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Abstract 
 
We examine some Indian monthly meteorological data by means of fractional integration. The results show that 
long memory is present in the monthly structure of various rainfall data. Moreover, they are homogeneous across 
the regions, with the values of d ranging between 0.25 and 0.75. Attempting to summarize the conclusions for the 
individual months, the degree of dependence between the observations during May–September seems to be higher 
than for the remaining months. 
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1. Introduction 

Time-series analysis has been applied to many situations in recent years, including several 
applications in water-related areas such as stream flow modelling [1], event rainfall data in 
semi-arid climates [2], detection of climate changes [3], water quality analysis [4], rainfall 
storm flow assessment [5], etc. In this study, an attempt has been made to apply time-series 
analysis to some Indian monthly rainfall data for the time period 1871–1999. The impor-
tance of the Indian rainfall data when modelling and forecasting the monsoon rainfall at dif-
ferent spatial and temporal scales has been in vogue for nearly a century. The idea is to 
develop suitable mathematical models in order to get a better understanding of its behav-
iour. Broadly speaking, these models may be classified as empirical or dynamical. The pre-
sent work deals with the empirical models in the sense that it will be based on the 
variability of past observations. A basic feature of rainfall data is its non-gaussianness 
across different temporal and spatial scales. However, most of the statistical techniques, 
usually employed, require gaussianity in order to make statistical valid inference. In this 
paper, we use a methodology that, though based on the likelihood function, does not require 
gaussianity; a moment condition only of order 2 is required.  

 Since excellent reviews of the empirical models used for prediction of Indian rainfall are 
available [6–9], we only mention a few important facets here. A large number of potential 
predictors have been used in the analysis of these data, including factors such as El Niño, 
southern oscillation, snow over the Himalayas and Eurasia, and some global and regional 
conditions on spatial scales. Additionally, in the last two decades, new techniques based on 
auto-regressive moving average (ARMA) models [10], power (nonlinear) regression models 
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[11, 12], dynamic stochastic transfer models [13], as well as neural network models [14, 
15], have been used, and a model that utilizes 16 parameters to provide qualitative predic-
tions on the basis of the fraction of favourable parameters can be found in Gowariker et al. 
[11, 12]. On the other hand, the neural network model [14] uses only information on past 
history of rainfall data. The present paper deals with the latter approach in the sense that we 
use a univariate model, based on past information, following the line of research based on 
‘let the data speak for themselves’. 

 We focus on the long memory property of the data and, in particular, on the fractional 
differencing parameter in some monthly rainfall data corresponding to several regions in 
India. For this purpose, we use a parametric testing procedure, proposed by Robinson [16], 
that has several distinguishing features compared with other methods. Thus, Robinson’s 
method permits us to test unit and/or fractional roots at zero and the seasonal frequencies. 
The tests have standard null and local limit distributions, and this standard behaviour holds 
independent of the way of modelling of I(0) disturbances. 

 For the purpose of the present paper, we define an I(0) process {ut, t = 0, ± 1, ...} as a co-
variance stationary process with spectral density function that is positive and finite at the 
zero frequency. In this context, we say that a given raw time series {xt, t = 0, ± 1, ...} is I(d) 
if: 

 (1 ) , 1, 2, ...d
t tL x u t− = = , (1) 

 0, 0,tx t= ≤  

where ut is I(0) and L, the lag operator (Lxt = xt–1). Note that the polynomial above can be 
expressed in terms of its binomial expansion, such that for all real d, 
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The literature has usually stressed the cases of d = 0 and 1, however, d can be any real 
number. Clearly, if d = 0 in (1), xt = ut, and a ‘weakly autocorrelated’ xt is allowed for. 
However, if d > 0, xt is said to be a long memory process, also called ‘strongly autocorre-
lated’, and so-named because of the strong association between observations widely sepa-
rated in time. As d increases beyond 0.5 and through 1, xt can be viewed as becoming ‘more 
nonstationary’, in the sense, for example, that the variance of partial sums increases in 
magnitude. (Models with d ranging between –0.5 and 0 are short memory and have been 
addressed as anti-persistent [17], because the spectral density function is dominated by 
high-frequency components). Fractional processes were introduced by Granger [18, 19], 
Granger and Joyeux [20], and Hosking [21] (though earlier work [22, 23] shows an aware-
ness of its representation). They were theoretically justified in terms of aggregation of 
ARMA processes with randomly varying coefficients in Robinson [24] and Granger [18]. 
Similarly, others [25–28] also use aggregation to motivate long-memory processes, while 
Parke [29] uses a closely related discrete time error duration model. Time series with this 
characteristic has been found to be present in hydrology [30, 31], economics [32, 33], high-
speed networks [34, 35] and in other areas. 
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 To determine the appropriate degree of integration in raw time series is important from a 
statistical point of view. If d = 0, the series is covariance stationary and possesses ‘short 
memory’, with the autocorrelations decaying fairly rapidly. If d belongs to the interval (0, 
0.5), xt is still covariance stationary; however, the autocorrelations take much longer time to 
disappear than in the previous case. If d ∈ [0.5, 1), the series is no longer covariance sta-
tionary, but still mean reverting, with the effect of the shocks dying away in the long run. 
Finally, if d ≥ 1, xt is nonstationary and non-mean reverting. Thus, the fractional differenc-
ing parameter d plays a crucial role in describing the persistence in the time series behav-
iour: higher the d, higher will be the level of association between the observations. 

