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A procedure is pre.ce/ited j%r rlroo.ring ow-re!axurion factor w wlirn bpe do 

rrnr posses or~v knowleiI!y of i i .  This rcloxoiioiz f k m r  however does ,lor 

represent rhe com~mfionnl scnlrir m a i r h  in ihe rnntri.~ notarion. illstead, it 

represents a dago!lni inii1ri.X /iflri!lg rhc fi~rrn diag ( w  I 1 . . . 1 ) .  A linear 
* + 

s,vstem Ax = b i . ~  consii!er.eii for i!Iustrarion. A ,few exnmpies worked out by 

one-srep q d i c  process (Gmss-Seiihl rn~thod)  and obo by over-relaxajion mrrlrod 

(wit;; the over-rel~ix~fion factor ohroinrd in the uforesairl manrier) iridicafe a much 

more rapid convrrgurice characferi.siic o f t h e  laifer process. 

1. i ~ r n o ~ u c ~ o ? . ~  MATHEMATICS 
+ 

Let t!ie system o f  equations for rhe vector x ( = x , ,  x2,  . . . x,), be 
given by 

X ~ - $ ~ ( X , ,  x2. . . .  xn) ,  j = I .  2, . . .  n. []I 
(') indicates transpose. 

One-step cycllc process (Gauss-Szidel'~' method) can be xrivnted starting 
-+ 

with an initial appmximarion x(O) as  follows: 

xj(k+l)=+j ( ~ , ( k - b t ) ,  X J ~ + I ~ ,  . . . , x ~ ; l ) ,  X ~ I ,  . , , ~ y )  [31 

, j=  I ,  2 ,  . . . , i! 
k=O, 1, 2, . . . 

k -t l indicates the iteration number. 
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we consider as a special case, a linear system. We write, in mntriv notation, 
the linear system a s  

We put 

The one-step cyclic process then becomes 
+ 

( A ,  + ~ ) 3 + 1 )  + A ,  dk) => 
k-0, I ,  2, . . . 

Subtracting from both sides, we obtain the relation 
-+ -, 

D p ' = d  ~41 -. 
where 6(f i1 is calIed the differences and 

- - +  + * 
d ( = h - A L d k + " - ( A ,  + D )  d k ' )  is called the defect or residua). 

Introducing a factor 



where is cn!Eed thc relaxalion factor, we write Eqn. [.lj 3s 

F~~ 1 ,  it is identical to  G:luss-Seidel method. w normally deneilds on k.  

We m;ly not have pre-kiiowlcdgc of m .  in such n case we take some 
value of w (say w,= 1.2) satisfying lhe condition 0 = o, s 2 ztnd obtain the 

-> 
corresponding defect or  residual d,. Lct us increase w a aiule (say w2= 1.51, 

keeping if below 2, however, and  see the residual d,. We then compare :he 
* -. 

two residuals cia arid d, and determine a better w value for which the residual 
becomes zero by linear interpolation. oxfin,, is thus given by 

* -9 + 
where / / and 141 are Eucl~dean  norms of dt and d., respcctively, and q is 
a numerical factor 3- 1. q depends o n  k. The actual role of q is to boost up 

+ + 
the value of ( Id ,  ) - I d,l) so that w,,,,,, does not g o  very much out of the 
closed interval [0,2] or  it remains within [0,2]. We may take q -  I ,  10, lo2, 

+ -+ 
lo3 ex. ,  so that the magnitude of  q ( I d ,  1 - 1d,i) is of  the same order as that 

-+. 
of (w: - w,) 1 d, I o r  any other Inore suitable value that we may guess for q. If 

I A , ; ( ~ ' ~ ~ ~ - ( A , + D ) ~ ~ ~ ) /  t / ) ; I  

14 has to be negatived. w,,,,,,mainly provides us an  idea about the 
direction in which i l  moves. Quadratic or  cubic interpolation is not of much 
use because besides more calculations they cannot produce any thing better 
for a new w than the linear interpolation does. i n  fact, we obtain an  idea 
Of the direction in which w moves through interpolation and not the actual w .  

We should notice tha t  w,,,,,, in [6 ]  may produce a value either greater than 
2 or less than 0 for  a moderate initial approximation. We, however, put the 

new value of w as 2 if o ,,,,,,, > 2 .  If wrefin,,cO, we put new o=O. 

