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In this paper rhe vibration and buckling problems of orrhotropic skew plates 

with different edge conditions ore formulated in a unijied manner on the basis o/' 

orrhotroplc plate theory using the variational m ~ r h o d o f  Ritz. A double series of 
heanr ctrnracteristic functions appropriate ro the particular combinatio,~ of edge 

eonhtions is employed. The free vibration problem and the buckling problem of 
these orthotropic skew plares are then solved individtrally as Por'ricular cases of the 

general formulntion. The orthorropic properties corresponding ro grooved steel 

plute, jibre glass-epoxy and laminated boron-epoxy composite are used. Frequen- 
cies and nodal parterns of vibration as well as buckling caefticients under direct 
mzd shear loadings are obtained for rhombic plotes with all edges clamped and 

also for plates with one pair of opposite edges clamped und rhe orher pair simp1.v 
supported. Comparison with available results is made where possible. In the 

crise of the vzbrariorr problem, interesting.features such as rhe crossing of frequency 

curves as obser~~ed in our earlier invesrigatioiu on isotropic skew plates are observed 

in tile case o f  orthotropic skew plates also. The symmetries of the nodal parterns 

and [heir variation with skew nngle m e  also very inreresting. 

The need for using orthotropic plate theory arises in the analysis of 
bending, buckling and vibration of wing panels eilher because of the 
anisotropy introduced in the manufacturing processes such as cold rolling or 
stretching of the metallic sheet or the use of stiffened construction, or more 
importantly, the use of modern fibre-reinforced composite materials. It is 
well known that the fibre-reinforced construction is being widely used in the 
design of aircraft and space vehicles. With the fabrication of composite 
laminates, the designer can now control the directional properties of these to 
a great extent thus resulting in an efficient design with better utilisation of 



the lllatcrial and achieve high strength/wcighl ratio. 111 recent years m'l,,y 
sucli ~11atcriais (Refs. I ,  2, 3) have been developed and are be~ny  extensicely 
used. 

For the calculation of dynamic response undcr deteiniinistic or randum 
excitation as also for an  unckrstmdmg of the panel flutter behaviour of 
unstressed and stressed, of composite constrllction. a study of their vtbratlon 
cllaractcristics I S  essential. Equally, b u c k l l ~ ~ g  s:rength characteristics 
plates of composite construction used In these applications as  well as ir. orher 
engineering constiuction are important. Such plates can often bc analyScd 
uslnp orthotropic platc tl~eorics. Investigations it? this direction for t h e  
vibraiion char-acleristics of orthotropic rcctang~llar plates w i ~ h  dlffcrenL 
material properties have been made by various authors4-'. AshLon a;rd 
,4uderson9, for esaniple, studied both experinicntally and ii~corctically tile 
vibration characteristics oC square laminated boron-epoxy composite plaies 
with all edges clamped. The problerns of buckling o f  orthoti-opic recianguldr 
plates with opposite aides simply supported and having different boundai) 
cond~lions on the other two sides are well covered in the lilcratu:eiO-11 
The buckling coefficients of such plates can be deduced from the rcsults of 
isotropic c a ~ e ' ~ . l ~  and also from the corresponding frequency parnmeteia of 
the orthotropic plate'"17. Thc problem of generally ortliotropic platcs has 
also been studled in recent Ashton and LoveZo have carried out 
a series of cxperimcnts on rectangular boron-epoxy composite plates to 
determine lhc critical buckling loads. Ashton'' appears to have investigated 
this problem analyt~cally also. 

However, plates of other shapes such as  parallelogrnnis and trapeziuins 
do  not seem Lo have received much attention. Skew plates have obvious 
application in the construction of modern high speed a i rcraf  and nis+ler 
with swept wings and tails. Evalnation of frequency parameters of 
~ i b r a t i n n ~ ~ ~ ~ % a d  buckling" coefficients of a few such plates were atiempled 
by the authors in Refs. 22-24. 

