# TRIANGULAR DECOMPOSITRONS AND THEHR APPLICATIONS IN SOLVING EQUATIONS 

By: Syamal Kumar Sen<br>(Central Insmiments and Services Laboratory, Indian Instinte of Science, Bangalore-I2, India)

[Received Sanuaty 6, 1971]

## Abstract

Discussed here are all possible miangular decompositions and thent role to sohe Iinear equations. Also presented are the computational formulae for five of these triongular decompasitions to provide illustrations regarding their computational use

## 1. Triangular Decompositions

We define a triangular matrix as a square malrix having zero elements above (or below) the left digonal (or right dagonal). The following four sets of triangular matrices are considered for the decomposition of a square matrix and the solution of linear equations. They are:


$$
\stackrel{5}{R_{1}}, \stackrel{6}{U_{1}}=(\square \square)
$$

$L_{l}, P_{l}$ are called lower triangular matrices of left diagonal $L_{r}, P_{r}$ are called lower triangular matrices of right diagonal $R_{1}, U_{1}$ are upper trangular matrices of letr diagonal. $R_{p}, U_{p}$ are upper triangular matrices of right diagonal. $1,2,3,4,5,6,7,8$ are numerical symbols to denote $L_{l}\left(=l_{i j} \mathrm{j}\right.$, $P_{j}\left(=p_{i j}\right), \quad L_{r}\left(=l_{i j}^{q}\right), \quad P_{r}\left(=p_{i j}^{\prime}\right), \quad R_{l}\left(=r_{i j}\right), \quad U_{l}\left(=u_{i j}\right), \quad R_{r}\left(=r_{i j}^{\prime}\right), \quad U_{r}\left(=u_{i j}^{\prime}\right)$, respectively. The two triangular matrices $L_{l}$ and $P_{l}$ have the identical form but different elements. Similar is the case with $L_{r} . P_{r} ; R_{r}, U_{i} ; R_{r}, U_{r}$.

The following chart (chart 1) gives us all possible triangular decompositions $[i$ e., decomposition of a square matrix into two triangular matrices (product form)] including invalid ones.

| Chare: |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x 12$ | $\times 23$ | . 34 | $\therefore 45$ | $\times 56$ | $x 67$ | . 78 |
| $x 21$ | - 32 | 43 | . 54 | $x 65$ | . 76 | . 87 |
| $\bigcirc 13$ | $\times 24$ | $\times 35$ | $\times 46$ | $\times 57$ | $\times 68$ |  |
| . 31 | . 42 | . 53 | . 64 | . 75 | . 86 |  |
| $\times 14$ | . 25 | x 36 | $\times 47$ | $x 58$ |  |  |
| . 41 | . 52 | . 63 | $\times 74$ | 85 |  |  |
| . 15 | . 26 | $\times 37$ | $\times 48$ |  |  |  |
| . 51 | 62 | $x 73$ | $\times 84$ |  |  |  |
| . 16 | . 27 | $\times 38$ |  |  |  |  |
| . 61 | $\times 72$ | $\times 83$ |  |  |  |  |
| . 17 | . 28 |  |  |  |  |  |
| $\times 71$ | $\times 82$ |  |  |  |  |  |
| . 18 |  |  |  |  |  |  |
| $\times 81$ |  |  |  |  |  |  |

' $x$ ' indicates invalid triangular decompositions as these decompositions produce triangular forms in the product and consequently not valid to represent (or replace) a square matrix. There are totally $28(=6+4+6+6+4+2)$ mvalid triangular decompositions out of $56\left(=8^{2}-8\right) . \because$ indicates the valid triangular decompositions. There are totally $28(-56-28)$ valid triangular decompositions that can be used to replace a square matrix. All these 28 vald decompositions are not different as can be seen from the following chart (chart 2).

## Chart 2

$$
\begin{array}{lll}
15=25 \equiv 16=26 & 51 \equiv 52 \equiv 61 \equiv 62 & 17 \equiv 27 \equiv 18 \equiv 28 \\
31 \equiv 41 \equiv 32 \equiv 42 & 75 \equiv 85 \equiv 76 \equiv 86 & 53 \equiv 54 \equiv 63 \equiv 64 \\
34 \equiv 43 & 78 \equiv 87 &
\end{array}
$$

' $\equiv$ ' indicates 'is identical in nature". Thus there are eight different triangular decompositions that can represent a square matrix uniquely.

