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ABSTRACT

Discussed here are all possible wiangular decompositions and their 10le 1o sohe
linear equotions.  Also presented are the computational formulae for five of these

triangular decompasitions 1o provide illustrations regarding their computational use
.

1. TRIANGULAR DECOMPOSITIONS

We define a triangular matrix as a square matrix having zerc clements
above (or below) the left diagonal (or right diagonal). The following four
sels of triangular matrices are considered for the decomposition of a square
matrix and the solution of linear equations. They are:
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L, P, are called lower triangular matrices of left diagonal L, P, are called
lower triangular matrices of right diagonal R, U;are upper triangular
matrices of left diagonal. R,, U, are upper triangular matrices of right
diagonal. 1,2, 3,4,5,6,7, 8 arc numerical symbols to denote L,(:IU-),
P1(=P;j)> Lr(il,"j). Py(sp;j)’ Rt\=rij)s Uz(ﬁui])s Rr(”':"j), U,(;“,Iﬂs
respectively.  The two triangular matrices L; and P, have the identical form
but different elements. Similar is the case with L,. P,; R, U;; R, U,.

r

The foliowing chart (chart 1) gives us all possible triangular decomposi-
tions (i e., decomposition of a square matrix into two ftriangular matrices
{product form)] including invalid ones.
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CHART |

512 x 23 .34 x 45 x 56 x 67 .78
x 2 . 32 .43 . 54 x 65 .76 .87
113 x 24 x 35 x 46 x 57 x 68

.31 .42 .53 .64 .75 . %6
x 14 .25 x 36 x 47 x 58

.41 .52 .63 x 74 . §S
15 .26 x 37 x 48
.51 .62 x 73 x 84
.16 .27 x 38
.61 x 72 x 83

17 . 28
x 7 x 82
18
x 81

‘x’ indicates invalid triangular decompositions as these decompositions pro-
duce triangular forms in the product and consequently not valid to represent
(or replace) a square matrix. There are totally 28 (=6+ 4+ 6+ 6+ 4+ 2)
mmvalid triangular decompositions out of 56 {=32~8). '." indicates the vahd
triangular decompositions. There are totally 28 { =56—28) valid rriangular
decompositions that can be used to replace a square matrix. All these 28
valid decompositions are not different as can be seen from the following

chart {chart 2}.

CHART 2
15=25=16=26 51=52=61=02 17=27=18=28
31=41=32=42 75=85=76=286 53=34=63=64
34=43 78=87

‘=" ndicates <is identical in nature’. Thus there are eight different
triangular decompositions that can represent a square matrix uniquely.

Failures :  When a matrix possesses one or more vanishing leading
minors on left diagonal LR, (i.e., 15) algorithm collapses. The R,L; (i.e. 51)
algorithm fails for one or more trailing minors that are zero on the left
diagonal. LR, (i.e.,, 17) and L,L,; (i.e., 31) algorithms, on the other hand,
blows up for some leading vanishing minors on the right diagonal. The R.R;
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(i.e., 15) decomposition meets the aforesaid ill-fate for some vanishing trailing
minors on the right diagonal. Finally we put forth the fact that all
eight triangular decompositions collapse for a coefficient matrix A POssessing
vanishing leading and trailing minors on both left and right|diagonals even if
the coefficient matrix A may be nonesingular. The following matrix, for

instance,

(2 1 -1 -3
14 2 2 6
5§ -5 ~2
s 6 ~19 4]

is not decomposable by any triangular decomposition though it is highly
non-singular.

We are now confronted with two situations. Should we go on trying
riangular decompositions one after the other or should we restrict ourselves
to only one of the eight decompositions using the row {or column) inier
changing technique 7 In case we posess the idea of the leading and trailmg
minors, we can go ahead with the suitable decomposition. Otherwise, we
follow the latter process.

2. COMPUTATIONAL ALGORITHMS

Derived here are the simple explicit computational recurrence relations
for obtaining L, R,, L, and R, and their inverses along with the solution
veetor X from the aforesaid five useful decompositions making use of matrix
operation rules. The summation sign used below has the conventional
meaning, i e., the summation has to be taken as zevo if its upper bound is less
than the lower bound. The ‘=" sign in any recurrence relation has the
identical meaning as that in Fortran. The ‘=’ sign, on the other hand,
carries the meaning °equivalent’ all throughout.