In this paper, we consider the problems of vibration and buckling of 
orthotropic skew plates with different edge conditions. The problem is 
formulntcd 'in oblique coordinates using the variational melhod of Rim. 
Frequency parameters and buckling coefficients are presented for different 
skew angles for three representative material properties. The modes of 
vibration are plotted for one significant orthotropic property. Scverd 
interesting features concerning frequency curves and nodal patterns are 
observed. 



Vibration and Buckling of Orthotropic Skew Plates 

dimensions of the plate 

matrix appearing in Eq. [19]. 

matrlx appearing in Eq. [IS]. 

coefficient in the series expansion of deflection 

=Ex,h3/12 (1 -vxlyi vy ,x , )  

= ~ y , h ' /  12 (1 -vx,y,  u ~ , x , )  

= GXLy,h3/ l2  

= Dy, vx,y,  = Dx, vy,x, 
Young's moduli of orthotropic material 

matrices appearing in Eq. 1151 

shear modulus of orthotropic material 

matrices defined in Eq. [15] 

plate thickness 

integrals defined in Eq. [I71 

frequency parameter, P h w2 a4/Dy, 

p h w2a4/?r4 Dy, 

order of the matrix 

maximum value of indices m, r 

maximum value of indices 12, s 

mid-plane forces (oblique components) 
h a , ,  h  a, ,  h  rr, respectively 

mid-plane forces (orrhogonal components) 

h n,,, h a y , ,  h  respectively 

integers 

normal bending moment 

non-dimensional mid-plane force parameters ; 
n x b 2 ~ 1 / m 2  D?,, u y b 2 h / 7 C 2 ~ y , ,  a ~ y  b 2 h ~ ~ 2 ~ y ,  
respectively 

non-din~ensional mid-plane force parameters, 
a x a 2 h  cos$/m2Dy,,  u y  a2h cos $/?r2Dy1, 
a,,, a2h cos #/m2Dy, respectively 



domain of thc plate 

maximum kinetic energy 

total potential energy of the plate 

time dependent piare deflection 

deflection of  the plate 

beam characteristic functions 

orthogonal coordinate system defined in Fig. 1 

oblique coordinate system defined in Fig. 1 

non-dimensiond coordinates, x l a ,  y / b  respectively. 

Poisson's ratios of  orthotropic material 

mass density of the plate material 

-DX,/Q+ 

-- D , / D ~ :  

=D,,y,/Dy, and Kronecker delta respcctivcly 

oblique stress cornponenls defined in F i g  1 

skew diKerentia1 operator 

skew angle, as defined in Fig. I 

= a/b,  side ratio 

phase angle defined in Eq. 121 

circular frequency in radinns/scc. 

A sketch of the skew plate is shown in Fig. 1, along with the oblique 
stress system used in the analysis. The plate is assumed to be thin, uniform 
and orthotropic. 

The boundaries of the plate in oblique coordinates are 

For a plate vibrilting in its natural modc, thc deflection can be expressed as 

w (x ,p , t )  = W(x,y)  sin(oci-+) I21 
where W(x.y)  1 s  the mdde shapc of defltction. 
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Using the classical small deflection thin plate theory, the differential 
Bqustion for the  vibration of a plate o f  constant thickness under the action 
of middle surface forces is given by 

The boundary conditions considered are combinations of clamped and simply 
supported conditions. For  a simply supported edge, the boundary condl- 
tions are 

W - 0 ,  M,,=G I41 

For a polygonal boundary these can be written a s  

w=o, V j  W - 0  

The bomdary conditions for clamped edge are given by 

W-0,  a W / a n = Q  

where n denotes the direction of the  outward normal to the edge. It can be 
shown that the boundary condion a W / b  n - 0  in Eq. 161 reduces to 

a w/ax=o on x = O  and a 

An approximate solution of the problem as  stated by the  Eq. [3] ,  
together with the  boundary conditions such as  given by Eqs. [4 ,  5,  61 as 
appropriate t o  each edge, is solved usmg the variational method of Ritz. 