Failures: When a matrix possesses one or more vanishing leading minors on left diagonal $L_{2} R_{t}$ (i.e., 15) algorithm collapses. The $R_{i} L_{i}($ i.e. 51) algorithm fails for one or more trailng minors that are zero on the left diagonal. $L_{i} R_{r}$ (i.e., 17) and $L_{r} L_{i}$ (i.e., 31) algorithms, on the other hand, blows up for some leading vanishing minors on the right diagonal. The $R_{r} R_{f}$
(i.e. 75) decomposition meets the aforesaid ill-fate for some vanishing trailing minors on the right diagonal. Finally we put forth the fact that all the eight triangular decompositions collapse for a coeffeient matrix A possessing vanishong leading and trailing minors on both left and rightidiagonals even if the coefficient matrix A may be non-singular. The following matrix, for instance,

$$
\left(\begin{array}{rrrr}
2 & 1 & -1 & -3 \\
4 & 2 & 2 & 6 \\
5 & 6 & -5 & -2 \\
5 & 6 & -10 & -4
\end{array}\right)
$$

is not decomposable by any triangular decomposition though it is highly non-singular.

We are now confronted with two situations. Should we go on trying triangular decompositions one after the other or should we restrict ourselves to only one of the cight decompositions using the row (or column) interchanging technique? In case we posess the idea of the leading and trailng minors, we can go ahead with the suitable decomposition. Otherwise, we follow the latter process.

## 2. Computational Algorithms

Derived here are the simple explicit computational recurrence relations for obtaining $L_{p}, R_{l}, L_{r}$ and $R_{r}$ and their inverses along with the solution vector $\overrightarrow{\mathrm{X}}$ from the aforesaid five useful decompositions making use of matrix operation rules. The summation sign used below has the conventional meaning, $i$ e., the summation has to be taken as zero if its upper bound is less than the lower bound. The ' $==$ ' sign in any recurrence relation has the identical meaning as that in Fortran. The ' $\equiv$ 'sign, on the other hand, carties the meaning 'equivalent' all throughout.

We store the matrix $A$ and the column vector $\vec{b}$ as below:

$$
A=\left(a_{i}\right), \quad i=1,2, \ldots, n ; j=1,2, \ldots, n
$$

and

$$
\vec{b}=\left(b_{1} b_{2}, \ldots, b_{n}\right)^{\prime}
$$

where (') indicates transpose. The sequence of subscripts $i$ and $j$ (to represent matrix elements) in

$$
' i=1,2, \ldots, n ; j=1,2, \ldots, n '
$$

indicate that $i$ is to take 1 (fixed) first and $j$ is to $b e$ varied from 1 to $n$ at an interyal of 1 . Then $i=2$ (fixed) and $j=1,2,3, \ldots, n$. Next $i=3$ (fixed),
$j=1,2, \ldots$, , $n$ and so on. At every change of subscripts, we determine differnt elements. A bricf note for the mode of change of subscripts, however, is added in some cases for easy and quick access to the recurrence relations.

If none of the leading minors on the left diagonal are zeros, then

$$
\begin{equation*}
A=L_{l} R_{l}, \quad l_{i}=1 \quad \forall i \tag{1}
\end{equation*}
$$


Letting $j=1$, we obtain $a_{11}\left(\equiv r_{15}\right)$ from the first recurrence relation of [1.1] and then $a_{21}, a_{31}, \ldots, a_{n 1} \equiv l_{21}, l_{31}, \ldots, l_{n 1}$ ) from the second one. For $j=2, a_{12}, a_{22}\left(\equiv r_{12}, r_{22}\right)$ are determined from the first relation and $a_{32}, a_{42}, \ldots, a_{n 2}\left(\equiv l_{32}, l_{42}, \ldots, l_{n 2}\right)$ from the second and so on. Lastly, for $j=n$ we find $a_{10}, a_{2 n}, \ldots, a_{2 n}\left(\cong r_{1 n}, r_{2 n}, \ldots, r_{n 2 n}\right)$ from the first relation.

