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The heai trainrfrr in t h r f i l v  of il power law ,fluid in a .w~ ig / , t  pipe qf 

eiredar cross-section rotiiring about a perpen(1icuiar nxis is studirri. The 
temperature firld is eivdurrlrsrl up to the /ir.rt order of the rotational Coriolis 
parameter. (, cl,hen the wali qf the pipe is maintained at a uniform temperature. 
Ti  is found rhot the j%&i is unj/OrmI.v heufcd relative to t h  wull up to n critic01 
ralue of the parameter a ,  which I ~ W I V L ' S  the Prandtl number and for higher values 
of cc, relatively cooled and heated regions clrvelnp. Tlte phpiral reasons for 
such a behaviour are analysed The Nusselt number is not affected by rotation 
up to the jrs t  order o f  f 

Many of the coolers use rotating devices and intrinsically the cooling of 
rotating devices themselves is of great importance in the modern industries. 
As mentioned by Morris', the cooling of turbine rotor blades can be done by 
the passage of a suitable coolant through internal passages. Since the 
non-Newtonian Auids are found to be berter heat transport media the study 
of heat transfer phenomena due to flow of non-Newtonian fluids in rotating 
devices is o f  practical importance. 

The inAueilce of rolation on the velocity and temperature profiles for a 
Newtonian fluid flowing through a vertical tube rotating about a parallel axis 
was studied by Morris1. We obtained the non-symmetrical axial velocity and 
temperature proflles with a uniform temperature gradient using a series 
expansion in powers of the rotational Rayleigh number. His analysis is 
valid for low rates of heating only. Mori and Nakayamaz have extended 
this problem for the case of a predominant secondary flow under the 
cond~tion o f  constant wall temperature gradient. In  their analysis the entire 
region is divided into a flow core region and a boundary layer along the 
Wall. The same authors3 have invest~gated the problem ot' heat transfer 
in the flow o f  a Newtonian fluid in a straight pipe rotating about a vertical 
axis. The analysis is similar Lo that of the previous invesligation2. 
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H ~ ~ ~ ~ ~ ~ ,  i', :lii !!~c above investigations the dissip:itivc eEeas 
neglected ~n t!ie h c ; ~  lrxnsfcr problsrrr. h i  this is not justified at ],isher 
przlndr: tirimbeis a.: they play a domin;ini roie in determ.nir~g ilic 
profiles as seen in  $2.  

s e r e  w e  consider the pioblzm to study the cf?"cct i ) r  rcitut~on on 
1ie:it Lransfcr in a pressure ciriven flow o f  a power law ilu~il  in :I ?rr:lig}lt I,lP, 
of circular cross-section wiicn ilie w:~ll of Lhe pipe is m~irit :~ilizd :it a cojlqnn, 
temperature. We conslder the pipe to be rolatirlg :?bout a pt;~:ndicular 
and ail tlie dissipative elrccis ore taken into con~i lc i -a t ion  Broatlly, i!le 
p:occdurc adoplcd 1s as follows : the velocity ficltf ol' tlic f i lw is obt,!~ncd 
and then the temperature field due t o  convcclion and dissip:it!on 1s evaluated, 
In  a receni paper4 the veloclty field i u  oi?iained foliowing the mctl~od 
developed by Ra;ons by expanding the flow field i ! ~  lei-ms of tlie rotittionai 
Coriolis parameter. Here w e  evaluate the rernperaliire proliies up lo rhe 
first order of the rotational parmmeier, when the wail temperdture i ir~~unti  rhe 
periphery of any  cross^-section is uniform. The isotherms xd lhe variaiion 
of temperature for Newlan~an,  psuedoplastic and di la tmi  fluids are discussed 
in detail in 4. We find that, as in the case of !he hesl trnriifcr phenomena 
in the flow of a power law fluid in a curved pip:: o r  circulnr cross-szc~inn, 
studled earliei6, irrespective of ?hc nature of the f l u~d ,  there exists a cr!:icai 
value of tile non-diinensional pxameler  a .  directly propoiTion:l! to Prandii 
rrumber, below wilich thc fluid is aniformly !icatt.d and beyond wi~~ch 
rehlively cooled and heated regions develop. The similar~ty between ihc 
flow in a curved plpc and In :i roi8ting straight pipc can be explained by 
coting that the effects of centrifugal forces in criher c:ise are the s.imc. 
But it is seen that the Coriolis rorce developed duc to rotatlor: is not as 
srrong as thz? produced in the case of curved tubes. We have rjlvcn a 
detail-d discuss~on of the iibovc phenomena in  6 4. 

