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ABSTRACT

4 procedure is presented for choosing over-relaxation factor w when we do
not possess any knowledge of it.  This relaxation factor however does not
represent the conventional scalar mairix in the matrix notation. Instead, it
represents a diagonal matrix having the form diag {w U1 ... 1. 4 linear
system A—;=—B is considered for illustration. A few examples worked out by
one-step cyclic process (Gauss-Seidel method) and also by over-relaxation method
(with the over-relaxarion factor obtained in the aforesaid manner) indicate a much

more rapid convergence characteristic of the laiter process.

1. INTRODUCTORY MATHEMATICS

.
Let the system of equations for the vector x{=uxy, X, ... X,), be
given by
xirqSi(xl, Xpe - X)) J=102, 00 n 1

(") indicates tramspose.

One-step cyclic process (Gauss-Seidel’* method) can be activated starting

. v . . g
with ap initial approximation x©® as follows:

xj(k+1)=¢i (xlac-m)’ xz(k—H)’ e, Xgryf.lu)} xj"’, L x,‘,k’) {2
=12, ... ,=n
k=0, 1, 2, ...

k+1 indicates the iteration number.
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We consider as a special case, a linear system. We write, in matrix notation,
the linear system as

-
Ax=b
We put
A=A, +Ap+D
where

Al=(li;) 3 ]i]=

Ag=1{ry): 1=

D={d,); dijzl"xi i=j
0 i<j
The one-step cyclic process then becomes
(A D) 200 1 g Tt T 3]
k=0,1,2, ...
We write Eqn. [3] as
DA s A, 3D g B
Subtracting D;"‘) from both sides, we obtain the relation
Ds®-d 4
- - -
where 5% (=x®+0_x®)y ig called the differences and
- -> - - .
d(=b—A x5 (4. + D) x!¥ ) is called the defect or residual.

Introducing a factor
W=1{w 0 .., 0)
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where w is called the relaxation factor, we write Eqn. [4] ag
DsW_Wd, O=e=<2 151

For w=1, it is identical to Gauss-Seidel method, w normally depends on k.

2. CrOICE 0OF OVER RELAXATION FACTOR
We may not have pre-knowledge of ©. Tn such a case we take some
value of @ (say wy=1.2) satisfying the condition 0 = @ =2 and obtain the
-
corresponding defect or residual ;. Let us increase w a fitite (say w,=1.5),
keeping it below 2, however, and see the residual d,.  We then compare the
- -

two residuals dy and 4, and determine a better w value fer which the residual

becomes zero by linear interpolation. g4 is thus given by
ml bt

a([a] 14

~ - fd] 6]

Crefined = @3

where ];z:| and [;l;! are Buclidean norms of a;: and c?; respectively, and g is
a numerical factor = 1. ¢ depends on k. The actual role of ¢ is to boost up
the value of (JCZ' _I’ZI) 50 that @,y does not go very much out of the
closed interval [0,2] or it remains within [0,2]. We may take ¢=1, 10, 10%,
16% ete., so that the magnitude of q(]a-i:f - ﬁzi) is of the same order as that

of (wy ~ @)« [a:l | or any other more suitable value that we may guess for g. If
| Ap XF 0 4 (A + D) X8 | > |B]

[zf] has to be negatived. gg.qmainly provides us an idea about the
direction in which it moves. Quadratic or cubic interpolation is not of much
use because besides more calculations they cannot produce any thing better
for a new w than the linear interpolation does. In fact, we obtain an idea
of the direction in which w moves through interpolation and not the actual w.
We should notice that g,y in [6] may produce a value either greater than
2or less than ¢ for a moderate initial approximation. We, however, put the
new value of w as 2 if wppeq > 2. I @peiged <0, We put new w=~0.
If @, pineg TEMains within 0 and 2, the new o= w g The first iteration ends
with obtaining the solution vector ¥ from relation [5] with the newly found
out w. Identical is the situation for the second iteration, in which case we
may take w, as 1.2 and w, as 1.5, or any two different values between Oand 2

. . ¥
with the latest approximate vector x(7.
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e 4

3. CONVERSION OF THE SYSTEM Ax b TO Bx=c

Keeping the solutxcn vector x invariant we transfo*m the matrix 4 and
the co‘umn vector b to a matrix B and a column vector c such that the pew
system Bx——-z' produces a convergent sequence of the vectors x(") for any initia
approximat]on’;cfo), The following conversion normally achieves the aforesaid
convergence.