 There exist many approaches of estimating and testing the fractional differencing pa-
rameter d. Many of the estimators are graphical in nature (heuristic estimators), while some 
involve numerical minimisation of a likelihood-type function [36–40]. However, several 
papers in a hydrological context showed that the presence of periodicities might influence 
the reliability of the estimators [31, 41, 42]. Analysing the series of the monthly flows of 
the Nile River at Aswan, it was found that many heuristic estimators gave a positive value 
for d, indicating long memory where none was present. In another paper [43], an extensive 
Monte Carlo investigation was performed to find out how reliable the estimators of long 
memory were in the presence of periodicities. The conclusions were that the best results 
were those obtained using the likelihood-type methods. 

 In this article, we use a parametric testing procedure of Robinson [16] described in Sec-
tion 2. In Section 3, the tests are applied to some Indian monthly rainfall data, while Sec-
tion 4 contains some concluding comments. 
 
2. The testing procedure 

Most of commonly used unit-root tests existing in the literature [44–46] have been devel-
oped in autoregressive (AR) alternatives of form: 

 (1 ) ,t tL x uρ− =  (2) 

where the unit root null corresponds to 

 Ho: ρ = 1. (3) 

Conspicuous features of these methods for testing unit roots are the nonstandard nature of 
the null asymptotic distributions involved, and the absence of Pitman efficiency. However, 
these properties are not automatic, but rather depend on what might be called a degree of 
‘smoothness’ in the model across the parameters of interest, in the sense that the limit dis-
tribution does not change in an abrupt way with small changes in the parameters. This is as-
sociated with the radically variable long-run properties of AR processes around the unit 
root. In (2), for |ρ| > 1, xt is explosive, for |ρ| < 1, xt is covariance stationary, and for ρ = 1 it 
is nonstationary but non-explosive. In view of these abrupt changes, the fractional processes 
have become a rival class of alternatives to the AR model in the case of testing unit roots. 
Robinson [16] proposes a Lagrange Multiplier (LM) test of the null hypothesis: 

 Ho: d = do, (4) 
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for any real value do in a model given by (1), and where xt can be the errors in a regression 
model: 

 ' ,t t ty z xβ= +  (5) 

where β′ = (β1, …, βk) is a (k × 1) vector of unknown parameters, and zt is a (k × 1) vector 
of deterministic regressors that may include, for example, an intercept, (e. g., zt ≡ 1), or an 
intercept and a linear time trend (in the case of zt = (1, t)′). Clearly, the unit root corres-
ponds then to the null hypothesis: 

 Ho: d = 1. (6) 

Fractional and AR departures from (3) and (6) have very different long-run implications. In 
(6), xt is nonstationary but non-explosive for all d ≥ 0.5. As d increases beyond 0.5 and 
through 1, xt can be viewed as becoming ‘more nonstationary’, but it does so gradually, 
unlike in the case of (2) around (3). Specifically, the test statistic proposed by Robinson 
[16] is given by: 
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and g above is a known function coming from the spectral density of ut: 
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Note that these tests are purely parametric and, therefore, require specific modelling as-
sumptions to be made regarding the short memory specification of ut. Thus, for example, if 
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ut is white noise, g ≡ 1, and if ut is AR(1) of form: 1 ,t t tu uτ ε−= +  2( ; ) |1 | ,ji
jg e λλ τ τ −= −  with 

σ2 = V(εt), so that the AR coefficients are functions of τ. 

 Robinson [16] showed that under certain regularity conditions (which are very mild, and 
concern technical assumptions to be satisfied by ψ(λ)): 

 ˆ (0,1) as .dr N T→ → ∞  (8) 

Thus, an approximate one-sided 100α%-level test of Ho (4) against the alternative: Ha: 
d > do (d < do) will reject Ho if r̂  > zα ( r̂  < –zα), where the probability that a standard nor-
mal variate exceeds zα is α. Furthermore, he shows that the above test is efficient in the 
Pitman sense, i.e. that against local alternatives of form: Ha: d = do + δT–1/2, with δ ≠ 0, the 
limit distribution is normal with variance 1 and mean that cannot (when ut is gaussian) be 
exceeded in absolute value by that of any rival regular statistic. Therefore, we are in a clas-
sical large sample testing situation by reasons described in Robinson [16]. Empirical appli-
cations based on this version of Robinson’s tests can be found in [47, 48], and other 
versions of his tests, based on seasonal (quarterly and monthly) and cyclical data, are pre-
sented in [49–51]. 

 There exist other procedures for estimating and testing the fractionally differenced pa-
rameter, some of them also based on the likelihood function. We believe that as in other 
standard large-sample testing situations, Wald and LR test statistics against fractional alter-
natives will have the same null and local limit theory as the LM tests of Robinson. Sowell 
[38] employed essentially such a Wald testing procedure but it requires an efficient estimate 
of d, and while such estimates can be obtained, no closed-form formulae are available and 
so the LM procedure of Robinson seems computationally more attractive. In the following 
section, the versions of the tests described above will be applied to some Indian meteoro-
logical data. 
 
3. Data and empirical results 

The time-series data analysed in this section correspond to the monthly observations of the 
homogeneous Indian rainfall datasets for the time period 1871–1999, for all India and six 
subdivisions (Core monsoon; North east; Central west; Central northeast; North west; and 
Peninsular. See Fig. 1), obtained from the Indian Institute of Tropical Meteorology (India 
Meteorological Department). 