If o ,,,,,, remains within 0 and 2, the new w = w ,,,,,,,. The first iteration ends 
d 

with obtaining the  solution vector x(" from relation [5 ]  with the newly found 
Out w .  Identical is the s ~ t u a t i o n  for the second iteration, in which cese we 
may take w, as  1.2 and  w, a s  1.5, or any two difierent values between Oand 2 

-+ 
with the latest approximate vectorx(". 
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ii + - +  
3. CONVERSION OF THE SYSTEM A x = b  TO Bx=r 

-t 

~ ( ~ ~ ~ i ~ g  the solution vector x  invariant we transf0:m the matrix A and 
-+ * 

the co!umn vector b to 1 matrix B and a column vector c such that the new 
+ -, i- 

system Bx=e produces a convergent sequence of the vectors d') for any initial 

approxilnatlon>'O'. The following conversiou normally achieves the aforesaid 

convergence. 

We obtain Erhard-Schmidt's norm of A denoted by 11 A /I,, , and give11 by 

Let p be an arbitrary non-zero positive number. Then 

It is easy to see that 11 ~ 1 1 ~ ~ .  <: 1. The optimum value of w, i .e. ,  

(where P ( B )  is the spectral radius of B) for the maximum rate of convergence 
that depends on th,e spectral radius of the coefficient matrix B is tedious to 
obtain. On the contrary, new w is easier to obtain. The actual difference 
between w, and o, or w2 lies in the fact that w6 is the actual over-relaxation 
factor for an iteration, whereas o, and w2 usually give the direction for the 
actual over-relaxation factor. -. -+ -, 

For any initial vector do) the new system B x = c  normally converges. 
The abvve convergence criterion is the result of the following theorem : 

Theorem: Given any matrix norm IlAll which is consistent with a 
vecror norm. The condition I/ Ail < l is suflicient that for any initial 

-+ * -. 
vector do', the vecror X ( ~ ) = A ! ~ X ( O '  tends to a null vector, i.c., tends to a 
null matrix as k tends to w. 

Since Erhard-Schmidt's norm is consistent with a vector norm (though 
not subordinate) we expect convergence mathematically for the new system 
-+ + 

Bx = c .  
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We should not take P Loo large, since in that case the square-rooting 
4 

for obtaining Id, 1 and i f 2 \  will incur conriderabie amount of 

error. Moreover, the additmn and subtraction error that depends entirely on 
of the CO~pllter can mar the Calculation. We may take p around 5. 

To illustrate the procedure for the choice of w we work out below a 
few examples. 

+ * 
Let a linear system A x -  b be given ap 

+ 
The actua! solution vector a is 

. . 
* -f 

We take 11 All,,,, -tp as 10, i.e., p around 5. Then the new system B x = c  
becomes 

Hence 

3 0 

The over-relaxation procedure is 
+ -+ i 

D,(~~+~)-~(~))=w(c-B,~'~"')-(B,+D,)~(~)), k=O,1,2, . . .  [7] 

We take 

k = O (i.e., Jsi iteration) 

From relation 171 we write 

(,' .J$ :;) =(I.: 



Hence xi" = 1.4 

We now rnke w, - 1.5 and consequently xi")= 1.25 

Therefore 

= 2.735 taking y= I 

We iake new w (whic!a is obr actual relaxation fxctor) 21s 2. 

Thus the first iteration ia over and the result obteined ic ex:ict. The one-ste? 
cyclic process with the same initla1 approximation 

produce the following resblt as  the 12th iteratiion 

The result is correct just up lo 3 decimal places. The above procedure 
achieved the exact resulr only i n  one iteration. Lei us now consider ;I slight 
deviation of the actual soluOon vector for the aforesaid system changing ilie 
known coiumn vector a lrrilc. We write the ncw system as 

1 - 2  . [ ]  [ 0 9 1  
3 .3 - .03 

The Erhard-Schmidt's norm of the coeficieqt matrix is already less t h ~ n  I .  
It i r  rhsreforc not necesmy to 11-ansform the matrix as  before. The actual 
so l i i t i~n  vector i s  

,y .% ' 1  



,,\er-rcluxnrion method with the choice of w bascd on t,-- 1, - 1.2 
w,.- 1.5 produces the exacr resuEt just in Iwo iterations. The Gauss-Sei&i 
Diocedure, on the other hand, requires I2 iterations with the identical initial 

i 

3pproxirnation of x") only to produce result corsecl upto 3 decinla! pi3ces. 