From the  classical small deflection thin plate theory, the total potential 
energy of the  vibrating plate in orthogonal coordinates is given by 

U = +  JJ ( D z ,  W', z,,, + D,, W2,y,Yt  + 2 Dl W,r,r, W.r,*l 

The maximum kinetic energy is given by, 

T--+ P h wZ j j W 2  dxl dyl 
S 

Non-dimensional coordinates f and 9 are defined as follows 

f = n / a ;  9 = y / b  
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For the stress system shown in Fig. 1, the expressions for the total potential 
energy and maxi,mum kinetic energy of the  piate are  given respectively by, 

+ A Z  sec2$ W.,JZ + 2 Y W,2,ZZ(tan2 $ W, 4t  -2  h tan $ sec $ W,  (, 

i h 2  secZ@ W,g,) + 4 8 (A see $ W, - tan $ W ,  t6)2) 

- ( ~ / ~ L Z ) { N , W , ~ ~ + ~ X N , ,  W, , IW, , i -  h 2 N y  W , ; j ] d f : I v  [ [ I ]  
and 

1 :  
T=+ w2 ab  P h  cos Jr SJ 5V2 df dq 

0 0 
Wl 

The mode shape W  is expressed a s  a double series in terms of the 
" admissible functions ", that IS, functions which satisfy geometric boundary 
conditions. Ream characteristic functions which have been extensively used 
in the literature have been used in the present paper. W ( 5 ,  q )  is expressed 
in terms of these functions as 

M N 

W ( C ,  ?)=  z 2 C,, X, ( f )  IJrn(f,) 
",=l".il  

[I31 

0 

FIG. 1 
Sketch of Skew Plate and the Oblique In-plane Stress System 
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The coefficlenls C,, of the series are determined from thc condition 

Using expressions for U a n d  T in Eq. [I41 a set of simultaneous homogeneous, 
],near, algebraic eqnations are obtained which can be expressed as 

I::, J;: are  integrals o f  products of bean1 functions and their derivatives 
defined as  follows : 

where p and q represent the order of the derivative and m, n and r, s are the 
mode numbers of the assumed beam functions. The formulae for the 
integrals were given in Ref. 25 and the numerical values of these integrals can 
be found in  Ref .  26. Eq. [IS] corresponding to orthtropic skew plates with 
different combinations o f  boundary conditions can be obtained by using 
integrals I;:, J:: appropriate to the particular end conditions, clamped, 
simply supported o r  free. However, in this paper, we consider skew plates 
either clamped alround o r  with a pair of opposite edges clamped and the 
other pair simply supported. Eq. [IS] may be written in matrix form as 



~q [18] then represents the  algebraic eigenvaiuc problem corresponding to  

vibration of stressed orthotropic skew plates. From this unified formu. 
lalion the cigenvalue problem corresponding lo  the vibration probleln 
of unstressed plates as well as Lhe buckling problein with N,,  N, or N,, 
present individualiy o r  in combination, can be  obtained by retaining the 
appropriate tezlxs. 

For example, the natural vibration probiems of unstressed plate is 
given by 

IAIIC,,j =kkz{Cr3] ~ 9 1  

kSz being thc eigenvalue corresponding to Crequency of vibration. On the 
other hand, the equation corresponding to the buckling problem under 
combined loading is given by 

The buckling problem is solved by assigning numerical values to any two of 
the three parameters 7i:, Xzyn E; and treating the remaining one as the 
eigenvalue. For  example, if the buckling parameter Ez is t o  be obtained in 
the presence of N, and N X y ,  appropriate values are assigned to R: and R:, 
and the equation is writtcn as 

where, 

[i?i = cx [Bli-  [Dl+ Y (El + 4 8 [ F ]  -%; [N ' 2 ) ]  -%:,,f~ c 3 ) ]  [211 

Eq. i221 correspotids to the hucklipg problem with I/%:: as  the eigenvalue. 

