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Abstract 
 
We commonly come across pages that are not of interest while searching the web. This is partly due to a word or 
words in the search query having different contexts, the user obviously expecting to find pages related to the con-
text of interest. This paper proposes a method to disambiguate contexts in web search results. 
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1. Introduction 

Among the most important intentions of web usage is information retrieval and the most 
common activity pursued to achieve that is web searching. Precision is a very important 
yardstick to measure the quality of search engines. This paper presents a method to make 
web search results more customized in certain cases where the query terms have multiple 
senses. 

 Section 2 defines the problem at hand and the nature of the proposed solution. Section 3 
deals with the different issues that concern such a solution. Section 4 reviews some related 
works of interest. Section 5 describes the approach used here. Section 6 presents the results 
of experiments using the approach. Section 7 lists the conclusions followed by a listing of 
references in Section 8. 
 
2. The problem and the target 

Search results often are poorly customized. If a user is interested in an entity A (it may be 
anything ranging from an incident, a product or a person) and there is more than one con-
text for A, documents of all contexts are presented intermingled. From the results presented, 
the user has to discard the documents that do not belong to relevant contexts by making use 
of the automatically generated document extracts or descriptions that search engines pro-
vide with every page listed. Common examples include cases with multiple referents such 
as a search for a place, where places with the same name occur in more than one area. 
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There is a Kochi in India as well as in Japan. Michael occurs as the first name of many 
sports stars. A search for Bachchan would yield pages relating to Amitabh Bachchan, a leg-
endary Hindi actor, as well as those on Abhishek Bachchan, a budding star in Hindi films.  

 Every user would have experienced this problem, but most of us take it for granted that it 
is our job to disambiguate the different contexts. This study aims at customizing web search 
results so that the pages relating to the same contexts (and same referents) may be presented 
together. This paper presents an approach whereby we can classify the pages and present to 
the user under different headings such as “pages on Kochi in the context: ‘Kerala’, ‘India’”, 
“pages on Kochi in the context: ‘Japan’” etc., the former listing pages relating to Kochi in 
Kerala, and the latter relating to Kochi in Japan.  
 
3. Factors related to the problem 

3.1. How it differs from the ‘word sense disambiguation’ problem 

Word sense disambiguation is an active field of research in natural language processing. It 
addresses a similar issue, identifying the sense of a word based on context. The word sense 
disambiguation community works on largely language-based techniques (such as verifying 
the grammatical form of the word). But we are interested in different contexts of the query 
(including multiple referents), rather than the sense. A search for “Mumbai blast” would 
yield pages related to the 1993 blasts as well as those related to the 2003 blast. Differentiat-
ing such contexts/referents would not be in the interests of the word sense disambiguation 
community. Moreover, our problem is not language specific and neither should the solution 
be. Thus the issue addressed here is inherently very different from the word sense disam-
biguation problem. 
 
3.2. Differences from ‘text categorization’ and neural net-based approaches 

The text categorization community and neural nets are concerned with similarity-based 
document classification. However, the problem here is to classify documents based on the 
context of the query used; not on the similarity. As the query is to be used as a parameter 
for classifying sets of documents, such approaches do not easily adapt to the problem due to 
their static structure. Furthermore, they do not provide the flexibility, to incorporate the 
search query as a special parameter. 
 
3.3. Need for yet another clustering algorithm 

The fundamental reason why many of the available clustering algorithms are unsuitable for 
this problem is the presence of an additional parameter, the search query. Most of the cur-
rent clustering techniques take a set of documents and separate them into clusters of similar 
documents. Here we have to cluster the web pages in the context of the search query used. 
Similarity-based techniques would put the government reports on the Mumbai blasts of 
1993 and 2003 in the same cluster, given the syntactical similarity between them as both are 
produced by the same government, probably using the same template. Speed is a major con-
sideration as this service, when implemented as a meta-service, has to work on the fly be-
tween the production and presentation of results. Literature that deals with this precise 
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1This is an algorithm which is used for web searching. It provides an ordered (by relevance) list of authoritative 
pages and hubs (pages with lists of links to authoritative web pages) on the search query when supplied with a 
collection of about 1000 pages collected from a text-based search for the query. It uses an iterative algorithm on 
the set of pages, aimed at boosting the scores of good hubs and authorities through the iterations. 

problem or present solutions which possess such desirable features as listed above could not 
be found. 
 
3.4. Common context ambiguities 

Cases where there are different contexts for a query are abundant. The common ones in-
clude: 

• Multiple referents: 

 ¡ Place names: Two places having the same name. 