 Any modelling effort on this dataset will have to be based on an understanding of the 
variability of past data. Thus, considerable literature is available on the analysis of the In-
dian rainfall data [10, 52–56]. Some of these papers, for example [10], assume that the se-
ries of interest is nonstationary, and first differences are adopted in order to examine the 
short-run behaviour throughout the ARMA structures. In other words, it has imposed an or-
der of integration equal to 1 as opposed to the case of d = 0 if the series is stationary. In this 
paper, we permit the order of integration to be a real value and, in doing so, we allow for a 
much richer degree of flexibility in its dynamic behaivour. Other recent empirical papers 
based on forecasting Indian monsoon rainfall data are those of Gadgil et al. [57] and Iyen-
gar and Raghu Kanth [58]. 
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 Tables I and II display some salient features of the data. In Table I, we report the mean 
and the standard deviation for all India and each of the homogeneous regions. We observe 
that for north east, central northeast and peninsular, the mean values are above the mean of 
the whole country. The same statistics were also computed for each month in Table II. 
Here, we observe large differences across months, the highest values for the mean obtained 
during the months from June to September. 

 Figure 2 displays plots of the original data for the whole country along with its first sea-
sonal (monthly) differences. We see that the original series has a strong seasonal compo-
nent, while the first differences may be stationary. Figure 3 displays the correlograms and 
the periodograms of both the series and we observe that the differenced series may be over-
differenced in relation to its seasonal structure, with a large negative value in the corre-
logram at lag 12, and the periodogram with values close to zero at the seasonal frequen-
cies. 

Table I 
Salient statistics for All India and homogeneous regions (mm/month) 

  All  Core North West Central North Peninsular 
   India monsoon east central northeast west 

 

Total Mean 909.61 800.17 1725.23 898.93 1002.50 455.65 968.10 
 Std dev. 954.81 1096.84 1528.17 1130.68 1201.91 718.57 787.65 

FIG. 1. Regions:   Northwest 
India;   West central India; 
  Central northeast India; 
  Northeast India;   Peninsu-
lar India; Homogeneous regions 
of India. 
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Rainfall monthly data for All India 
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FIG. 2. Original series and first monthly differences. 

 
 

Table II 
Salient statistics for each month in All India (mm/month) 

January Mean 111.33 Std dev. 77.36 July Mean 2737.76 Std dev. 362.22 
February Mean 127.36 Std dev. 88.08 August Mean 2433.79 Std dev. 380.01 
March Mean 151.89 Std dev. 91.23 September Mean 1712.29 Std dev. 373.83 
April Mean 262.72 Std dev. 89.66 October Mean 779.30 Std dev. 285.46 
May Mean 527.89 Std dev. 161.27 November Mean 315.54 Std dev. 183.95 
June Mean 1633.98 Std dev. 361.24 December Mean 121.72 Std dev. 98.22 
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FIG. 3. Correlograms and periodograms of the original series and first monthly differences. The large sample 
standard error under the null hypothesis of no autocorrelation is 1/√T or roughly 0.025 for the series used in this 
application. The periodograms are drawn for the discrete frequencies λj = 2πj/T, j = 0, …, T/2. 

 Figures 4 and 5 display respectively the plots of the original series and the first seasonal 
differences for each of the six regions in India. Similar to the data for the whole country, 
the original series clearly appear nonstationary with a strong seasonal pattern. The seasonal 
differences, however, may be stationary. 

 Denoting each of the time series by yt, we employ throughout the model given by (1) and 
(5), with zt = (1, t)′, t ≥ 1, zt = (0, 0)′. Thus, under the null hypothesis (4), 

 0 1 , 1, 2,...t ty t x tβ β= + + =  (9)  

  (1 ) , 1, 2,....od
t tL x u t− = =  (10) 
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FIG. 4. Plots of the original series. 
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FIG. 5. Plots of the first monthly differences. 



FRACTIONALLY INTEGRATED MODEL FOR SOME INDIAN MONTHLY RAINFALL DATA 11

and treat separately the cases β0 = β1 = 0 a priori; β0 unknown and β1 = 0 a priori; and β0 
and β1 unknown, i.e. we consider respectively the cases of no regressors in the undiffer-
enced regression (9), an intercept, and an intercept and a linear time trend. However, given 
the similarities obtained in the results across the three cases, we report in the tables the val-
ues based on the case of no regressors. (The coefficients corresponding to the intercept and 
the linear trend were insignificant in all the cases where Ho cannot be rejected. They are 
based on the null model, which is short memory, and thus standard t-tests apply). We report 
the test statistics not merely for the null do = 1, (i.e. a unit root), but also for do = 0, (0.25), 
2, thus including a test for stationarity (do = 0.5), for I(2) processes (do = 2), as well as other 
fractionally integrated possibilities. 