The mean bulk tempeminre and t11: Nusselt number are also cvalualcd. 
It is found thzt they arc no1 alTeizcted by the rotation up to the first ordci 
approxirnction. 

2 EASIC EQUATIONS AND PORMULATiON OT THT PROFLFM 

Considcr tile flow of a pcwer law fluid due to  a constant : ~ x ~ a l  pressule 
gradient, in a straigl~t pipe rotating with a constnt angular speed B about n 
verticel axis. The constitutive equation for a power l o w  Ruld us given by 
0stwald7 and genera11sed hy Tomitas is 



where C, is the specific heal, k IS the thermal conduct~vity, .$ is t h e  dissipa- 
tmn given by 

.$ -= T, . Erj .  12 81 

Here U ( X ,  Y ) ,  Y ( X ,  Yp find IY (X, Y )  are the vclocity components in 
the d~rections of X, Y ,  Z wit11 X-axis zs  the axis of rotatmn a r d  z-axis is 
along (he axis of the plpe. T ( X ,  Y )  is the temperature at  any point (X, Y ) .  

The boundary conditions :ire 

where F(x, Y )  -0  is the equalion of the cross-section of the pipe and T, is 
the constant wsll ?emperature. We introduce the  slresni function !F' S U C ~  

that 

To study the temperature distribution of the flow in a circu4ar pipe of 
radius a, we transform LO cylindrical polar coordinates defincd by 

X - R  sin 0, Y-=R coso, Z-Z. L2.111 



where 

- 1 c =  T,, - T,,  , difference in the inlet  and outlet temperatures. C=(lip) 
(aP/aZ) i s  the given constant axial pressure gradient and v,= p,/P. 

In the previous paperd, the equations [2.3] to [2.6] in non-dimensma1 
forms are solved for the velocity profile upfo the second order of the rotation 
parameter 

As in the case of Newtonian fluids here also the main flow is associated by a 
secondary flow induced due to rotation. The velocity componcnls upto 1st 

order of f are 

u = f  sin 6 cos 8 [(I-s) B' rS- ' -2  (114  I)/n C'T""+'], [ 2  141 

"-5  iCos2 0 (A! , . - I  4 . ~ 1  +in+2)  +sin? ~ { A Z  ts 8 5 s - 1  

+ ( 2 / n + 3 )  C' r u n + - I ] ,  12 151 

wo = \" a' f w, , [2 161 

where 



The non-dimensional fo im of the energy equation is 

I a?: ,. \ (ni-t)ia + (2111 + 3) r 2 1 n + z  I 7 a] - P ( ~ )  11-t ( n + - l ~  

where 
) / 3 = K . P r . E c ,  [2.19] 

and 

Pr. == (:)'Im, the geneialiicd Prandtl number. 
ic 



The part on the right hand side of the equatlon [2 181 is  tile 
Eon~ributioa due to the  dissipative affects. The boundary condition is 

- 
T=O on r:- l .  [ 2  201 

3 SOL~ITION OF THE E N E R G Y  FQUATlON 

T a k ~ n g  ? u p  to the first order in  E as 

?= To ( I ,  0) + E  T, ( r ,  6)  , [3.11 

substituting for the velocity con?ponenls From [2.14] io [2.17] and  Separatinz 
various order terms, [2.18j reduces to 

and 

( n i  1 )  a w  + p - r - r ,  
2 $ r  

I3 31 

with the bounary conditions 

T,-0,  T,=O on !.=I. 

The solutions of 13.21 and [3.3] with 13.41 are  

and 
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where 

The solution of the energy equation up to the first order of the rotation 
parameter 5 consists of two parts T, and T,, T, being the temperature profile 
when the rotation is neglected and T, is due to the  rolation and with all the 
dissipation effects taken into consideration. We discuss ihese solutions for 
Newtonian and Non-Newtonian fluids separately. 