 ¡ Names of people: There are many famous people with first names Michael. 

 ¡ Different events in the same place: ‘Mumbai blasts’ has many referents, two of them  
  being the blasts of 1993 and also of 2003. 

• Word sense ambiguities: These are much less important in the context of the web. 
 
3.5. Where to apply the solution 

A context disambiguator designed to solve the said problem would invariably have to work 
on a corpus or a collection of pages. The number of pages that the program gets to work on 
would provide more insight into the nature of the solution to be developed and the optimi-
zations that can be done on it. One implementation would be to have the disambiguator em-
bedded into the search engine itself. Search engines that implement the popular HITS1 
(hyperlink-induced topic search) algorithm [1] usually get a huge 1000-odd page corpus to 
work on. After splitting the whole set into different contexts containing a few hundreds of 
pages each, the HITS algorithm can be applied separately to each one of those sets. Another 
method would be to implement it as a meta-service which presents results from a search en-
gine after disambiguation. The service would present the same results, differentiated into 
contexts. The disadvantage would be that this solution would get only 10–20 pages to work 
on, with only a few links between them. But such solutions would be fast, as they have to 
analyze only a handful of pages. 
 
4. Related works of interest 

Byrd and Ravin [2] describe the methodology used by IBM’s Textract to identify and ex-
tract relations in text. It extracts relations between concepts extracted from the documents 
using the documents themselves. Another document clustering algorithm [3] builds co-
reference chains for each document, uses them to collect sentences from each document and 
eventually creates summaries for each document. The summaries are used to cluster docu-
ments into collections. Both the works use language-dependent techniques, and are not suit-
able for inclusion of the search query as a parameter. Besides, Textract algorithm is 
computationally intensive. 
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 A recent work [4] deals with distinguishing the real-world referent of a given name in 
context. It focuses on extracting biographical information from different documents using 
language-dependent methods. Although distinguishing real-world referents of a given name 
would be of interest in our problem, such name ambiguities form just one of innumerous 
possible ambiguities in web search results. Devising such specific methods for every possi-
ble kind of ambiguity would be impractical. 
 
5. A context/referent disambiguation algorithm 

The context/referent disambiguator presented builds a list of 〈word, score〉 tuples for each 
page and then, using the similarities between such lists, builds a graph with pages as nodes 
and undirected edges labeled with a measure of similarity between pages. Every densely 
connected component in the graph is then taken to represent a different context/referent for 
the search query used. This algorithm is oriented towards implementation as a meta-service, 
and is expected to perform well even if it has just 10–20 documents to work with.  
 
5.1. Part 1: Page-specific 〈word, score〉 list generation 

This approach takes each page, analyses it and builds a list of 〈word, score〉 tuples for it. 
Those keywords that are specific to the context/referent to which the page belongs should 
be given high word scores. The more general inter-context keywords should end up with 
low scores. The algorithm described here uses proximity to the search query and frequency 
as the parameters to the score computation function. The algorithm makes no attempt to 
identify inter-context keywords (to suppress their scores) as such a procedure would be 
highly non-trivial and error-prone. The algorithm is given below: 

Procedure ListGen(Page p) 
{ 
 Score of every word in page p = 0; 
 For every word, W in page p 
 { 
  For every occurrence w of W in page p 
  { 
   (freq_score of W) += 1; 
   (prox_score of W) += (THRES – least number of words intervening  
   between w and a word in search query in page p) + BOOST; 
  } 
  total_score of W = freq_score of W + prox_score of W; 
 } 
 Normalize word scores such that the (sum of total_score of every word in p = a limit); 
 Make a list of <word, total_score> tuples containing an entry for each word in p; 
} 

The freq_score holds the frequency of a word in page p. Prox_score holds the score of each 
word due to the proximity of its occurrence to the words in the search query. The scores are 
normalized so that they add up to an upper limit granting each page the same influence in 
the next stage of disambiguation. BOOST can be set to a value based on the relative weight-
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2Undirected edges: Edges that do not have an orientation. They do not have a source or destination vertex, and 
they just connect the two vertices. 
3Dot product: It is the scalar product of two vectors and is defined as the sum of the products of corresponding 
components. It is denoted by a dot. For example, 〈a, b, c〉.〈d, e, f〉 = d + be + cf. 
4Undirected graph: It is a graph with only undirected edges connecting the vertices. 

ing to be given to proximity and frequency-based scores. The 〈word, score〉 tuples created 
here are used in subsequent stages. 
 
