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Discussed here are all possible ldongu/a!' dec(Jmpo!.ifioJls and [heir jole 10 solie 

linear equations. Also presented are the computational formulae for /il'e of these 

triangular decompositions to provide illusiraliolls regarding ~heir computatIOnal use 

1. TR1ANGULAR DECOMPOSITlOl'S 

We define a triangular matnx as a square nUllrix hav:ng zero eicments 
above (or below) the left diagonal (or right dlagonal). The followlDg four 
sets of triangular nlatrices are considered for the decomposition of a ~quare 
matflx and the solution of linear equations. They are: 

, 
2 II", \ 

;, = (L/! ) L" P,=~ 1-'" ) , 
5 

6 1_ ) 
, 

~,=( 1-7 ) R,_ uI :=\ "';J , L,_ 

\ 1/ 

L" P, are called lower triangular matrices of left diagonal L" P, arc called 
lower triangular matrices of Tight diagonal R" U, are upper t[,angular 

nlatnces of left diagonaL R" Ur are upper triangular matrices of righl 

diagonal. 1,2, 3,4,5, 6, 7, 8 arc numerical symbols lo denote L, (~l,j)' 

P,(~p,j)' L,(~l:j)' P,(~P;j)' R,t~rij)' UI(~UiJ)' R,(~r;j)' U,(~u:,), 
respectIvely. The two triangular matrices L, and PI have the identical [o/m 

but different elements. Similar is the case with L,. P,; R,. VI; R,. U,. 

The following chart (chart I) gives us all possible triangular decomposi­
tIOns ~i e., decomposition of a square matrix into two triangular matrices 
(product form)] including inval1d ones. 
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' x '  indicates invalid triangular decolnpositions as these decon~positions pro- 
duce trial~gular forms in thc product and consequently not valid to represent 
(or rcplace) a square matrix. These are totally 28 ( = 6 - t  4 +  61- 6+ 4 + 2) 
~nvalid triangular decon~positions out of 56 ( = 8 l - 8 ) .  '.' indicates the va11d 
triangular decompositions. There are totally 28 ( ~ 5 6 - 2 8 )  valid triangular 
decompositions that can be used to replace a square matrix. ,411 these 28 
vahd decompositions are not difTeerent a s  can be seen from the fdlorving 
chert (chart 2). 

' - ,  = ~ndicates ' is identical in nature '. Thus there are eight different 
triangular decompositio~rs that can represent a square matrix uniquely. 

Failure3 : W h e n  a matrix possesses one or more vanishing leading 
minors on left  diagonal L$R, ( i .e. ,  15) algorithm collapses. The R,L, (i.e. 51) 
algorithm fails for one or more traiPmg minors that  are zero on the left 
diagonal. L,R, (i.e., 17) and L,L, (i.e., 31) algorithms, on the other hand, 
blows up for some leading vanishing minors on the right diagonal. Tlie R,R, 



( j , e , ,  75) deeonlposition meets the aforesaid ill-fate for some vanishing trailing. 
minors on the rigkt diagonal. Finally we put forth the fact that all the 
eight triangular decompositions collapse for a coefficient matrzx A possessing 
vanishing leadrng and trailing minors on both left and righildiegonais even ,f 

tlie coeficient matrix A may be non-singular. The following matrix, for 

instance, 
- 1 

2 

is not decomposable by any trianguldr decomposition though it is highly 
non-singular. 

We are now confronted with two situations. Should we go on trying 
triangular decompositions one after the other o r  should we restrict ourselves 
to on:y one of the eight decompositions using the row (or column) inter. 
chansing technique? In  case we posess the idea of the leading and trailing 
minors, we can go ahead with the suitable decomposition. Otherwrse, we 
follow the latter process. 

Derived here are the sinlple explicit computa?ional recurrence relations 
for obtaining L,, R,, L, and R, and their inverses along with the solution 
vector 2 from the aforesaid five useful decompositions making use of matrlx 
operatron rules. The summation sign used below has the convent~onal 
meaning, i e . ,  the summation has to be taken as zero if its upper bound is less 
than the lower bound. The '-' sign in any recurrence relation has the 
identical meaning as that in Fortran. The 's' sign, on ihe other hand, 
carries the meaning ' equivalent ' all throughout. 

-+ 
We store the matrix A and the colunln vector b as below : 

K = ( a , > ) ,  i = l ,  2, . . . , n; j-1, 2, . . . , m 
and 

-, 
b=(b, b,, . . . , bJ 

where ('1 indicates transpose. The sequence of  subscripts i and j (to represent 
matrix elements) in 

~ndicate that i is to take 1 (fixed) first and j i s  to be varied from 1 to n at an 
interval of 1. Then i s 2  (fixed) and j -  1, 2, 3, . . . , n. Next i =  3 (fixed), 



i -  i, 2, . . . , n 
i - a  

R,: a,j = aAj - 2 a; itOj 
p=l  

i ~ - l ,  2 ,  . . . , j i 
I 

Letting j= I ,  we o b t a ~ n  all  (=rll) from the f i r s t  recurrence relation of [ I  . l )  
and t hen  a,%, aS1, . . . . a,, ( - - I 2 , ,  i,,, . . . , I,,) from t h e  second one. 
For j, 2, a,,, a22 ( = r 1 2 ,  r22) are determined from the first relation and 
a,,, adz. . . . , a,, Ie2,  . . . , 1912) from the second m d  so on. Lastly, 
for j=n we find 11 ,,,, a*,,, . . . , "7 9z,a (=rln. rZ7&. . - . , rM,J from the 
first relation. 