The 12th iterated vector IS 

When we consider the first problem (that possesses positive definite 
-, 

cozfficlent matrix) wi:h .d0'-(2 2)' and w, - 1.1,  w,= 1.11, we obtain w ,,,,,, 
as --.2S. takmg q- l .  We thus take new w as 0. This new w produces 

x'Q':.2 x'Q)'- -2, 
! P -  

We note that sign reversal has taken pluce for the second component o f the  
solution vector. The next i terat~on itself then produces the exact solution. -. 

If the initial vector do' is such that o,,,, always tends to be less than 0, 
4 

or else, if at certain iteration the vector x(" is such that w,,, is always less 

;had 0, the above procedure always takes new o as 0 and no rnd ly  produces 
necessary sign changes in the components of the trial so iu t io~  vector. The last 

example i!lustrates this fact. When the initial approximation differs from 

the actual solution vector considerably, the w,,,,,, may become greater or 
much greater than 2. In such cases, the new w that takes a value 2 (w k 2) 

swlngs into action and very rapidly brings thc approximate vector down lo 
+ 

near the solution vector x. The first two exzmples illustrate this fact. 

if w,,,,, is found ro have a value between 0 and 2, it is itselftaken as the new w .  

This is illustrated in the following example. 

The system 

5 3 1 ,  

I - !  ? 11 
I ' 4 1 - 2 l  

+ 
has the solution vector .v --- ( 1 



a e  obtain w,,,,,, a s  ,153 .  Since it is w i t h ~ n  0 a n 3  2 ,  we tabc new w as 733 

and calcl~l;ite ;(I' a t  the first itcrarion, which i s  (0.9518 ,4759 -2.3584j)'. 
Using 1.2 2nd w 2 -  I 5 In the second iteration iilao we obtiz~n w,,,,,~, 3r a 

+ 
negative quantity, t < : k m ~  q= i We therefor take w = O  and  obtairr x(') 

(.951X 1 155125 -2.OiS8375)'. With the aforesaid i n ~ t i s i  appiox~mat~o ,~ .  

o, ::nd w2, we obtain w ,,,,,, as .94 with y=  10, and consequently, s(') hoccnlev 

( I  Oh4 ,532  -2.106)'. In the second iteration, we obtain a,,,,,, as 

2 

which 19 negative if we allow q to be 1. We thus obtain w ( " = ( l . !  63 1 085 
- 1 8295)' pcrmitiing new w to be zero. 

I n  commonly used f o r n ~ s ( ' ~ " ~ ~ ' ~ )  o f  :he over-relaxation l'orrnui:~, the 

reiaxsuon ijcror is a scalar matrix. But  TI the method presented in this 

paper the relaxation factor i s  a diagonal matrix having the f o r n ~  diag 
i w  I 1 . . . i ) .  Conseqi~cntiy, the factor w whose eKwt  is injected in the 
first component x,  of the solution vector, affects, it> turn, thc resl of the 

' 
components x2, x3. . . . , x,, of the vector s linc;~r!y. Bul i:l the coininonly 
used :nethods referred to above, non-linear terms involving a)', w 3 ,  etc , creep 

-> 

i ~ t o  the components x,, x,, etc. of  the solution vector x. The rclative efect 
o f  rliesc two aspects on  the rate of convergence remains to be explorcd. 

The cited theorem defines only the sufficient condition for convergence -. -, 
for rhe syslen: Ax=b. It is, however, releva~lt  to mention the necessary and 
si~ffcient condition proposed by Berryn, i e . ,  lim [ (A,+D)" A,]"'=-@ (0 is 

m+- 

the  nul l  rmtrix) for a general matrix A, which incidentally implies the 
following the or en^'^: 

For any given s p a r e  matrix A ,  thz powers A n 3  O if and only if a l l  
eigenraiues hj  oS .4 have moduli that are less than 1. 
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