We obtain Brhard-Schmidt’s norm of 4 denoted by I Al , and givenby

noon 12
[ 22 (a,.j)z] '

i=1 j=1

Let p be an arbitrary non-zero positive number. Then

B A
fallgs +p
and ”
- b
e=
Vallgs +p

It is easy to see that 1Bl ¢ < 1. The optimum value of w, ie.,

(=

WS =1

(where P (B) is the spectral radius of B) for the maximum rate of convergence
that depends on the spectral radius of the coefficient matrix B is tedious to
obtain. On the contrary, new o is easier to obtain. The actual difference
between o, and w, or w, lies in the fact that w, is the actual over-relaxation
factor for an iteration, whereas w; and w, usually give the direction for the
actual over~-relaxation factor.

e = -

For any initial vecior x® the new system Bx=c normally converges.
The abuve convergence criterion is the result of the following theorem:

Theorem: Given any matrix norm || 4{| which is consistent with a
vector norm. The condition ||4fl <1 is sufficient that for any initial

-+ - -

vector x*¥, the vector x® = 4¥x™ tends to a null vector, i.e., A* tends toa
null matrix as &k tends to oo,

Since Erhard-Schmidt’s norm is consistent with a vector norm (though
not subordinate) we expect convergence mathematically for the new system
-+ -
Bx=c.
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We should not take p_bmo large‘: smee in that case the square-rooting
operations for obtaining [d,1 and [d,} will incur considerable amount of
error. Moreover, the addition and subtraction error that depends entirely on
the precision of the computer can mar the calculation. We may take p around 3.

4, NUMERICAL ExAMPLE

To illustrate the procedure for the choice of w we work out below a
few examples.
> .
Let a linear system Ax=1b be given as

2 1 X, - 1
303 X, 0
The actual solution vector ;: is

S

We take f|A”E_S. +p as 10, ie., p around 5. Then the new system B;=—;
becomnies
2 1 xy = f.1
303 Xy 0
0 ,BR=(0 1 ,D,,:(.z Le= [ 1
B, =
3 0 0 \ .3 0

\

Hence

The over-relaxation procedure is

Dy (WO _300 ) — (@ — B, XU Byt D) ¥®), k=0,12, ... [7]

We take

.?(ﬂ’:( 2 ‘) and @ =1.2
-2

k=0 (.e., Ist iterarion)

From relation [7] we write

(a6 2275 DH6) 6 o) (3N

<
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Hence x{V/ =14
)
We now take e, 1.5 and consequently x{" = 1.25
Therefore

[d,] = (01 +.0324)2 =206

(2] = (A1 +.050625)2= 246
and

[ P wz_ Vo

! (

P
IEARIEAY

Crefined

1215 o 206

=124 e T
9(.206 — .246)

= 2.745 taking g=1.
We iake new o (which is our actual relaxation factor) as 2.

Hence

L
xP=1; x4P=-1

Thus the first iteration is over and the result obtained 1s exuct. The one-step
cyelic process with the sume initial approximation

;(o):[ 2]

42!

produce the following result as the 12th iteration

SOV ] 000244140625
—1.000244140625

The result is correct just up to 3 decimal places. The above procedure
achieved the exact result only in one iteration. Let us now consider a slight
deviation of the actual solution vector for the aforesaid system changing ihe
known column vector a hitle.  We write the new system as

BRI

The Erhard-Schmidt’s norm of the coefficient matrix is already less than 1.
Tt is therefore not necessary to transform the matrix as before. The actual
solution veector is
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1 we take an initial approximation

Yo7 2
-2

the over-reluxation method with the choice of & based on ¢~ 1, wy=1.2 and

w,= 1.5 produces the exaci result just in two iterations. The Gauss-Seidel

procedure, on the other hand, requires 12 iterations with the identical inital
-

approximation of x® oniy to produce result correct upto 3 decimal places.