$$
\begin{equation*}
\operatorname{Det} A=\prod_{r=1}^{n} a_{r i} \tag{1.2}
\end{equation*}
$$

In $L_{l} R_{i} \vec{x}=\vec{b}$ ie., in $R_{i} \vec{x}=L_{l}-\vec{b}=\vec{c}$, we have the elements of $L_{l}{ }^{-1}$ matrix:

$$
\begin{align*}
& L_{l}^{-1}: \quad a_{l j}=-a_{i j}-\sum_{p=1+1}^{i-1} a_{p p} a_{p j}  \tag{1.3}\\
& j=1,2, \ldots, n-1 ; i=j+1, j+2, \ldots, n
\end{align*}
$$

The elements of the column vector $\vec{c}$ are:

$$
\begin{array}{ll}
\therefore \stackrel{c}{c}: & b_{i}=b_{i}+\sum_{p=1}^{i-1} a_{t p} b_{p}  \tag{1.4}\\
& i=n, n-1, \ldots, 2\left(b_{1} \text { remains unchanged }\right)
\end{array}
$$

The solution vector $\vec{x}$ is:

$$
\begin{align*}
\stackrel{\rightharpoonup}{x} ; \quad & b_{i}=\left(b_{t}-\sum_{p=i+1}^{n} a_{t p} b_{p}\right) / a_{n}  \tag{1}\\
& i=n, n-1, \ldots, 1
\end{align*}
$$

where $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\prime} \equiv\left(b_{1}, b_{2}, \ldots, b_{n}\right)^{\prime}$.
When none of the trailing minors on the left diagonal are zeros, then

$$
\begin{equation*}
A=R_{i} L_{l}, r_{s i}=1 \quad \forall i \tag{2}
\end{equation*}
$$


The elements of $L_{l}$ and $R_{l}$ matrices have the identical subseripts with those of A.

Det $A=n_{t=1}^{n} a_{i i}$
In $R_{l} L_{l} \vec{x}=\vec{b}$ i.e., in $L_{l} \vec{x}=R_{l}^{-1} \vec{b}=\vec{c}$, we have the elements of $R_{l}^{-1}$ matrix :
$R_{l}^{-1}: \quad a_{i j}=-a_{i j}-\sum_{p=a+1}^{j+1} a_{i p} a_{p j}$
$j=n, n-1, \ldots, 2 ; i=j-1, j-2, \ldots, 1$
The elements of the column vector $\vec{c}$ are :
$\vec{c}: \quad b_{i}=b_{i}^{i}+\sum_{p=i+1}^{n} a_{i p} b_{p}$

$$
\begin{equation*}
i=1,2, \ldots, n-1 \tag{2.4}
\end{equation*}
$$

The solution vector $\vec{x}$ is :
$x: \quad b_{i}=\left(b_{i}-\sum_{p=1}^{i-1} a_{i p} b_{p}\right) / a_{i j}$
where $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\prime} \equiv\left(b_{1}, b_{2}, \ldots, b_{n}\right)^{\prime}$
If none of the leading minors are vanishing on the right diagonal, then

$$
\begin{equation*}
A=L_{1} R_{r}, \quad l_{i 1}=1 \quad \forall i \tag{3}
\end{equation*}
$$

$$
\begin{array}{ll} 
& i=1,2, \ldots, n \\
L_{I}: & a_{1, n-j+1}=\left(a_{1, n-j+1}-\sum_{p=1}^{p} a_{t, n-p+1} a_{p_{n} n-j+1}\right) / a_{i n} n+1 \\
& j=1,2, \ldots, i-1  \tag{array}\\
R_{r}: \quad & a_{t j}=a_{t g}-\sum_{p=1}^{1} a_{t, n-p+1} a_{p j} \\
& j=1,2, \ldots,(n-i+1)
\end{array}
$$