We store the matrix A and the column vector l: as below :
Ad=(ag), i=1,2,...,.0;/=,2,...,n
and
b=(by by, ..., b)Y

where (') indicates transpose. The sequence of subseripts 7 and 7 (to represent
matrix elements) in

3

“i=1, 2, ..., w3 f=1,2, ..., n

mdicate that i is to take 1 (fixed) first and j is to be varied from 1 to # at an
interval of 1. Then i=2 (fixedy and j=1, 2, 3, ..., n Next i=3 (fized),
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1,2, e e B and so on. At every change of subscripts, we determine
different efements. A brief note for the mode of change of subscripts,
powever, is added in some cases for easy and quick access to the recurrence

relations.
1£ none of the leading minors on the left diagonal are zeros, then
A=LiRy, I,=1 Vi n
j=1, 2, ..., 1
i-1
R ag=ay— 24 ay
=
R N Y ; ERY
id
L ”,,"’:(aij"‘ — aip”p]’/ai)
p=t
i=j+1, j+2, ..., n

Letting j=1, we obtan a,, (=ry,} from the first recurrence relation of {1.1]
and then ayy, @y, - .. 5 G {(=hy, by, .., I,) from the second one.
For j=2, a3, Gy{=ry, ryp) are determined from the first relation and

Gy Ggze - - 5 O (=l Lo, , L) from the second 2nd so on. Lastly,
for j=n we find oy, Gy - -, G, (ST oy o 5 Fp) from the
first refation.
n
Det A= Il a; {1.2]

=1

- - .
In LRx=bie,in Ryx=L""b=c, we have the elements of L,”! matrix:

-1
LY ay=—a;- Z q,a {1.3]

4§ w5pi
Pyt
J=1, 2, ..., a~1; i=f+1, j+2, ... . R
-
The elements of the column vector ¢ are:

it
i+ 2 a,b, [1.4]

’a

i=n, n—1, ..., 2 (b, remains unchanged)

-
The solution vector x is:

X b=(h— = a,b)la, 1.5}
p=idy

i=n, n—1, ..., 1
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-+ i
where X=(%;, X3 « -+ » XY =(byy by oo B

When none of the trailing minors on the left diagonal are zeros, then

A=R/L, ry=1 i 21
j=n, n—1, ..., 1 }
ki
L: ag=a;— % a,d, I
p=iti
i=n, n-1, ..., ] [24
R ay= (a;~ Z ay,ap)fa;
p=j+1
Pejm1, j-2 ..., 1

The elements of L; and R, matrices have the identical subscripts with
those of 4.

n
Det d= II a;, 22]
=1

- - - - -
In R/ Lx=bie,in L,x=R;"'b=c, we have the elements of R,~! matrix:

jr1

R™Y ay=—a;— 2 ayap [23]
p=1ti
j=n, n=1, ..., 25 i=j-1,j=-2, ..., 1

-
The elements of the column vector ¢ are :

¢ b=b+ = a,b, 12.4]
p=itl

i=1,2, ..., n-1

-
The solution vector x is @

e~ 1
X b= (b;— Z a, bay 12.5)
p=1
i=1, 2, ..., n
where ;,. (X3 X9, -0y X)) =(by, By, ..., b)Y

If none of the leading minors are vanishing on the right diagonal, then

A=LR, L=1 % i 3}

"
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i=12 ... n
i
L. [ ’=(ﬂ1,n—j+l -2 U pmpey 4 »"‘J'H)/Hi ne gl
=1
=1, 2, ... i—1
i=1, 2 s 3]
12l
e
R.: Ay =@,y &y yepin Gy
p=t
j=1,2, ..., (n—~i+ D)
r . L i
Fori=1, we find ayys @49, -+« @y, (=r{, 715 ..., r},) trom the second

recurrence relation of [3.1]  For i=2, we obtain ay, (=1,;) from the first
relation and then we find @y, gy, - oo J @y g (SHy Fy oL, 73, wet) from
the second relation. For i=3, we determine ¢, a3, ,_y (=1 L) from the
fust telation and dyy, Gyy - - - 8y 4op (=075, Py, ooy £7y,0,) from the
second relation, and so on. Finally, for i=n, we find a,,, 4, poy> - - - » %
(=l Las + - 5 I p-y) from the first relation and a, (=+,,) from the
second relation.

n
Det A = (-0O) MTaqa, . [3.2]
=1

where [#/2] is the integral part of n/2.

- > . > R i
InL, R x=bie,inR x=L 'b=c, we have the elements of L;”' matrix:

s . (3.3]

r -1, - _
LI AN TR T Y 7 n—pt1%p, n-jt1

p=j+i

J=1,2, .., n—1; i=j+1, j+2, ...,
-
The elements of the column vector ¢ are:
- j=1
¢: by=bi+ 2y iy by 3.4
p=1
Je=n, n—1, ..., 2
b, temains unchanged
.
whete ¢ = (¢y ¢, . . ., ¢ =(by by ..., B
-
The solution vector x is:

f3.5]

-+ n-i
3 bi=(bi— Z a,,b, 5. )]0, 4i1y
p=1

j=n, n-1, ..., 1
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N

- Ly
where x= (%, Xy -+ -5 %) by Bpoy oo s By)

A=L L i

j=n,on—1, ..., 1

L. Qyyay, y Gueiia,y ™ Gampta, j Tnmits, p ’
i=n, n—1, ..., § } (41
n
z
L: ;= (a,— Qyoprn, 7 Gpd Tan s, 5
p=1+1
i=n—j+2, a~j+3, ..., =

For j=n, we find a,, (1,,) from the first recurrence relation and a,,, a,, . .

