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ABSTRACT

The heat transfer in the flow of a power law fluid in a swraight pipe of
circular cross-section rotating about a perpendicuiar axis is studied. The
temperature field is evaluated up to the first order of the rotational Coriolis
parameter &, when the wall of the pipe is maintained at a uniform temperature.
It is found that the fluid is uniformly heated relative to the wall up to a eritical
value of the parameter o, which involves the Prandil number and for higher values
of a, relatively cooled and heated regions develop. The physical reasons for
such a behaviour are analysed. The Nusselt number is not affected by rotation

up 1o the first order of .

1. INTRODUCTION

Many of the coolers use rotating devices and intrinsically the cooling of
rotating devices themselves is of great importance in the modern industries.
As mentioned by Morris!, the cooling of turbine rotor blades can be done by
the passage of a suitable coolant through internal passages. Since the
non-Newtonian fluids are found to be better heat transport media the study
of heat transfer phenomena due to flow of non-Newtonian fluids in rotating
devices is of practical importance.

The influence of rotation on the velocity and temperature profiles for a
Newtonian fluid flowing through a vertical tube rotating about a parallel axis
was studied by Morris!, He obtained the non-symmetrical axial velocity and
temperature proflles with a uniform temperature gradient using a series
expansion in powers of the rotational Rayleigh number. His analysis is
valid for low rates of heating only. Mori and Nakayama®? have extended
this problem for the case of a predominant secondary flow under the
condition of constant wall temperature gradient. In their analysis the entire
region is divided into a flow core region and a boundary layer along the
wall. The same authors® have investigated the problem of heat transfer
in the flow of a Newtonian fluid in a straight pipe rotating about a vertical
axis. The analysis is similar to that of the previous investigation®.
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However, in all the above investigations the dissipative effecis ap
neglected 1n the heat transfer problem. Bui this is not justified at higher
Prandtl numbers as they play a dominant role m determining the temperature
profiles as seen in §2.

Here we consider the problem to study the effeet of rotation on the
heat Lransfer 1 a pressure driven flow of a power law fluid 10 a straight Pipe
of circular cross-section when the wall of the pipe is maintained at a consiant
temperature. We consider the pipe to be rotatmg about a pergendicular axs
and all the dissipative elfscts are taken inte consideratton  Broadly, the
procedure adopted 1s as follows: the velocity field of the flow 13 obtained
and then the temperature field due 1o convection and dissipation 1s evaluated,
In a recent paper"1 the velocity field is obtained following the method
developed by Barua® by expanding the flow field in terms of the rotational
Coriolis parameter. Here we evaluate the temperature profiles up to the
first order of the rotational parameter, when the watl temperature around the
periphery of any cross-section is uniform. The isotherms and the vamation
of temperature for Newtonian, psuedoplastic and dilatant fluids are discussed
in detail in §4.  We find that, as in the case of the heat transfer phenomena
in the flow of a power law fluid in a curved pipe of cicculer cross-section,
studied earlie1®, irrespective of the nature of the fluid, there exists a cnitical
value of the noun-dimensional parameter oo, directly proportional to Prandil
number, below wiich the finid is unifermly heated and beyond which
relatively cooled and heated regions develop. The similanty beiween the
flow in a curved pipe and in a rotating straight pipe can be explained by
roting that the effects of centrifugal forces in either case are the same.
But it is seen that the Coriclis force developed due to rotation is notas
strong as that produced in the case of curved tubes. We have guven a
detailed discussion of the above phenomena in § 4. '

The mean bulk temperature and the Musselt number are also evaluated.
It is found that they are not affected by the rotatton up to the first order
approximation.

2. BASIC EQUATIONS AND FORMULATION OF THE PRORLEM
Consider the flow of a pcwer law fluid due to a constant axial pressure
gradient, in a straight pipe rotating with a constnt angular speed £ about a
vertica] axis. The constitutive equation for a power faw fuid as given by
Ostwald” and generalised by Tomita® is
=—pl+p,BF 214

where 7' is the stress tensor, p is the pressure, £ is the rate of stram tensor,
#, 18 a constant and

O =|E} +Eh+EL+2 (Eh+ E3 - E3) [frmniin2 [2.21
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4 is the flow behaviour index.