For $i=1$, we find $a_{11}, a_{52}, \ldots, a_{1 n}\left(=r_{11}^{\prime}, r_{12}^{\prime}, \ldots, r_{1 n}^{\prime}\right)$ trom the second recurrence relation of [3.1] For $i=2$, we obtain $a_{2 n}\left(\equiv l_{21}\right)$ from the first relation and then we find $a_{21}, a_{22}, \ldots ; a_{2, n-1}\left(\equiv r_{21}^{\prime}, r_{22}^{\prime}, \ldots, r_{2, n-1}^{\prime}\right)$ from the second relation. For $i=3$, we determine $a_{3 n}, a_{3},{ }_{n-1}\left(\equiv l_{31}, l_{32}\right)$ from the first relation and $a_{31}, a_{32}, \ldots a_{3, n-2}\left(\equiv r_{31}^{\prime}, r_{32}^{\prime}, \ldots, r_{3, n-2}^{\prime}\right)$ from the second relation, and so on. Finally, for $i=n$, we find $a_{n n}, a_{n, n-1}, \ldots, a_{n 2}$ $\left(\equiv l_{n 1}, l_{n 2}, ., l_{n},{ }_{n-1}\right)$ from the first relation and $a_{n 1}\left(\equiv r_{n 1}^{\prime}\right)$ from the second relation.

$$
\begin{equation*}
\operatorname{Det} A=(-1)^{\{n\} 21} \prod_{t=1}^{n} a_{t}, n-1+1 \tag{3.2}
\end{equation*}
$$

where $[n / 2]$ is the integral part of $n / 2$.
In $L_{l} R_{r} \vec{x}-\vec{b}$ i.e, in $R_{r} \vec{x}=L_{l}^{-1} \vec{b}=\vec{c}$, we have the elements of $L_{l}^{-1}$ matrix :
$L_{f}^{-1}: \quad a_{1, n-j+1}=-a_{1, n-j+1}-\sum_{p=j+1}^{i-1} a_{i, n-p+1} a_{p, n-j+1}$

$$
\begin{equation*}
j=1,2, \ldots, n-1 ; i=j+1, j+2, \ldots, d \tag{3.3}
\end{equation*}
$$

The elements of the column vector $\vec{c}$ are:

$$
\begin{array}{ll}
\vec{c}: & b_{\mathrm{J}}=b_{3}+\sum_{p=1}^{j-1} a_{j, n-p+1} b_{p}  \tag{3.4}\\
& j=n, n-1, \ldots, 2
\end{array}
$$

$$
b_{1} \text { remains unchanged }
$$

where $\vec{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{\prime} \equiv\left(b_{1}, b_{2}, \ldots, b_{n}\right)^{\prime}$
The solution vector $\vec{x}$ is :

$$
\begin{aligned}
\stackrel{+}{x}: & b_{i}=\left(b_{i}-\sum_{p=1}^{n-i} a_{1 p} b_{n-p+i}\right) / a_{i, n-i+1} \\
& i=n, n-1, \ldots, 1
\end{aligned}
$$

$$
\text { where } \vec{x}=\left(x_{n}, x_{2}, \ldots, x_{n}\right)^{\prime} \equiv\left(b_{32}, b_{n-1}, \ldots, b_{1}\right)^{\prime}
$$

When none of the leading minors vanishes on the right diagonal,

For $j=n$, we find $a_{9 n}\left(l_{n+8}\right)$ from the first recurrence relation and $a_{2 n}, a_{3 n} \ldots$. $a_{n n}\left(l_{2 n}, l_{3 n}, \ldots, l_{n n}^{\prime}\right)$ from the second relation. For $j=n-1$, we calculate $a_{1, n-1}, a_{2}, n-1\left(\equiv l_{n, n-1}, l_{n-1}, n-1\right)$ from the first relation and $a_{3, n-1}, a_{4}$, ${ }_{n-1}, \ldots, a_{n},{ }_{n-1}\left(\equiv l_{3}^{\prime}, n-1, l^{\prime}{ }_{4}, n-1 \cdots, l_{n, n-1}^{\prime}\right)$ from the second relation For $j=n-2$, we get $a_{1},{ }_{n-2}, a_{2} n-2, a_{3,}, n-2\left(\equiv l_{n} n_{n-2}, l_{n-1} n_{n-2}, l_{n-2, n-2}\right)$ from the first relation and $a_{8, n-2}, a_{5, n-2} \ldots a_{n, n-2}\left(=l_{4, n-2,}^{\prime} l_{s, n-2}, \ldots\right.$, $I_{x}{ }^{\prime}, n-2$ ) from the second relation and so on. Lastly, for $j=1$, we find $a_{18}, a_{21}, \ldots, a_{n 1}\left(=l_{31}, l_{n-1}, \ldots, \ldots, l_{11}\right)$ from the first relation.