5.2. Part 2: Document clustering 

This builds a huge list of unique words, listing every word occurring in the list of at least 
one page. Each page is represented as a vector with the ith element holding the score for the 
ith word in the list for that page. A graph is created with the pages as nodes and undirected 
edges2 between two pages labeled with the dot product3 of the vectors of the two pages. All 
edges having labels below a threshold are pruned so that densely connected subgraphs be-
come isolated connected components. The pages in each such connected component are 
taken as belonging to a separate context. 

Procedure DocCluster (pages, each with an associated list of 〈word, score〉 tuples) 
{ 
 Create a list of n unique words, 〈word[1], word[2] … word[n]〉 such that a word, w 
  occurs in the list if it has an associated score for at least one page in the  
  collection; 
 Represent page p as a vector, 〈a[1], a[2],… a[n]〉 where a[i] assumes the value,  
  where 〈word[i], k〉 is a tuple of page p or  
  0 if there is no tuple with word[i] for page p 
 Create an undirected graph4 with pages as nodes and the edges between any two 
  pages labeled with the dot product of the vectors of the two pages,  
  scaled by an appropriate factor; 
 Prune every edge in the graph where the weight is below a THRESHOLD; 
 Each densely connected subgraph of the resulting graph represents  
  a different context; 
 } 

Fixing the THRESHOLD at a low value may result in merger of contexts/referents, and 
thus poor ambiguity resolution. A high value would invariably break up contexts/referents 
which seem logically coherent to the human, into further smaller contexts. 
 
5.3. Part 3: Identification of context-keywords to describe the context/referent 

After identifying the different contexts/referents, we describe them to the user by a set  
of keywords. The algorithm creates a context-wide list of words, each word, having associ-
ated with it a score, that is computed by taking the sum of scores for the word in each page 
of the context group. The words with the highest scores are taken to be the context key-
words.  

Procedure context-keywords (collection of pages of a context) 
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{ 
 Create a list of n unique words, 〈word[1], word[2]… word[n]〉 such that a word, w 
  occurs in the list if it has an associated score for at least one page in the  
  collection; 
 Associate each word with a score initialized to 0; 
 For (each page, p) 
 { 
  Score of word[i] += k where there is a tuple <word[i], k> for page p 
 } 
 Take the words with the highest scores as the context-keywords for the context in  
  question; 
} 

5.4. Related issues 

The score computation part assigns scores to words based on their relative frequency and 
proximity to the search query words. It is based on the assumption that context/referent-
specific keywords occur close to occurrences of search query words. No weighting has been 
given to link-based information as the target of the link would be unknown in most cases. 
Thus it treats hypertext just as text documents. Finding the densely connected disjoint sub-
graphs should be a complex and time-consuming algorithm, although usage of such an algo-
rithm would certainly provide better results than the approach used here. If no isolated 
connected components are found by part 2 of the algorithm, we may conclude that there is 
only one context for the whole set of pages.  
 
6. Test results 

The algorithm as given above was implemented and tested on many collections: a collection 
of pages on the search query ‘Kochi’ containing pages on the places with the said names in 
India and Japan, another collection which contained pages on Joe Jackson and Michael 
Jackson collected using the search query, ‘Jackson’ and various other collections. For the 
tests, BOOST and THRES were given values of 4 and 10, respectively. The graphs obtained 
were processed by first pruning edges having weights less than 20% of the weight of the 
strongest edge. Then more edges were pruned from the remaining graph with the threshold 
for pruning edges chosen as half the weight of the strongest edge or the value that preserves 
only 20% of edges, whichever was lower. 
 
6.1. The ‘Kochi’ and ‘Jackson’ collections 

The ‘Kochi’ collection contained five pages each, on the Japanese city as well as on the In-
dian city. As can be seen from Fig. 1, there is just one weak intercontextual link, which was 
seen to be due to a general intercontext keyword, ‘page’. The pendant page was found to 
contain little information. The pages on Kochi, India, form a densely connected subgraph 
with strong edges and so do the pages (except one) on Kochi, Japan. The keywords for the 
Indian context were ‘Kerala’ (Kochi is in ‘the state of Kerala’) and ‘Cochin’ (former name 
of Kochi), those for the Japanese city being ‘Japanese’ and ‘Japan’. 
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 The ‘Jackson’ collection contained nine pages, six pages on ‘Joe Jackson’ and the re-
maining three on ‘Michael Jackson’. As can be seen from Fig. 2, the pages from each con-
text form a dense clique themselves. ‘Joe’ and ‘Michael’ were identified as the top 
keywords for the ‘Joe Jackson’ and ‘Michael Jackson’ collections, respectively. 
 