The eigenvalues k d 2  and 112 of Eqs. 1191 and [22] can be solved by any one 
of the standard meihods. 

For conlbinations of boundary conditions skew symmctrlc about the 
diagonals the two Eqs. [I91 and [22] correspond~ng to the vibration and 
buckling prohiem respectively can be split into two cases: ( m f n )  and (r.+s) 
Even ; ( m  -I- n) and (r +-s) Odd. The Even case corresponds to skew symmetric 
modes and the Odd case cerresponds to  skew antisym~uelric anodes. This 
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jplitting reduces the order o f  thc matrix whose eigenvaloes and eigenvectors 
,;,to be determined. If K ( = M x  W )  is the order of thc orfgindl matrix, 

the orders for the Even and Odd cases will be respec~~veiy  (K-I  1 ) / 2  and 
(~-:-- l ) /2  if K is Odd arid M 2  iT K is Even. For  the buckling problem the 
!ewer of the two lowest eigenvalues obtained froin thc two cases is takell as 
the critical buckling load. For  cases where symmetry of boundary conditions 
about rhe diagonals is ~ o t  !.here, this splitting 1s not possible and the full 
matrix of order K will have to  be handled both in the case of vibration and 

In the case of the vibrar~on problem, the elgenvector Ci j ,  1s made use of [ for the calcuhtxon of the mode shape 

"he entire plate is superimposed by I equispsced lines in the y-direciion 
! and k lines in the x-dircct~on. The deflection a t  these grid points a re  
: calculated using Eq. 1131 as  follows : 

AQ N 

w #  = 2 2 c:; xr* (fl) Y', ( v k )  
m n 

I241 

uhere I and k specify the point on the plate; i is the mode number; 
X,(E,), YnOjk) values of Arm and Y, at  el and 17, respectively CZi is the ith 
eigenveclor from Eq. 1191. 

In matrix form Eq. [24] may be written as 

t W 2 I  = lA,,,Ll [c:21 

where 

W$'=deRection of ith mode at point (&, q r )  

Cki -it" elgenvector 

For symmetric combinations of boilndarg conditions the deflections of 
only one half o f  the plate, that is, the lower or upper triangle, need be con- 
sidered. Fo r  other combinations of boundary conditions the whole plate is 
to be considered. Nodal patterns are then plotted from this mode sh:ipe 
information. 

Vihrarion Problem : Numerical calculations for frequency parameter k*' 
have been made for rhombic plate for d~irerent  skew angles with two combi- 
nations of boundary conditions, nsmely, all edges clamped (CCCC case) and 
one pair of opposite edges clamped and the other pair simpiy supported 
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(CSCS case). The orthotropic properties considered Correspond to grooved 
steel plate, fibre glass-epoxy and laminated boron-epoxy composite. ~h~ 
number of terms was taken upto M = N = 6  which results in matrlces of order 
18 x 18: each for the Even and Odd cases. The nodal patterns for 
skew angles for the two combinations of boundary conditions are plotted 
from the mode shape data. Fo r  the rhombic CCCC and CSCS cases 
considered the deflections at 190 points (obtained by dividing the plate into 
20 equal divisions in both x and y-directions) of the lower triangle of t h e  
plate are calculated for plotting these nodal patterns. 

Buckling Probiem : Buckling coeificients have been calculated for N, and 
N,, each acting alone for all the cases considered for the v~bratlon analys~s. 
From the convergence study carried out for the buck1 ing of isotropic case, 
it was dec~ded to have terms upto M=N=6 for $ r- 30° and M = N = 8  for 

> 30". 