$$
\begin{equation*}
\operatorname{Det} A=(-)^{[n / 2]} \prod_{i=1}^{n} a_{x-i+1}, \tag{4.2}
\end{equation*}
$$

In $L_{r} L_{1} \vec{x}=\vec{b}$, i.e., in $L_{i} \vec{x}=-L_{r}{ }^{-3} \vec{b}=\vec{c}$, we have the elements of $L_{r}{ }^{-1}$ matrix:

$$
\begin{align*}
L_{r}^{-x}: & a_{i j}=-a_{i j}-\sum_{p=n-i \div 2}^{j-1} a_{i p} a_{n-p+1, j}  \tag{4.3}\\
& j=n, n-1, \ldots, 2 ; i=n-j+2, n-j+3, \ldots n
\end{align*}
$$

The elements of the colump vector $\vec{c}$ are :

$$
\begin{gathered}
\vec{c}: \quad b_{j}=b_{j}+\sum_{p=n-j+2}^{n} a_{j p} b_{n-p+1} \\
j=n, n-1, \ldots, 2
\end{gathered}
$$

$$
\begin{equation*}
b_{t} \text { remains unchanged } \tag{4.4}
\end{equation*}
$$

$$
\begin{align*}
& A=L, L_{1}, Y_{1, H_{2-1}-i_{1}}=1 \quad \forall i  \tag{4}\\
& j=n, n-1, \ldots, 1 \\
& L_{i} . \quad a_{n-1,1,},=a_{n-i+1, j}-\sum_{p=+\dot{+1}}^{m} a_{n-p+1, j} a_{n-i+1, p} \\
& i=n, n-1, \cdots, i  \tag{4.1}\\
& L_{s}: \quad \epsilon_{1 j}=\left(a_{i j}-\sum_{p=1+1}^{n} a_{n-p+1, j} a_{i p}\right) / a_{n-j+1, ~ i n} \\
& i=n-j+2, n-j+3, \ldots, n
\end{align*}
$$

where $\vec{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{\prime}=\left(b_{n 2}, b_{n-1}, \ldots, b_{1}\right)^{\prime}$
The solution vector $\vec{x}$ is:

$$
\begin{align*}
\vec{y}: \quad & b_{t}=\left(b_{i}-\sum_{p=1}^{n-i} a_{t n} b_{n-p+1}\right) / a_{i, n} n-i+1  \tag{4.5}\\
& i=n, n-1, \ldots, 1
\end{align*}
$$

where $\stackrel{-x}{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\prime} \equiv\left(b_{n}, b_{n-1}, \ldots, b_{1}\right)^{t}$
When none of the tranling minors vanishes m the right diagonal,

$$
\begin{aligned}
& A=R_{r} R_{l}, r_{i i}=1 \quad \forall i \\
& i=n, n-1, \ldots, 1
\end{aligned}
$$

$R_{r}: \quad a_{i j}=a_{t j}-\sum_{p=1}^{j-1} a_{i p} a_{n-p+1}$,

$$
\begin{equation*}
j=1,2, \ldots, n-i+1 \tag{5.11}
\end{equation*}
$$

$R_{f}: \quad a_{i j}=\left(a_{i j}-\sum_{p=1}^{n-1} a_{i p} a_{n-p+1}, j\right) / a_{i, n-i+1}$

