuation. For
Sommerfeld surface wave line having radius 4 and immersed in air the field
components for the resonant waves Ey are®®

E,=2BH{" (j7,P) cos(nm z/l)
E, = -j2B /Y, 0) H{Y (7 7,0) sin (n 7 z/1)
H9r=2 B{w ey/Vy) H}”(/‘ Y, P) cos {nx =) [

where Y,=a, ;j b,
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8 2. Maximum Energy Stored ;

The maximum energy W, stored inside the resonator is
27 g B2 w? €31 R ) (5 @) s

W=~ 80 {7 dHW (Y, d) BE () 7] d)
MR (E NG 2o 2

T dHY (N d) BE (-7 d)] 01
8.3, Power Losi:

b S0 BTBOTE (e iy iy gy HO (s
g /\/(217,> '727;('7;’—-'73)[ J iz i Y d)y B (~jy3 d)

~j Y d B (F ¥, d) HP (=j 5 d)]

(73]
pw=‘/<:_::> 2"3;1“%.“'.5_’& H (7 Y, d) B (=j 72 d) (79)
8.4. Q Facror:
The Q factor for the Sommerfeld surface wave resonator is
Q (B =w (Wy, '[Py +Pyl])
=vo ug[-j 3 dBP GV, d)Bi(-j S d)

~i L dH{ (j R d)BP (~j 7] d)]

= [41¥@2e ) [=j 13 dH{V(j 1,d) B (~j 73 d)
~J B dBP (Y DR (13 d)]
—[d(O; =DV Q o) B (Y, d) HP (=) 75 d)] 17

The magnitude of the arguments of the Hankel functions in most of the
practical cases is less than 0.05. Therefore, using the following small
argument approximations

HP (j Ypd)=~(2n,d)
HP (-7 d)=—Q2/r"] a)
HP (10 d)=j Q) (m+ jm)
BP (- j " d)=—j@/x)(m+ jny [76]
where,
m=4 {089 d)? (af +hD)]

n= arc tan (5,/a,)
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the expression for Q (Eg) reduces to

~ ’\/<f-d My ”war)
QU = T T V@ o, [ i (=) 72 25 5y v} o

where, the values of a, b, are determined from the solution of the following
characteristic equation given by Barlow and Brown®
MHL U Nd) T U nd) 78]
w e H,'W(j Vaa) oytjwey Ji(j7d)

where, 7, is the radial propagation constant for the region inside the con-
ductor and €, represents the dielectric constant of the conducting medium.
By using large argument approximation |j¥,d|> > 1 for the Bessel functions
and smajl argument approximation fj Y2 d! << 1 for the Hankel functions,
eqn. [78] is solved to yield

a=[(1123 [ €] V¥)/d] cos /2, b, =[(1.123] £]¥%)/d]sin 5/2 {791
where,
”x 1
=5 (1)
=lyl=|&im|&]
nd )= 2L g (50)

The Q (Ep) of the Sommerféld resonator at f=9500 MHz and with

0,=3.54x10" o/m, o, =58x107 y/m

Q(Ey) = 1076 [‘_;71‘_ __068a, by ] (811

! d[na? -b3)+2ab,m]
which for /=075 mandd=1.1x 103 m yields
Q (Ey)=18.830 and for =01 mQ (£y) = 14660,

9. Power FrLow

In deriving the expression for Q (F,), it has bzen assumed that the only
losses in the resonator occurs due to ohmic dissipation in the end plates and
the wire surface and the loss due to the radiation has been ignored. An idea
of the radiation loss can be gained from the power flowing outside a radius
P, corresponding to the radius of the terminating end plates.
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The total power flow P, outside the Sommerfele line {¢

2 @
P=1Re [ [ E, Hgpdpdé
8=0 g=d

7% €q w kB2 , Y.
=Re {] 72 -yxonlxl ’Yé) {J ";dHi(”(] ’de)
. . . e 517
H® (=) Yy d) +] ndﬂ‘s’mzdm(f)vmd)d

2egw Bzﬁ
= 10, b, (a2 +53)°

[ (b2 —~aZyn—2a,b,m) ] 182

where, h=a +jBz jB and small argument approximations for the Hankel
functions have been used.

The energy flow outside a radius @, is
& 2
PPe’%Re f f Eyy H;dePdG
p=pe =0
Rwegh B { Con .
[ ik, S y H,(0
[j’yz -7'2 (7;2_7%) JY P HY (G, 0,
Ho® (=7 Y5 P+ 920, Hy () 1,0,)

H,® ()73 0) (&3]
Therefore, the percentage of power flow outside a radius
p, is
P, [P < 100
=100 (=2 (a3 +£2) 0,/8 BY
Relh {JY3 HY Y (G 1,0 Ho™ (=73 p)
I D G PN HP (- vy et
{n(a% —F2)Y+2a,b,m]

84]

The variation of the percentage of power flow outside a radins p,=1 m and
P,=0.45 m as function of the radius of the Sommerfield line having ¢,and
g, values same as stated previously is shown in fig. 12. Tt is found that for
25 s.w.g. wire and end plate radius of 1 metce only about .03% power flows
outside the resonator, whereas, for end plate of radius 0.45 meire, the per-
centage of power flow outside the resonator, is about 1%:.
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10. FumRTHER SCOPE OF WORK

The following work in connection with the surface wave resonator which
has been developed (see fig. 13) is under progress.

(i) The effect of the tilt of one of the terminating end plates on the
Q of the resotiator.

(i) The problem of excitation of a metallic corrugated surface wave
structure.

(iii) Experimental study of the field decay guide wavelengh,
attenuation of surface wave lines with metdl disc loading.

(iv) Extension of the surface wave resonator technique to the study
of corrugated dielectric rod characteristic.
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Fic. 13
Photograph of the experimental setup of Sommerfeld surface wave resonator
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