 The test statistic reported in Table III is the one-sided one corresponding to r̂  in (7), so 
that significantly positive values of this are consistent with orders of integration higher than 
do, whereas significantly negative ones are consistent with alternatives of form: d < do. A 
notable feature observed in Table III (i), in which ut is taken to be white noise, is that the 
value of the test statistic monotonically decreases with do. This is something to be expected 
in view of the fact that it is a one-sided statistic. Thus, for example, if Ho (4) is rejected 
with do = 1 against the alternative d > 1, an even more significant result in this direction 
should be expected when do = 0.75 or 0.50 are tested. We see that the results change sub-
stantially depending on the series under study. Starting with the data corresponding to the 
whole country, we observe that the unit root null hypothesis (i.e. d = 1) is rejected in favour 
of higher orders of integration. In fact, the only value of d where Ho cannot be rejected 
corresponds to d = 1.25. The unit root null is also rejected in favour of higher values of d for 
north east: it is nonrejectable for west central and central northeast, while for the other three 
regions (core monsoon, north west and peninsular), it is rejected in favour of smaller values 
of d. The last column of the table reports the 95%-confidence intervals of those values of do 
where Ho cannot be rejected. We see that for all series, except All India and north east, the 
intervals include the unit root, the values ranging from (0.44–0.62) for north west to (0.97–
1.18) for central northeast. For the whole India, the interval is (1.16–1.36). 

 The significance of the above results, however, may be in large part due to the unaccoun-
ted for I(0) autocorrelation in ut. Thus, we also performed the tests, imposing autocorrelated 
disturbances. We use AR(1) (in Table III (ii)) and Bloomfield [59] disturbances (in Table 
III (iii)). The latter is a nonparametric approach of modelling the I(0) disturbances in which 
ut is exclusively specified in terms of its spectral density function, which is given by: 

 
2
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The intuition behind this model is the following. Suppose that ut follows an ARMA process, 

1 1

,
p q

t r t r t r t r
r r

u uφ ε θ ε− −
= =

= + −∑ ∑  

where εt is a white noise process and all zeros of φ(L) = (1 – φ1L – … – φpL
p) lie outside the 

unit circle and all zeros of θ(L) = (1 – θ1L
 – … – θqL

q) lie outside or on the unit circle. 
Clearly, the spectral density function of this process is then, 
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Table III 
Values of Robinson’s test statistic (r^) testing Ho: d = do in the model (1 – L)d xt = ut 

Series/do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. intervals 
 

(i) With white noise disturbances 

All India 16.12 13.03 11.12 7.85 4.11 0.17 –3.65 –7.08 –9.95 [1.16–1.36] 
Core monsoon 12.72 8.94 5.07 1.00 –2.96 –6.55 –9.58 –12.01 –13.89 [0.72–0.91] 
North east 17.81 15.39  12.21 7.94 2.75 –2.70 –7.64 –11.54 –14.32 [1.06–1.20] 
West central 13.95 10.99 7.29 3.40 –0.57 –4.36 –7.71 –10.49 –12.69 [0.87–1.06] 
Central northeast 14.14 11.70 8.35 4.80 1.11 –2.52 –5.88 –8.80 –11.22 [0.97–1.18] 
North west 9.60 4.90 0.44 –3.55 –6.99 –9.84 –12.10 –13.85 –15.20 [0.44–0.62] 
Peninsular 13.51 9.30 3.66 –1.76 –6.55 –10.36 –13.14 –15.06 –16.36 [0.60–0.74] 

(ii) With AR(1) disturbances 

All India 20.62 10.31 –0.33 –6.87 –9.07 –9.26 –10.04 –10.04 –10.37 [0.45–0.53} 
Core monsoon 1.97 –5.76 –7.81 –8.17 –8.88 –8.76 –9.02 –9.59 –10.35 [0.01–0.09] 
North east 16.53 2.81 –6.93 –7.77 –7.86 –8.55 –8.89 –9.90 –9.97 [0.28–0.33] 
West central 8.34 –1.75 –7.53 –8.20 –8.89 –8.93 –8.94 –9.30 –9.93 [0.15–0.23] 
Central northeast 12.90 2.63 –5.15 –8.65 –9.57 –9.58 –9.69 –9.75 –9.83 [0.28–0.36] 
North west –5.85 –8.49 –9.03 –9.05 –9.22 –9.69 –10.37 –11.15 –11.96 — 
Peninsular –5.51 –6.53 –6.56 –7.18 –7.97 –8.03 –8.83 –10.80 –12.54 — 

(iii) With Bloomfield (1) disturbances 

All India –4.39 –4.87 –5.59 –6.50 –7.26 –7.92 –8.78 –9.22 –10.09 — 
Core monsoon –4.86 –6.00 –6.66 –7.45 –8.39 –8.88 –9.54 –10.33 –10.96 — 
North east –2.09 –2.14 –2.82 –3.25 –4.06 –4.40 –5.17 –5.90 –6.21 — 
West central –4.70 –5.73 –6.38 –7.19 –7.83 –8.68 –9.38 –9.95 –10.64 — 
Central northeast –4.97 –5.76 –6.70 –7.41 –8.29 –8.70 –9.60 –10.06 –10.64 — 
North west –5.51 –6.99 –7.75 –8.84 –9.93 –10.06 –10.84 –11.23 –11.72 — 
Peninsular –3.35 –3.87 –4.94 –5.68 –6.26 –7.16 –7.66 –8.47 –9.22 — 