Vibration Problem: Numerical results for the first 6 frequencies of 
rhombic plates with $=OD, 15', 30' and 45' are  presented. The values are 
given in terms of the parameter k. A comparison o f  the presenr resulrs 
for $=Oo with those given by Ashton and Anderson i s  made in Table I and 
the agreement is satisfactoxy. Table 2 gives the first 6 frequencies of the 
CCCC plate for different orthotropic properties and skew angles. Numerical 
results are not available for comparison in the case of skew plates. Even in 
the case of rectangular plates (CSCS case) direct comparison has not been 
possible with the results of Ref, 17 for the reason that the orientation of the 
two principal axes of orthetrophy is not the same relative to the clamped and 
simply supported edges. 

In Table 3 the first 6 frequencies of the CSGS plates are given for the 
three different materials considered. 

Clamped Square Plate, 01.12", h-0.042", p--0.192x 10-3 lb-sec'lin4 
Ex~=3.l x 10Tpsi, Ey,=2.7x lo6 psi, vx,y,-0.28, G=O.75x lou psi 
(a =11.4815, - ~ a . 2 8 0 ,  8.=0.2759) 

Mode No. 1 2 3 4 5 6 7 8 

Present Paper 12Sn 163 238 338 354 360 439 496 
- - . - _ _ _  - 
Ashton and 125b 159 238 329 350 343 397 481 

Anderson(Ref. 9) 107= 123 204 283 301 343 360 451 

M=6, N=6, calculations; a 81-7, N=7, calculations; c Experimental results 
Nde: Frequencies are given in HZ. 
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Frequency parameters k=(P h/D,t)* a s w i d  of composite rhombic plates (CCCC) 

Material MEde O0 ISo 30° 45" 

1 3.814 (E) 4.031 (E) 4 819 (E) 6.800 (Ef 

00 
2 r? 
9 0 

2 7.503 (0) 7.674 (0) 8 599 (0) 11.13 (0) 
ll --?-s 

0 P _ ? 3 8 077 (8) 8.77 (0) 10.08 (0) 15.7 (E) 
ij, * " V ;  O II 

g 5 5  4 11.36 (E) 11.55 (E) 126 (E) 16.3 (0) 

0 - 
9 5 13.4 (E) 1 4 4  (E) 17.3 (E) 21.0 (C) 

1 4 587 (E) 5.091 iE) 5.841 (E) 7.776 (E) 

"3 
G = 2 8 218 (0) 8.606 (0) 9 951 (0) 12.92 (0) 
0 I1 
5'- R 

"1 3 11.56 (0) 11.99 (0) 13.67 (0) 18.4 (E) 
X b: a 0 
a w  11 4 13 9 (E) 13.96 jE) 5 .  ( E  18.6 (0) 
Y=!m 
B c-4 
": ll 5 14.3 (E) 15.6 (E) 19.1 (E) 25 4 (0) 
G a 