6.2. Tests on miscellaneous collections 

This section presents tests performed on collections obtained from a search engine called 
Google (http://www.google.com) for various queries. Pages listed as the top 20 (in the re-
sults) were downloaded and subjected to the context disambiguation algorithm. The queries 
used were chosen at random (not like the previous tests where the desirable contexts were 
known before hand). Given below are the results on six collections, each labeled by the 
search query used, a random sample from the 21 collections tested.  

 ‘Birthday’ collection: This collection contained 17 pages. The algorithm identified one 
context of 10 pages, all with online greeting pages or birthday parties. But two pages 
among the excluded ones were found worthy of inclusion in the context, on manual inspec-
tion. The other pages were those dealing with the birthday celebrations of various political 
or cultural leaders, which bore no similarity among them.  

 ‘Compilers’ collection: Two contexts were identified by the algorithm on this 11-page 
collection, one containing three pages giving information about ‘what compilers are’ and 
another two pages providing lists of different compilers available. All other pages were 
homepages of different compilers which evidently cannot be clustered into a context. The 
algorithm was seen to have performed very well in this collection.  

 ‘Dijkstra’ collection: This collection contained six pages. A context of four pages was 
identified, all of which contained biographical sketches on the life of the scientist. The ex-

FIG. 1. The ‘Kochi’ collection graph. Nodes with 
labels starting with ‘i’ represent pages on Kochi, In-
dia, and those starting with ‘j’ represent ‘pages on’ 
Kochi, Japan. The thicknesses of the edges represent 
the magnitude of the labels of the edges. 

FIG. 2. The ‘Jackson’ collection graph. Nodes with 
labels starting with ‘j’ represent pages about Joe Jack-
son and those with labels starting with ‘m’ represent 
‘pages on’ Michael Jackson. The thicknesses of the 
edges represent the magnitude of the labels of the 
edges. 
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cluded pages contained a description of Dijkstra’s algorithm and an extract from the scien-
tist’s lecture against the usage of ‘goto’ statements. 

 ‘Kerala’ collection: This collection contained 12 files. ‘Kerala’ is the name of a state in 
India. No edge survived the edge-pruning phase. Upon analysis of the collection, it was 
found that the pages contained the homepages of Kerala police, Kerala High Court, Kerala 
Tourism Department, Kerala government, etc. which bore no semantic similarity. Thus the 
algorithm did perform well even in this extremely adverse situation. 

 ‘Telgi’ collection: Telgi is the name of the prime-accused in a fake stamp-paper case in 
India. The collection contained 17 files, in which the algorithm identified two contexts of 
six pages each. One contained newspaper reports on a rumor as to whether Telgi was in-
jected with HIV when in police custody. The other context contained pages on the govern-
ment stand on the Telgi issue. The excluded pages were reports on various minor details of 
the Telgi case, which on manual inspection, were found to bear no semantic similarity 
among them as well as with the identified contexts. Thus the algorithm is seen to have per-
formed well, although not ‘perfectly’. 

 ‘Police’ collection: This collection contained 19 pages obtained by the query ‘Police’ on 
pages relating to ‘Kochi’. A single context of six pages was identified, of which five pages 
contained reports on crimes in Kochi and one with a list of police officers, which had strong 
edges to each of the other five pages, although it doesn’t seem to be worthy of being in-
cluded in a context of crime reports. The links were due to a high frequency of investigating 
officers’ names in crime reports. Such cases where a ‘different’ page holds a community of 
cohesive pages together may be worthy of further investigation.  
 
7. Conclusions and future work 

It can be seen from the tests that the algorithms perform very well even when they have 
very little information to work with. The obvious concern would be as to how the algorithm 
would scale with increase in the number of pages in input. A meta-service implementation 
need process only the first 20–30 result pages at a given time and can defer the disambigua-
tion of other pages to a time when they are actually required. Thus, we are justified in ig-
noring the problem of scalability if the algorithm is to be implemented as a meta-service. 

 Future work may be directed towards formulating optimizations when the disambiguator 
is implemented within a web search algorithm. The optimizations may be formulated to ex-
ploit the larger corpus and any link-based information that can be used. The performance of 
the algorithms on very broad topic queries such as ‘union’ whose context ranges from 
‘rugby unions’ to ‘c unions’ and in cases of word sense ambiguities, have to be investi-
gated. Such cases are different from the cases discussed here, but investigations as to how 
the algorithms presented here work on such problems, might provide clues on what the na-
ture of solutions for such varied problems should be.  
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