(iv) With monthly AR(1) disturbances 

All India 4.37 –3.21 –8.38 –11.50 –13.52 –15.17 –16.83 –18.63 –20.54 [0.08–0.19] 
Core monsoon 1.90 –5.66 –10.36 –13.39 –15.75 –17.94 –20.10 –22.19 –24.12 [0.02–0.11] 
North east 1.17 –5.70 –9.94 –12.23 –13.92 –16.07 –19.03 –22.34 –25.36 [–0.01–0.08] 
West central 2.39 –5.15 –9.81 –12.73 –14.88 –16.82 –18.78 –20.77 –22.68 [0.02–0.11] 
Central northeast 0.63 –5.75 –9.94 –12.52 –14.38 –16.10 –17.95 –19.99 –22.10 [–0.02–0.07] 
North west 2.66 –5.36 –10.55 –14.17 –17.10 –19.71 –22.04 –24.07 –25.79 [0.03–0.12] 
Peninsular 1.66 –4.89 –9.46 –13.16 –16.74 –20.22 –23.26 –25.64 –27.41 [0.01–0.11] 

(v) With monthly AR(2) disturbances 

All India 3.99 –3.56 –8.69 –11.55 –13.16 –14.18 –14.92 –15.53 –16.83 [0.07–0.17] 
Core monsoon 0.74 –6.11 –10.42 –12.44 –13.30 –13.78 –14.34 –15.12 –16.04 [–0.02–0.06] 
North east 0.77 –6.11 –10.42 –12.44 –13.30 –13.78 –14.34 –15.12 –16.04 [–0.01–0.07] 
West central 1.38 –5.98 –10.18 –12.51 –13.89 –14.83 –15.56 –16.19 –16.74 [0.00–0.08] 
Central northeast 0.90 –5.71 –9.97 –12.30 –13.62 –14.45 –15.05 –15.54 –15.99 [–0.01–0.08] 
North west 1.46 –5.89 –9.96 –12.27 –13.73 –14.78 –15.61 –16.30 –16.88 [0.00–0.08] 
Peninsular 0.79 –5.74 –9.49 –11.62 –13.07 –14.30 –15.38 –16.28 –17.00 [–0.01–0.07] 

Figures in bold represent nonrejection values at 5% significance level.  
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where τ corresponds to all the AR and MA coefficients and σ2 is the variance of εt. Bloom-
field showed that the logarithm of an estimated spectral density function is often found to 
be a fairly well-behaved function and can thus be approximated by a truncated Fourier se-
ries. He showed that (11) approximates to (12) well, where p and q are small values. Like 
the stationary AR(p) model, the Bloomfield [59] model has exponentially decaying autocor-
relations and thus we can use a model like this for ut in (10). Formulae for Newton-type  
iteration for estimating the τl are very simple (involving no matrix inversion), updating 
formulae when m is increased is also simple, and we can replace Â  in (7) by the population 
quantity, 
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1 1
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which indeed is constant with respect to τr (unlike what happens in the AR case). The 
Bloomfield model, involving fractional integration has not been used very much in previous 
econometric models. Though it is a well-known model in other disciplines [60], one by-
product of the present work is the emergence of that model as a credible alternative to the 
fractional ARIMAs, which have become conventional in parametric modelling of long 
memory. Amongst the few empirical applications found in the literature are those of Gil-
Alana and Robinson [47], Velasco and Robinson [61], and more recently Gil-Alana [62]. 
Reverting to the results in Table III, we observe that using AR(1) ut, the confidence inter-
vals are higher than 0, but smaller than 1, in all series except north west and peninsular and, 
imposing Bloomfield (with m = 1) disturbances, they are smaller than 0 in all cases. How-
ever, these results should be considered with care since the previous specifications did not 
consider the seasonal patterns observed in Figs 2–5. So, we also performed the tests impos-
ing seasonal autoregressions of form: 

12
1

,
m

t i t i t
i

u uφ ε−
=

= +∑  

with m = 1 and 2. The results are shown in Tables III (iv) and (v). Here, we observe that the 
degrees of integration are very small, fluctuating around 0 in practically all cases. This can 
be explained by the fact that the seasonal AR coefficients are competing with d in describ-
ing the nonstationary component of the series. Note that the estimates are Yule–Walker and 
thus, though they are smaller than 1 in absolute value, they can be arbitrarily close to 1, this 
being perhaps the reason for the nonrejection of the null when d = 0. 

 As mentioned in Section 1, several papers by Montanari and others showed that the pres-
ence of periodicities in the data may be affecting the degree of integration in the long run or 
zero frequency, implying long memory when it is not present. In Table IV, we specifically 
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take into account the seasonal structure of the series and make use of another version of 
Robinson’s tests that permits us to test unit and fractional roots not only at zero but also at 
the seasonal frequencies. Thus, instead of (1), we consider processes of form: 

Table IV 
Values of Robinson’s test statistic (r^) testing Ho: d = do in the model (1 – L12)d xt = ut 

Series/do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. intervals 

(i) With white noise disturbances 

All India 4.32 –0.07 –0.14 –1.60 –4.04 –4.61 –4.75 –4.83 –4.88 [0.05–0.75] 
Core monsoon 3.11 –0.01 –0.33 –2.12 –3.40 –3.73 –3.98 –4.02 –4.11 [0.04–0.69] 
North east 3.02 –0.06 –0.13 –1.42 –3.49 –3.99 –4.15 –4.25 –4.32 [0.07–0.77] 
West central 3.44 –0.01 –0.24 –1.92 –3.48 –3.87 –4.04 –4.16 –4.24 [0.03–0.72] 
Central northeast 2.91 –0.01 –0.28 –2.17 –3.87 –4.22 –4.33 –4.39 –4.43 [0.08–0.71] 
North west 2.34 –0.06 –0.13 –1.42 –3.49 –3.99 –4.15 –4.25 –4.32 [0.05–0.77] 
Peninsular 2.58 –0.08 –0.17 –1.57 –3.03 –3.38 –3.54 –3.66 –3.75 [0.06–0.75] 