6 19.3 (0) 19.0 (0) 21.0 (0) 26 8 (E) 

~~~~~~~- 
1 8.166 (E) 8.294 (E) 8.807 (E) 10.33 (E) 

z z  
C 

o 2 10.37 (0) 10.77 (0) 12.23 (0) 15.87 (E) 
0, 11 

5 ? g  
X - 3 15.15 (E) 15.92 (E) 18.55 (E) 23.9 (0) 

a ~2 
a;o I! 
Y w ,  

4 21.5 (0) 21.7 (0) 22.52 (0) 25.3 (E) 

2 $ 5 22.5 (0) 23.3 (E) 25.3 (E) 31.8 (El 

6 22.9 (E) 23.5 (0) 26.6 (0) 33.0 (0) 

~- -- 



Frequency parametere k = ( p  hlDy,)(  aZolna of composite rnornbic plate (CSCS) 

m 2 -  
$ 2 ;  4 1004 ( E )  

7 
6 gr 5 10.4 (E )  

3.318 (P) 

5.893 10) 

8.187 (0)  

9 94 (E) 

11.6 (E) 

34.4 (0) 

3.969 (E)  

6.790 (0) 

10 00 (0) 

10.75 (E) 

11.5 (B) 

15.3 (0) 

4.530 (E) 

4.833 (0) 

11.42 ( E )  

11.7 (0) 

13.9 (E) 

17.1 (0) 

5.130 (E) 

7.902 (0) 

12.76 (E) 

13.2 (0) 

16.6 ( E )  

18.4 (0) 

8 9 7  (0)  

1 3 4  (E) 

21 3 (E) 

6.720 (E) 

1 7.879 (E) 7.966 (F) 8.33 (E) 9.46 (E) 

e4 r- g - 
x * 3 12.59 (E) 13.18 (E) 15.3 (E) 19.9 (E) 
g 6 2  
e z  u 4 IS 65 (0) 21.56 (0) 22.1 (0) 24 6 (0) 
c 9 -  
e - o 11 5 21.38 (0) 22.6 (E) 22.8 (0) 28.6 (0) 
a 
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In Fig. 2 the  frequency Paralileters of d~fferent modes of CCCC and 
CSCS plates are  plotted against skew angle. The degeneracies observed in 
the case of square isotropic plate (Rcf .  27) disappear now as  a result of the 
,,yametr~es introduced by the material properties. The pattern of frequency 
crossings also is different as may be expected. 

Fig. 2 (a) gives the  variation of' the frequencies of mildly orthotropic 
material (grooved steel plate) for the two bouudary conditions coiisidercd. 
In CCCC case the  frequency crossings are seen to be between the 3rd and the 
4th at about 41°, between 5Lh and 7th a t  aboul 35" and between 6th and 7th 
at about 21". In CSCS plate the 4th and 5th as well as  the Gth and 7th 
frequencies are  nearly degenerate pairs in the case of square geometry. 
The frequency crossings take placc a t  about 37" between the 5th and Gth 
inodes a t  about 40" between 3rd and  4th modes. Fig. 2 (b) i s  a plot of 
frequencies against skew angle for a particular ribre glass-epoxy composite 
plate. The only crossings observed among the first 6 modes for $ zs 45" are 
between 5rh and 6111 a t  about 40" In CCCC ccse and at about 41" in the 
GSCS case. The variation of rrequencies of a strongly orrhotropic material, 
namely, unidirectional boron-epoxy composite laminate is shown in Fig. 2(c). 
The frequency crossing are now seen to  be between 5th and 6th a t  about 10" 
and between 7th and 8th a t  about 42' in plates with claniped beundaries. 
The manner of variation of frequencies for boron-epoxy plate with CSCS 
boundary condition appears t o  be  rather d~fferent  for higher rrequencies for 
the configurations considered. This may be attributed to the unidirectional 
and hence highly anisotropic nature of  he material as also the fact that the 
edges x=O, x = a  are  clamped while the cdges y -0, y - b  are only simply 
supported. In  this case (CSCS), the frequency crossings are seen to be 
between the  5th and  6th modes a t  about 3" arid also a t  24" and between the 
4th and 5th a t  about  28". 

Fig. 3-6 gives the  nodal pattcrns correspcnding to the frequencies in 
Table 2 for boron-epoxy composite. It may be seen that due to the orienta- 
tion of all the  plies of the laminated plate in the s-direction more number 
of nodal lines appear across the  y-axis even in the CCCC plate. This is 
even more so  in t he  case of CSCS case (Fig. 7-10) as the edges y--0 and y =. b 
are simply supported. Results OF nodal patterns for othcr material properties 
are not plotrcd. 

B u c k l i n ~  Problem : In  Table 4, the  buckling coefficients 3, and Exp are  