B (Vg I'ame + -+ 5 Iy from the second relation.  For j=n—1, we calculate

a5 pey, 92, m-1 n=t, bu-1, n-p) from the first relation anda, ,_, o
mets oo G ey (T g U gt oo o0 Uy, 4y) from the second relation
For j=n-—2, we get &y, nop O yep @ ez (Tl aon Toy wea Do pop)
from the first relation and ag 5 @5 yog - - - Oy uon (S0 oig s g -0,
I p-2) from the sccond relation and so on. Lastly, for j=1, we find
Gy, Ggqn - - -5 Gy (Zlyy Loy 4 -« -, 1yy) from the first relation.
»
Det 4 “':(")IHIZJ i Apiryr o [4‘2]
i=1
.

- . - -
In L, Lyx=b, ie, in L, x~L *b=c, we have the elements of L,
matrix:

-1
—1. —_ — '
L7 ay=—ay 2 Gy ly ey, [4.3]
pe=n-it2
je=n, o n—1, L., 2 , n—j+3, ... .n

The elements of the column vector ¢ are :

oy

by=bi+ 2 ap,b

w=-p+1
p=n-j+2

e, on-1, 00,2

b, remains unchanged [4.4]
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s =0y, Byyy oL, By
-

The soluion vector x is:

N
where e=(¢;, €2

i
- S
X bL:(b,"‘ z i hn-pﬂ)/"u ni+i [45}
p=1
i=n, n—1, ..., 1
where 2= (%, Xpo - -« X,V =0, buge o, By
When none of the trailing minors vanishes »n the right diagonal,
A=R. Ry, ;=1 ¥ i 51
i=n, n—1, ..., 1
it
. Pt
R by iy,
p=1
, n—i+ 1 7 [5.11
a1
ol
R - = Dio Ty prt> j)/”f, i+t
r=1

J=n—i+2, n—i+3, ..., n

)y from the first vecurrence relation and o,
, ryy) from the second relation. For

71> 2) are obtained from the first relation

and G, _q g Gug g0 - s Doy (Z230 f20 o -5 Ty from the second relution.

i o —_ gt s .
For i=n~2, we calculate a, 5 1, Gy_p 2 Guon, 3 (2000 1 Mo 20 Py, 3)
o Oz n (=T Tasy ooy 1)

For i=n, we find a, (=1,

2 Fys -0 ey

Tz v -+ Oy (=r

,
i=a—1, 0,y g5 Gyeq, 2 (B, 0 4

from the first relation and a,_,, 4. 4, 2. 50 - -
from the second relation, and so on.  Lastly, for i=1[, we find a,y, ag,, . . .,

4, (=r'yy Pz - - - 1) from the first relation.
"

Det A=(- 1)1 [T ., [5.2]
i=1

- - 5 -
In R, Ryx=b, ie, in Ryx=R,"th=c, we have the elements of R !

matrix ;
-i. . N
RE: a;=1fa if i+1>n—j+l \
otherwise,
n-j+t (53]
‘1>=<—Eaa» ‘>/a R
K 55 i, mpi1 1o m~itl
p=i+1

Jj=1, 2 L,y i=n—j+ L on—j, ., 1
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>
The elements of the column vector ¢ are !

> )
o hy= 2 dps mopin by 54
=]
j=L 2 ..., 1
3 - . »
where e=(cp ¢ - -5 ) =0 B oo by)

>
The solution vector x is:

-
x bi=b— Z  a,b, [55]
p=n~1+2
i=1, 2, ..., n
X "= (b, b by
where x=(x;, X3 . ., %)=, by g ..., B

3. REMARKS

To encounter the unforeseen cases where one or more leading (or
trailing) minors vanish on the left (or the right) diagonal, we reservea
shortage of {(n+1) locations for the current 1ow (or column) of the augmented
matrix (4,6). As soon as an element on the left (or right) diagonal becomes
zero, we swing to the interchange of rows {or colummns) from the current row
{or column) onwards. It 1s interesting to note that any one of the eight
decompositions (that cannot be restarted because of the gradual destruction
of the original matrix in the computer memory) can preceed to obtain the
solution vecter x for any nonsingular system.

Gaussian algorithms! (Gauss, Doolittle, Crout, Cholesky and Bana-
chiewicz) are, however, basically the same as our LR, (i.e., 15) algorithm and
consequently have to be performed with row (or column) interchanging
technique for vanishing leading minors on the left diagonal.
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