The 12th iterated vector is

wan

[ 1.0002197265625
|- 1.1002197265625

When we consider the first problem {that possesses positive definite

>
coeficient matrix) with x®=(2 2)" and w,~1.1, w,=1.11, we obtain @ refined
as —.28. taking g=1. We thus take new w as §. This new » produces

x =2, = -2

We note that sign reversal has taken place for the second component of the
soiution vector. The next iteration itself then produces the exact solution.

If the initial vector »© is such that @ efined AlWays tends to be less than 6,
or else, if at certain iteration the vector 3% is such that Wiotinea 15 2lways less
thad 0, the above procedure always takes new w as 0 and normally produces
necessary sign changes in the components of the trial solution vector. The last
example ilustrates this fact. When the initial approximation differs from
the actval solution vector considerably, the w, g, May become greater or
much greater than 2. In such cases, the new w that takes a value 2 (» 3 2)
swings into action and very rapidly brings the approximate vector down te
near the solution vector ; The Sfirst two examples illustrate this fact.
If W,egea 18 fOund to have a value between ¢ and 2, it is itself taken as the new w.

This is illustrated in the following example.

The system
53 b xy =g 8
12 1l s I —1I
L4 1 —zg lxy L9l
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fn order to apply the over-ielaxaiion method, we first divide the
elements of the coefficient matrix as also those of the b vector to form g pey
system in which the Erhard-Schmidt norm of the coeflicient matrix 15 Tegs
Limn I.  Now, taking the initial approximation

#P=(5 5 -1y, g=5818, w=12and wy,=15

We oBAIn wepeq 85 753, Since it is within 0 and 2, we take new w as 753
and caleuluate <V at the first iteration, which w {0.9518 4758 —2.35845)".
Using @, = 1.2 and wy=1 5 in the second iteration also we obtain w g 454
negative quantity, tuking g=1. We therefor take @ =0 and obtain LI
(9518 1155125 —2.0188375). With the aforesaid inttial approximatoy,
o, and wy, We 0btain wp. .4 a8 94 with ¢=10, and consequently, P becomes
(1064 .532 —2.106)". 1In the second iteration, we obtain e.q 4 as

077835
¢ <.02723

12—

which is negative if we allow g to be 1. We thus obtain x=(1.764 085
—1 8295} permitiing new w to be zero.

5. DiscussioN

In commonly used forms®™ &9 o the over-relaxation formuia, the
relaxation factor is a scalar matrix, But in the method presented in this
paper the relaxation factor s a diagonal matrix having the form dug
(w1 1...1). Consequently, the factor » whose effect is injected in the
first component x, of the solution vector, affects, in turn, the rest of the
cComponents Xy, Xy, . .., X, of the \'Iector—;' tinearly. But in the commonly
used methods referred to above, non-linear terms involving w?, ?, etc, creer
into the components x,, x,, etc. of the solution vector ¥ The relative effect
of these two aspects on the rate of convergence remains to be explored.

The cited theorem defines only the sufficient condition for convergence
PR

for the system Ax=>b. Tt is, however, relevant to mention the necessary and

sufficient condition proposed by Berry'!, ie., lim [(A,+D)! 4,]7=0 (@ s

m>e

the nuil matrix) for a gemeral matrix 4, which incidentally implies the
following theorem'?:

For any given square matrix 4, the powers 47— & if and only if all
eigenvalues }; of 4 have moduli that are less than 1.
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