Det A =  Kl 4, f1.21 
,=I 

* + + + -* 
i r  L,R,x - b i e., in R,s=L,-Q=c, we have ?he elements of E," matrix: 

-+ 
The elements of the column vector c are : 

i - n ,  n-  !, . . . , 2 (b, remains unchanged) 

-> 
The solution vector s is : 
A 



The elements of L, and R, matrices have the  identical subscripts with 
those of A. 

Det A =. I7 aij 
I = !  

-, -* -4 + + 
I n  R, L , x = b  i.e., in L,x=X,-' b = c ,  we have the  elements of Ri-' matrix : 

... 
The elements of the column vector c are : 

+ 
The solution vector x is : 

-+ 
where x- (x , ,  xz. . . . , &)'=(b,, b2, . . . , b,)' 

If none of the leading minors are vanishing on  the right diagonal, then 

A = L , R , ,  li,=l w j [31 



For i= 1, we find a,,, Qm . . . , U , ,  ( = r  :,, T : , ,  . . . , r i n )  irom the second 
recurrence relation o f  t3.11 'For i = 2 ,  we obtain a,,, !=I , , )  from the first 
reiation and then we find a,,, a,,, . . . ; a,, ,., ( s r ; , ,  &, . . . , rk* ,,-,) from 
the second relation. Fo r  i - 3 ,  we determme o ,,,, il,, (=I, , ,  i3,) from the 
first relal~on and a3,,  f133. . . . n3, ,,-, ( 5 ~ ' ~ ~ .  T ' ~ ~ ,  . . . , 1 . r3 ,n -2 )  From the 
second relation, and so on. Finally, for i - n ,  we find a ,,,,, a,,, ,,-,, . . . , G,,;,, 

( ~ i  ,,,, I,,, . . , I,, ,,-,) from !he first relation and n,, ( r r ' , , )  from the 
second relation. 

where [1r/2] is the integral part of n/2. 
+ +- + + -+ 

In Li R, x= b i.e , in K, x=L,- '  b = c, we have the elements of L,-' matrix : 

+ 
The elements of the column vector c are : 

;=n, ~ ? - l >  . . . , 2 

h, remains unchanged 
* 

v+i~ere c = (c, ,  c2, . . . qL) '=(b,,  b2, . . . 3 h J t  
-, 

The solution vector x i s :  

-t n - i  
r: bF==(bi- 2 a,pb,,-p+j)/a ,,"- 

p=1 



For j-?I,  we find a,,, (l?,,,) fhom the first recurrence relation and a,,, n,,, . . . , 
a,, ( I '  ,,,, I,,,, . . . , I',,,) from ihe second relation. Fo r  .j=n - 1, we calcl~late 

-+ -+ + - + 
In L, L, x - h ,  i.e., in L, s .L,-' b -=c, we have the e lements  of L," 

matrix : 

... 
The elements of the column vector c are : 

j - 7 1 ,  n - I ,  . . . , 2 

h,  remains  unchanged 



For i -n ,  we find a,,, ( - r ' , , , )  from the  first recurrence reia(ion and  o ,~ , ,  
a,,), . . . a ,v,, ( s r l 2 ,  I - ~ ~ .  . . . , . . . , r,*,) from the second relation. For 

i - t i - 1 ,  a ,,_,, ,, a ,,_,. (ST' ,,.,, r',.,, ,) are obtained from the first rel:~tion 

2nd a ,-,, 3,  a q ! _ l p  ,, . . , N ~ ~ _ ~ ,  "s ( = r Z 3 ,  rZ1, . . . , from the second re1.1tlon. 

For i - a - 2 ,  we calculate Q,*->, a2,-2, 3 ( = r ' $ , - 2 ,  ,, r',,->, 2,  r 'pt -2 .3 )  

from the first r e h t i o n  and a ,_,, ,, N,,_,. ,. . . . , f19,,,-z3 "L (-a+ r35. . . . , r3,,) 
from the second relation, and so on. Lastly, for i ;  I ,  we find a,,, a,,, . . . , 
a,,, ( ~ r ' , , ,  I.',,, . . . , I.',,) from the first relation. 

+ -* .+ + -. 
In R, R , x = b ,  i e . ,  in R , X - R , - ~ ~ = = C ,  w e  l xve  the elements of 8;' 

matrix : 

R,-': a r j -  l /o i j  if i 4 -  1 > n--j-i- l 
? 

otherwise, I 



The elcments of the col~!mn tector c are : 

To encounter the unforeseen cases where one o r  more leadmg (or 
trailing) minors vanish on the left (or the  right) diagonal, we reserve a 
shortage of ( n i  I )  locations for the current low (or column) of the augmented 
matrix (A,b) .  As soon as an element on the left (or right) diagonal becomes 
zero, we swing to the interchange of rows (or columns) from the current row 
(or column) onwards. It 1s interesting t o  note that any one of the eight 
decompositions (that cannot be restarted because of the gradual destruction 
of the original matrix in the computer memory) can proceed to obtain the 
solution vector x for any nonsingular system. 

Gaussian algorithms' (Gauss, Doolittle, Crout, Cholesky and Bana- 
chiewicz) are, however, basically the same as our LIRl (ie., 15) algorithm and 
consequently have to  be performed with row (or column) interchanging 
technique for vanishing leading minors on the Ieft diagonal. 
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