The equations of motion referred to a Curtesian [rame of reference
v ¥, 7 as given in* are
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where C, is the specific heat, & 15 the thermal conductwvity, ¢ is the dissipa~
tion given by

¢=T, 2. [28)

Here U(X,Y), V (X, Y) and W(X, ¥) are the velocity components in
the directions of X, ¥, Z with X-axis as the axis of rotation ard z-axis is
along the axis of the pipe. 7 (X, Y) is the temperature at any point (X, ¥).

The boundary conditions are

U=V =0 o p(x, ¥)-0, 12.91
=1,
where F(x, ¥)=0 is the equatiocn of the cross-section of the pipe and T,
the constant wall temperalure. We introduce the siream function ¥ such
that
. o2 (2.10}
3 X

= —_.

[ Ned
| g

To study the temperature distribution of the flow in a circular pipe of
radius g, we transform to cylindrical polar coordinates defined by

X=Rsin6, Y=Rcosh, Z=2Z. [2.11]
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We introduce the non-dimensional variables r, ¢, w, ®,, T by Substituting

R=ar
p-Ua¥
W=Ww

Q;,<Wn-1/ra¢z—i) a,
T-TT,+T, . e

where

— Qa”"ﬂ (C an+1 >(2»—7:)m

¥, vp

W,: (Ca’”‘ >Hn .
Vp
T,=T,, ~ Ty, difference in the inlet and outlet temperatures. C=(1/p)
(3P]/32Z) is the given constant axial pressure gradient and »,= /P,

In the previous paper?, the equations [2.3] to [2.6] in non-dimensional
forms are solved for the velocity profife upto the second order of the rotation
parameter

7 Ca
===, <K=—-~). 213
WK w?

As in the case of Newtonian fluids here also the main flow is associated by u
secondary flow induced due to rotation. The velocity components upto st
order of ¢ are

(2

u=£sin0cos 8 [(1—5) B' 512 (n+ 1)/n CtpAn+y, 214

p=£{cos? @ (A'+ Bt CH PRy Lsin? 0 { AR s BY T

+(2{n+3) CF A, 213
wy=iwg + & Wy, {216
where
n

W():,)l.,; o (l ~r“”") N [’_} 17]

n+l
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The non-dimensional form of the energy equation is
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a={U/W)Pr, B=K. Pr. Ec,
and
felWc in
Pr‘=p k” 4 (g) , the generalised Prandtl number,
\ Vo

Ec. :2(n+1)/2 W2

, the generalised Eckert number.
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The second part on the right hand side of the equation [2 18] is the
contribution due to the dissipative effects. The boundary condition is

T=0 on rl. f220

3 SOLUTION OF THE ENERGY FQUATION
Taking T up to the first order in £ as

T=Tyr, O+ET, (r, 6, 13,13

substituting for the velocity components from [2.14] to [2.17} and separating
various order terms, [2.18] reduces to

T, 1 T, 1 T,

N — { 1
EY R R S (32
and
k) +_L 3Ty +._1_ O a (AL + BLs-1 4 Ol 2T o5
¢ rooar ” o a8 or
n41 3w
+ﬁ(-;)r~avr‘—, B3]
with the bounary conditions
Te=0, T,=0 on r=1. [34]
The solutions of [3.2] and {3.3] with [3.4] are
1 n? .
o= ISR B Gar (1—rBurimy {351
and
T, (r, &)= —~n’rcos @ {__&_ (1—-r2m 4 __E_Z_g_.__'_lii)__
4'(n+1) 3+ 34in)
- E3 (1 ~_,s+31n) E4 (1 __r3+5,‘n)
(ns+3+2n) (ns+3y  S(1l+n) 5+3m)
ES(l-—-ra'”I") Es(l__rﬁ»ll'n-n) F7<l__,5+3 n) 36]

Gu+1) Gn+ D) (ns+2n+1) (ns+4n+1) (3 +7m) 3450
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where
2 2 pi
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4. DISCUSSION OF THE RESULT

The solution of the energy equation up to the first order of the rotation
parameter £ consists of two parts T, and T, 7; being the temperature profile
when the rotation is neglected and 7 is due to the rolation and with all the
dissipation effects taken into consideration. We discuss these solutions for
Newtonian and Non-Newtonian fluids separately.