(a) Newionian Fluids : 

The isotherms for a Newtonian fluid [n-1.0) are plotted in figure 1, 
taking cr =500. I t  is found that the cross-section of the pipe is divided into 
cooled and heated regions by the ?SO isotherm and in each domain the 
non-zero isotherms form closed curves. The off-side domain towards which 
the Coriolis force acts is the heated rigion with the maximum relative rise in 
temperature being ivfl=0.057501, while the other domain, the on-side end 
represents a cooled region, the maximum drop in temperature being 
.u2= -0.029700. This asymmetry is due to the Corioils force induced due 
f0 rotation which pushes the elements from the on-side end to the off-side 
end. This type of separation has been found in the case of a bent pipe nIso< 
there the induced force being due to the curvature of the pipe. 



FIG. 1 
Isotherms for Newtonian Fluids in the Gross Section (n=1 .0 )  

Figure 2 .  gives the variation of temperature for a Newtonian fluid for 
different values of a, thus for differenr values of the Prandtl number. It 1s 
noliced that beyond a critical value of or, the cross-section of the pipe is 
divided into cooled and heated regions with ?=O as  the separating isotherm. 
But  for lower values of or, the fluid is heated uniformly throughout  he 
cmss-section. I t  is evident from the energy equation that the increnqe of  a 
can be thought of as an apparent increase in the Reynolds number. It is 
seen from [1] that as the rotational speeds increase that is, as  the  Reynolds 
number increases an almost shear free central region and a boundary Isyer 
type fiow i n  the off-side end of the cross-section t o w a d s  which the Corioiis 
force acrs, develop. For low rotational speeds the swirling secondary flow 



Erc. 2 

Variation of temperature for Newtonian Fluid for diffzrent vaiuesoc a when e=o,?i 



A co:nparison of isotherms for diiatant ( 7 2 - 2 1 . 2 )  a ~ d  p~uedop iz s t i~  fluills 
( , ,=0.~)  is given in figure 3. The general paltern for nor.-Newtonian fluids 
is slr~ii!ar to that of Newtontan fluids. 

AS it has been pcinted out earlier6. the psuealoplaslic fl:i,ds (, lcli  
sustain icss stram than the dilatant (17 :- 1 )  or Newtonian fluids in -1.0). 
~l~~~ for the former fluids both heat generalion aljd convective c&cts 
less and for the Later they arc more. So 3 weaker separation oF heated and 
cooled regions is expected for the psuedoplasiic fluids which is evident FronI 
the figures 3 and 4. As in the case of Newtonian fluids we can find ille 

critical yrandtl numbers for non-Newtoman fluids also. The followi;lg table 
gives tile relarivc maximum and m~nimuxp temperatures and the criiica! valuer 
of a for d i f i r cn t  values of n. 
-~ --- ~-~ -- ~- 

Maximum roiative Minimum d a t i v e  Criticai 
n heating Cooling 

a -500  
vaiuer of  

o=5CO 

The figure 4 gives the variation of temperature for Newtonian fluids far 
a fixed value of rx =500. From these results we can conclude that dilatant 
Auids are better and more efficient media that may be used as  coolanis. A S  
compared with our previous results6, we find that rhe relative heating and 
cooling is very much less in the present case, 

Also, ir is interesting to note that irrespective of the  Auid either 
Newtonian or non-Newtonian, the heated and cooled rcgions develop i n  the 
same domain of the cross-section. 

5 .  NUSSBLT NUMPIER 

The non-dimensional mean bulk temperature from [3.5] to 13 71 i~ 
given hy 

~"_2"11-"~2(4n+~)  T + -2 [S. I] 
5 - I ( I  + I T, 

The mean heat flux per unit length along the cross-section of the pipe 
in dimensional form is 

* "  



FIG. 3 
Comparison of  Isotherms for dilatant (n=1.2 - )and psuedoplartic (n=0.8 - --) Fluids. 



FIG. 4 
Variation of temperature for different value of n when s=o,n and a-500 



It is evidcnl that pip to Grst order of f ,  the Nus~e l t  numbep is not 
affected by the rotation a s  in the case of bent pipes. 
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