(ii) With AR(1) disturbances 

All India 8.86 5.24 –0.70 –1.50 –2.60 –3.07 –3.13 –3.37 –3.46 [0.39–0.80] 
Core monsoon 1.67 –1.54 –0.28 –2.00 –3.17 –3.52 –3.70 –3.81 –3.90 [0.04–0.52] 
North east 2.60 1.71 –0.39 –1.19 –2.61 –3.05 –3.18 –3.34 –3.42 [0.42–0.79] 
West central 2.14 1.22 –0.16 –1.60 –2.81 –3.19 –3.20 –3.49 –3.57 [0.21–0.57] 
Central northeast 2.30 1.88 –0.19 –1.50 –2.79 –3.11 –3.15 –3.35 –3.42 [0.33–0.77] 
North west 2.39 1.05 –0.64 –2.00 –3.25 –3.50 –3.57 –3.76 –3.87 [0.19–0.58] 
Peninsular 4.47 1.29 –0.14 –1.60 –2.77 –3.13 –3.30 –3.42 –3.52 [0.22–0.61] 

(iii) With Bloomfield (1) disturbances 

All India 7.74 4.02 –0.55 –1.32 –2.59 –3.17 –3.78 –4.09 –4.55 [0.36–0.79] 
Core monsoon 1.66 1.31 –0.11 –1.78 –2.34 –3.00 –3.44 –3.76 –4.32 [0.09–0.73] 
North east 2.33 1.54 –0.35 –1.44 –2.12 –2.97 –3.18 –3.43 –3.52 [0.23–0.77] 
West central 2.24 1.23 –0.23 –1.55 –2.34 –3.09 –3.55 –3.79 –4.12 [0.18–0.78] 
Central northeast 2.10 1.54 –0.29 –1.56 –2.11 –2.71 –2.99 –3.34 –3.78 [0.23–0.76] 
North west 2.18 1.22 –0.55 –2.65 –3.35 –3.67 –3.77 –4.06 –4.22 [0.20–0.68] 
Peninsular 3.31 1.12 –0.34 –1.54 –2.12 –2.68 –3.24 –3.57 –3.68 [0.19–0.78] 

(iv) With monthly AR(1) disturbances 

All India 2.54 1.17 –0.11 –1.57 –2.90 –3.95 –4.07 –4.41 –4.54 [0.18–0.77] 
Core monsoon 2.44 1.23 –0.14 –1.18 –2.10 –2.57 –2.99 –3.01 –3.17 [0.17–0.82] 
North east 2.07 1.51 –0.08 –1.10 –2.42 –3.21 –3.50 –3.64 –3.78 [0.23–0.84] 
West central 2.12 1.60 –0.11 –1.20 –2.11 –2.69 –2.70 –3.18 –3.35 [0.25–0.80] 
Central northeast 2.35 1.61 –0.13 –1.18 –2.98 –3.73 –4.00 –4.17 –4.30 [0.26–0.79] 
North west 2.25 1.23 –0.30 –1.40 –2.57 –2.92 –3.00 –3.33 –3.48 [0.21–0.79] 
Peninsular 7.83 5.69 1.44 –0.67 –1.81 –2.33 –2.50 –2.79 –2.97 [0.36–0.83] 

(v) With monthly AR(2) disturbances 

All India 2.35 1.22 –0.15 –1.43 –2.33 –2.89 –3.67 –3.99 –4.11 [0.17–0.77] 
Core monsoon 2.14 1.19 –0.54 –1.48 –2.56 –2.98 –2.99 –3.14 –3.34 [0.18–0.76] 
North east 2.65 1.45 –0.33 –1.35 –2.67 –3.32 –3.69 –4.09 –4.35 [0.20–0.80] 
West central 3.11 1.61 –0.22 –1.29 –2.23 –2.78 –3.00 –3.19 –3.44 [0.23–0.82] 
Central northeast 2.88 1.64 –0.23 –1.44 –2.18 –3.84 –4.21 –4.76 –4.90 [0.25–0.80] 
North west 2.36 1.33 –0.26 –1.37 –2.33 –2.42 –2.69 –3.13 –3.99 [0.20–0.79] 
Peninsular 6.57 5.69 1.35 –0.89 –1.77 –2.21 –2.33 –2.88 –3.11 [0.34–0.85] 

Figures in bold represent nonrejection values at 5% significance level.  
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Table V 
Values of Robinson’s test statistic (r^) testing Ho: d = do in the model (1 – L)d xt = ut 