$$
j=n-i+2, n-i+3, \ldots, n
$$

For $i=n$, we find $a_{n i}\left(\equiv r_{n 1}^{\prime}\right)$ from the first recurrence relation and $a_{n 2}$, $a_{n 3}, \ldots a_{v k n}\left(=r_{12}, r_{13}, \ldots, \ldots, r_{1 n}\right)$ from the second relation. For $i=n-1, a_{n-1,1}, a_{n-1,2}\left(\equiv r_{n-1,1}^{\prime}, r_{n-1}^{\prime},{ }_{2}\right)$ are obtained from the first relation and $a_{n-1.3}, a_{n:-1,4}, \ldots, a_{n-1}, n\left(\equiv r_{23}, r_{24}, \ldots, r_{2 n}\right)$ from the second relation. For $i=n-2$, we calculate $a_{n-2}, 1, a_{n-2,2} a_{n-2,3}\left(=r_{n-2, i}^{\prime}, r_{n-2,2}^{\prime}, r_{n-2,3}^{\prime}\right)$ from the first relation and $a_{n-2}, 4, a_{3-2}, 5, \ldots, a_{n-2, n}\left(\equiv r_{34}, r_{35}, \ldots, r_{3 n}\right)$ from the second relation, and so on. Lastly, for $i=1$, we find $a_{11}, a_{12}, \ldots$, $a_{n}\left(\equiv r_{11}^{\prime}, r_{12}^{\prime}, \ldots, r_{1 a}^{\prime}\right)$ from the first relation.

$$
\begin{equation*}
\operatorname{Det} A=(-1)^{[n j 2]}{\underset{i=1}{n} a_{i, n-i+1}}^{n} \tag{5.2}
\end{equation*}
$$

In $R_{r} R_{l} \vec{x}=\vec{b}$, ie., in $\overrightarrow{R_{l}} \vec{x}=R_{r}^{-1} \vec{b}=\vec{c}$, we have the elements of $R_{r}^{-1}$ matrix: $R_{r}^{-1}: \quad a_{i j}=1 / a_{i j}$ if $i+1>n-j+1$
otherwise,

$$
\begin{align*}
& a_{i j}=\left(-\sum_{p=i+1}^{n-j+1} a_{p j} a_{i, n-p \div 1}\right) / a_{i, n-i+1}  \tag{array}\\
& j=1,2, \ldots, n ; i=n-j+1, n-j, \ldots, 1
\end{align*}
$$

The elements of the column vector $\vec{c}$ are:

$$
\begin{array}{ll}
\vec{c}: & b_{3}=\sum_{p=j}^{n} a_{3}, n-p+1  \tag{54}\\
& j-1,2, \ldots, n \\
\text { whete } & \vec{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{\prime} \equiv\left(b_{n}, b_{n-1}, \ldots, b_{1}\right)^{\prime}
\end{array}
$$

The solution vector $\vec{x}$ is:

$$
\begin{array}{ll}
\vec{x}: & b_{i}=b_{i}-\sum_{p=n-1+2}^{n} a_{1 p} b_{n-p+1}  \tag{55}\\
& i=1,2, \ldots, n \\
\text { where } & \vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\prime} \cong\left(h_{n}, b_{n-1}, \ldots, b_{1}\right)^{r}
\end{array}
$$

## 3. Remarks

To encounter the unforeseen cases where one or more leadng (or trailing) minors vanish on the left (or the right) diagonal, we reserve a shortage of $(n+1)$ locations for the current row (or column) of the augmented matrix ( $A, b$ ). As soon as an element on the left (or right) diagonal becomes zero, we swing to the interchange of rows (or columns) from the current row (or column) onwards. It is interesting to note that any one of the eight decompositions that cannot be restarted because of the gradual destruction of the original matrix in the computer memory) can proceed to obtain the solution vector $x$ for any nonsingular system.

Gaussian algorithms (Gauss, Doolittle, Cront, Cholesky and Bana* chiewicz) are, however, basically the same as our $L_{1} R_{l}(i . e ., 15)$ algorithm and consequently have to be performed with row (or column) interchanging technique for vanishing leading minors on the left diagonal.

## References

1. L. Fox .. .. An introduction to Num. Iinear Algebra, Clarendon Press, Oxford, 1964, 68, 99.