(a) Newtonian Fluids :

The isotherms for a Newtonian fluid (n=1.0) are plotted in figure 1,
taking o =500. It is found that the cross-section of the pipe is divided into
cooled and heated regions by the =0 isotherm and in each domain the
non-zero isotherms form closed curves. The off-side domain towards which
the Coriolis force acts is the heated rigion with the maximum relative rise in
temperature being Af;=0.057501, while the other domain, the on-side end
represents 2  cooled region, the maximam drop in temperature being
M,=—0.029700. This asymmetry is due to the Coriols force induced due
to rotation which pushes the elements from the on-side end to the off-side
end. This type of separation has been found in the case of a bent pipe alsc,
there the induced force being due to the curvature of the pipe.
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Fig. 1
Lsotherms for Newtonian Fluids in the Cross Section (=10}

Figure 2. gives the variation of temperature for a Newtonian fiuid for
different values of «, thus for different values of the Prandtl number. It 1s
noticed that beyond a critical value of o, the cross-section of the pipe is
divided into cooled and heated regions with 7=0 as the separating isotherm.
But for lower values of w«, the fluid is heated uniformly throughout the
cross-section. It is evident from the energy equation that the increase of «
can be thought of as an apparent increase in the Reynolds number. Itis
seen from {4] that as the rotational speeds increase that is, as the Reynolds
number increases an almost shear free central region and a boundary layer
type flow in the off-side end of the cross-section towards which the Corlolis
force zets, develop.  For Jow rotational speeds the swirling secondary flow
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is weak and it 15 symmetrical about the plane of rotation in any eross-section,
Thus as rotational speeds increase beyond a critical value the ofl-side region
55 highly sheared and there is an almost shear free mid region and the on-side
end, thus producing cooled region on the on-side and heated region on the
ofiside. This seperation is due to the behaviour of the flow field and
consequently needs a critical Prandil number.  For lower values of «, the
shear free region is very less und hence no separation takes place. The
figure 1 confirms this patiern and from numerical computations we find
that the critical value of « is about 155,

OO~ 50

{

~0.04

—-008%
Fre. 2

Variation of temperature for Newtonian Fluid for different values of « when p=0,+.



i*u . BANAKA KATU

(b)  Non-Newtonian fluids :

A comparison of isotherms for dilatant (n=-1.2) and psuedopiastic fluids
(n=0.8) is given in figure 3. The general pattern for non-Newtoman fiuigs
is mimilar to that of Newtontan fluids.

As it has been peinted oul carlier®, the psuedoplastic flaids (r< 1
sustain less stramn than the dilatant (v >-1) or Newtonian fluids (n-1.),
Thus for the former fluids both heat generation and convective effects are
less and for the later they are more. So a weaker separation of heated and
cooled regions is expected for the psuedoplastic fluids which is evident from
the figures 3 and 4. As in the case of Newtonian fluids we can find the
critical Prandt] numbers for non-Newtonian fluids also.  The following table
gives the relative maximum and mnimum temperatores and the critical values
of « for differcnt values of n.

Maximuom relative Minimum relative Critical
n heating Cooling values of
a =500 =500 a
08 G 627447 (r=0.5) ~0.006352 (r=0 6) 310
1.0 0 057501 (r=0.5) —0.029705 (v =0.6) 155
1.2 0.100017 (r=90.5) —0 067318 (r=06) 95

The figure 4 gives the variation of temperature for Newtonian fluids for
a fixed value of a =500. From these results we can conclude that dilatant
fluids are better and more efficient media that may be used as coolants. As
compared with our previous results®, we find that ihe relative heating and
cooling is very much Jess in the present case,

Also, it 1s interesting to note that irtespective of the fluid either
Newionian or non-Newtonian, the heated and cocled regions develop in the
same domain of the cross-section.

5. NUSSELT NUMBER

The non-dimensional mean bulk temperature {rom [3.5] to [37] is
given by

T ot Br* (4n+1) T,

’ Gr+1y Ga+ 1 T

I3

(5.1

The mean heat flux per unit tength along the cross-section of the pipe

in dimensional form is
k 72T
g=— — J- (._, add 15.2]
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Fi1G. 3
i = — —) Fluids.
Comparison of Isotherms for dilatant (n=1.2 —) and psuedoplastic (#=0.8 ) Flui
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~0.081-

Fic. 4
Variation of temperature for different values of # when 6=0,7 and 6=500
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The Nusselt number defined by
Nu=2ag/k T, "

LA
3

is found to be

Nu=1[G () + H (m)] [5.4]
where
G (r) =221 n{dn+1)
Gy 1) G D)
7, 20" (@as B3l
Hp)—tx. 2 207
T, Ba

Tt is evident that up to first order of ¢, the Nusselt number is not
affected by the rotation as in the case of bent pipes.
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