Series/do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. intervals 
 

(i) With white noise disturbances 

January 0.97 –1.52 –3.18 –4.23 –4.86 –5.27 –5.55 –5.76 –5.92 [–0.04–0.26} 
February 0.47 –2.24 –3.67 –4.50 –4.99 –5.33 –5.58 –5.77 –5.92 [–0.04–0.17] 
March –2.09 –2.91 –3.96 –4.68 –5.10 –5.37 –5.57 –5.73 –5.85 [–0.13–0.05] 
April –1.30 –2.83 –4.10 –4.97 –5.38 –5.61 –5.77 –5.90 –6.01 [–0.05–0.01] 
May –0.62 0.03 –1.83 –3.32 –4.17 –4.70 –5.07 –5.35 –5.56 [–0.08–0.47] 
June 0.08 1.63 –1.57 –3.69 –4.62 –5.07 –5.33 –5.51 –5.65 [–0.08–0.51] 
July 0.23 4.26 0.49 –2.82 –4.39 –5.10 –5.49 –5.73 –5.90 [–0.02–0.56] 
August –1.48 1.13 –1.31 –3.69 –4.80 –5.30 –5.58 –5.77 –5.91 [–0.03–0.00] 
September –1.29 0.94 –1.55 –3.62 –4.68 –5.24 –5.58 –5.80 –5.95 [–0.07–0.50] 
October 1.07 –0.04 –1.94 –3.52 –4.46 –5.01 –5.36 –5.60 –5.77 [–0.02–0.46] 
November –0.20 –2.70 –4.09 –4.92 –5.38 –5.65 –5.83 –5.96 –6.07 [–0.06–0.09] 
December –0.35 –2.08 –3.42 –4.26 –4.78 –5.16 –5.45 –5.69 –5.87 [–0.11–0.18] 

(ii) With AR(1) disturbances 

January –0.75 –1.30 –2.09 –2.89 –3.47 –3.90 –4.23 –4.51 –4.74 [–0.24–0.37] 
February 0.41 –1.36 –2.59 –3.38 –3.85 –4.17 –4.43 –4.65 –4.84 [–0.07–0.30] 
March –2.34 –2.17 –3.03 –3.81 –4.26 –4.53 –4.72 –4.86 –4.97 [–0.16– –0.06] 
April –0.05 –1.08 –2.52 –3.87 –4.49 –4.75 –4.92 –5.08 –5.24 [–0.04–0.37] 
May –1.08 1.26 –0.02 –1.66 –2.76 –3.47 –3.99 –4.41 –4.75 [0.25–0.74] 
June 0.30 2.82 0.46 –2.19 –3.72 –4.47 –4.89 –5.16 –5.35 [0.40–0.69] 
July 0.98 3.04 2.37 0.06 –2.00 –3.21 –3.93 –4.42 –4.78 [0.59–0.94] 
August –0.92 2.24 0.80 –1.71 –3.35 –4.14 –4.57 –4.86 –5.09 [0.41–0.74] 
September –1.50 2.10 0.85 –1.22 –2.71 –3.63 –4.23 –4.65 –4.97 [0.40–0.81] 
October –1.23 0.13 –0.59 –2.02 –3.15 –3.92 –4.46 –4.85 –5.13 [–0.11–0.67] 
November 0.48 –0.75 –2.13 –3.34 –4.08 –4.55 –4.87 –5.12 –5.33 [–0.07–0.41] 
December –1.44 –1.96 –2.87 –3.45 –3.72 –3.87 –4.01 –4.19 –4.37 [–0.23–0.13] 

(iii) With Bloomfield (1) disturbances 

January –0.26 –1.21 –2.00 –2.87 –3.32 –3.66 –3.90 –4.02 –4.15 [–0.11–0.36] 
February 0.46 –1.36 –2.55 –3.38 –3.89 –4.19 –4.36 –4.52 –4.63 [–0.07–0.33] 
March –2.41 –1.90 –2.62 –3.48 –3.93 –4.11 –4.05 –3.91 –3.74 [–0.16–0.07] 
April 0.14 0.02 –1.23 –2.99 –3.92 –4.17 –4.28 –5.05 –5.75 [–0.05–0.56] 
May –1.26 0.42 –0.52 –1.71 –2.54 –3.01 –3.25 –3.37 –3.53 [0.24–0.72] 
June 0.34 2.98 0.96 –1.14 –2.56 –3.38 –3.87 –4.19 –4.39 [0.42–0.82] 
July 1.03 4.40 2.53 0.18 –1.62 –2.67 –3.34 –3.67 –3.93 [0.60–1.00] 
August –1.15 2.73 1.40 –0.95 –2.60 –3.57 –3.99 –4.11 –4.24 [0.47–0.84] 
September –1.58 2.14 0.81 –0.87 –2.21 –3.07 –3.58 –3.87 –4.08 [0.39–0.86] 
October –0.54 0.10 –0.47 –1.65 –2.51 –3.14 –3.53 –3.94 –4.12 [–0.08–0.74] 
November 0.41 –0.47 –1.50 –2.52 –3.08 –3.41 –3.46 –3.48 –3.52 [–0.06–0.55] 
December –1.37 –1.93 –2.91 –3.65 –4.05 –4.20 –4.26 –4.46 –4.61 [–0.21–0.10] 

Figures in bold represent nonrejection values at 5% significance level.  

 

 12(1 ) , 1, 2, ...d
t tL x u t− = = , (13) 

where ut is again I(0), and test Ho for the same do values as in Table III. The test statistic 
then adopts a similar functional form as r̂  in (7), the only difference being in ψ(λj) that 
takes the form: 
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and ,ˆtu  which is now given by .)1( 12
t

d xL o−  The test statistic still has normal null and lo-
cal limit distributions (Note that the polynomial (1 – L12) can be decomposed into (1 – L) 
(1 + L + … + L11) and thus it includes the root at zero as part of the seasonal polynomial). 
We report the results based on white noise in Table IV, AR(1), Bloomfield (1) and seasonal 
AR(1) and AR(2) disturbances, and we see that the results are similar in all these cases. 
Thus, the unit root is rejected in all cases in favour of smaller degrees of integration, and Ho 
cannot be rejected when d is constrained between 0.25 and 0.75, implying long memory and 
mean reversion. 

 Finally, in Table V, we just concentrate on the data for the whole country. We decom-
pose the time series into its monthly observations, testing the order of integration for each 
month in a similar way as in Table III, for the cases of white noise, AR(1) and Bloomfield 
(m = 1)ut. We see that the results are similar for the three types of disturbances. The highest 
orders of integration are obtained during the months from May to September, i.e. including 
the Indian monsoon seasonal data, with d ranging between 0.25 and 0.75. On the other ex-
treme, March appears as the most stationary series, with d smaller than 0 for the three types 
of disturbances. 
 
4. Conclusions 

We have examined the stochastic behaviour of several Indian rainfall datasets by means of 
fractional integration techniques. We have used a parametric testing procedure of Robinson 
[16] that has several distinguishing features compared with other methods. In particular, the 
tests have standard null and local limit distributions, which hold independently, of the in-
clusion or non-inclusion, of deterministic components and of the different types of I(0) dis-
turbances. In addition, they permit us to test unit (and fractional) roots, not only at zero but 
also at the seasonal frequencies. Moreover, they do not impose gaussianity in order to ob-
tain a standard limit distribution, a condition that is rarely satisfied in this type of datasets 
[63]. 

 The tests were applied to the monthly observations of the homogeneous rainfall data in 
India and six subdivisions. First, we performed a version of the tests with the root exclu-
sively located at the long run or zero frequency. The results showed evidence of long mem-
ory, especially if the disturbances are white noise. However, this evidence of long memory 
might be due to the presence of periodicities in the data. So, we also performed another ver-
sion of the tests, with the roots located at zero but also at the seasonal (monthly) frequen-
cies. The results here suggest that the order of integration of the series ranges between 0.25 
and 0.75, showing evidence of long memory and mean reverting behaviour. Finally, we also 
performed tests segregating the data across months, the results showing that from May to 
September, the degree of persistence is higher than for the remaining months. 
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 We conclude this paper by saying that there is clear evidence of long memory in the In-
dian rainfall data. Thus, the standard approaches of assuming either stationarity (with d = 0, 
as in the ARMA case) or unit roots (i.e. d = 1, in ARIMA models) may be too restrictive, 
and so more detailed work into the fractional (seasonal)-type of models should be resorted 
to. Moreover, all the results reported here suggest that d is smaller than 1 (especially if the 
seasonal frequencies are considered) and thus the series is mean reverting, implying that 
any shock affecting them will disappear in the long run. This is in contrast to the I(1) speci-
fications, which imply that shocks persist for ever and require strong policy measures to 
bring the series back to their original long-term projections. Also, another fact noticeable is 
that the results are very similar for different regions, suggesting that there is not a different 
pattern for each of the areas in India. Finally, attempting to summarize the conclusions for 
the individual months, we are left with the impression that from May to September mon-
soon seasonal data), the degree of dependence between the observations is higher than for 
the remaining months with the implication that this might be due to the terms of modelling, 
policy and/or forecasting. 

 The problem of generating predictions of meteorological events (such as heavy rainfall 
over a region) is more complex than that of generating predictions of other time series. 
Gadgil et al. state [57]: “This is because the atmosphere is unstable and the systems re-
sponsible for the events that we are trying to predict, such as clouds or a monsoon depres-
sion are the culmination of the instabilities and involve non-linear interaction between 
different spatial scales”. For long-range predictions of Indian summer monsoon rainfall, the 
empirical models seem to outperform the physical ones [64], the reason being that most  
of the atmospheric models have not been able to simulate accurately the inter-annual vari-
ability of the Indian summer monsoon rainfall. In this respect, the long-memory models 
employed in this paper can be considered as alternative approaches when modelling and 
forecasting the Indian rainfall data.  

 A potential drawback of the present work might be its univariate nature, with the limita-
tion that it imposes in terms of theorising, policy-making or forecasting. Theoretical models  
and policy-making involve relationships between many variables, and forecast performance 
can be improved through the use of many variables (e.g. factor-based forecasts based on 
data involving hundreds of time series beat univariate forecasts [65]. Thus, it would also be 
possible to use climate-model-generated responses to forcing factors as covariates in place 
of using t as a covariate. This is the approach used, for example, in Smith et al. [66], where 
it is claimed that, after all forcing factors (including El Niño) are accounted for, the residu-
als in an annual time series may be modelled by a simple AR(1) structure. In that sense, the 
exponential decayment associated to the AR process might be replaced by the hyperbolic 
structure of the I(d) models. However, the univariate approach adapted in this paper is use-
ful in enabling us to determine the degree of dependence between the observations. More-
over, theoretical econometric models for fractional structures in a multivariate framework 
are not yet available. In this respect, the present paper can be considered as a preliminary 
step in the analysis of the Indian rainfall data from a different time-series perspective. Fi-
nally, climatological time series may, sometimes, present some properties (e.g. hidden 
trends, breaks, etc.) that may not be typical for time series in other areas. Robinson’s proce-
dure, described in this paper, allows us to include deterministic components (like an inter-
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cept, time trends or dummy variables for the breaks), with no effect on its standard null and 
local limit distributions. How the inclusion of these components may alter the results of the 
Indian rainfall data will be examined in future papers. 
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