~ ioen  for two different boundary conditioils, namely, CCCC and CSCS under 
both N, and N,,, cach acting alone, for different skew angles O", IS", 30" 
and 45" for a grooved steel plate. I n  Tables 5 and 6, the results for the 
above mentioned combinations of boundary conditions, loading and skew 
i n g k  are given for fibre glass-epoxy respectively. 



21 1 I 
0" 

I 
15- 33" 45" 0" 1 5 O  30" 

I 
45' 

(a)  Grooved Steel Plcta 

(b) Glass-epoxy Corn~os i te  

4 8 5  o t o b o ~ t 2 8 ~ , k + 2 2 5  

FIG. 2 
Variation of Freauencics u~ith Skew A n &  
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Fundamentat i k=8.166 

MODE 5101 MODE 7101 

Fi 26 0 

FIG. 3 
Nodal Patterns o f  Rhombic Platee (CCCC), *=0° {Boron-EPOXY) 

Fundamental: k=8.807 

DE 2(ol MODE 3IEl/ MODE 4(01 

10.77 15.92 21-70 
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Fundamental: k=S 807 

FIG. 5 
Nodal Patterns of Rhombic Plate (CCCC), 9 =3O0 (Boron-Epoxy) 

Fundamental: k-10.33 
MODE 4(01 GR,/7 

$ 5 . 8 7  23.9 25.3 

FIG. 6 
Nodal Patterns of Rhon~bic Plate (CCCC). +-45" (Boron.Epaxy) 



MODE 3 I E l  

I-- 
1259 

FIG. 7 
Nodal Patterns of Rhombic Plate (CSCS), '1-0" (Boron-Epoxy) 

Fundamental: k=7.966 

MODE 2 LO) 

9 397 

M O D E  3LE) 

13.18 

MODE I ( E l  

2 5 . 3  30.8 

FIG. 3 
Nodal Patterns o f  Rhon~bic Platc (CSCS), d - 1 5 "  (Boron~Epoxy) 



S. D r r ~ v A s r r L A ,  P. $. WAIR A N D  R/I. S .  S. PRABHIJ 

Fundamroial : k=8.33 

FIG. 9 
Nodal Patterns of Rhombic Plate (CSCS), +=30° (Boron-Epoxy) 

Fundamental : k=9.46 

FIG. 10 
Nodal Patterns o f  Rhombic Plate (CSCS), +=4S0 (Boron.Epoxy) 
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From the results given in Tables 4, and 5 and 6, it could be seen that 
the buckling coefficlenls vary widely wlth the orthotropic property of  the 
plate, increasing in magnitude w ~ t h  the rigid~ty constant a (-D,,/D,,). ~t 
is also seen that the buckhng coefficients under direct compression ' i ~ ,  , vary 
only very slightly with skew angle in the case of boron-epoxy which is 
highly anisotropic in C ~ ~ p a r i s o n  with fibre glass-epoxy and grooved steet 
plate. It is useful to compare this feature with the corresponding range of 
variation in the case of isotropic plate. This comparison shows that the 
range of variation in the latter case is more. From this it appears that, on 
the whole, the more highly unidirectional the orthotropic properties are, the 
less effective is the inRllence of skew angle i n  raising the magnitude of the 
buckling coefficient. In the case of shear, two critical values exist, positive 
and negative, positwe shear (acting in a way so as to reduce the skew angle) 
being always less than the negatwe shear for the combinations of boundary 
condition and material properties considered. While the positive shear 
decreases with the skew angle, the negatlve shear increases in magnitude with 
the increase in the skew angle as observed in the case of i sot rop~c plates. 

The vibration and buckling problems of orthotropic skew plates with 
different combinations of edge condttions are formulated in  a unified manner 
using the variational method of Ritz. Nun~erical results are obtained for two 
sets of edge conditions and three sets of orthotropic properties. Crossing of 
frequency curves is seen to take place as in the case of isotropic plate. 
The effect of orthotropy on  the nodal patterns and their symmetries is studied. 
The buckling coefficients are obtained under compression (N,) and shear (N,,) 
for these configurations. For buckling under shear (oblique components), 
two critical values exist, with the magnitude of positive shear being less as 
in the case of isotropic plate. 

We express our thanks to  Mr. Mahabaliraja for his extensive help i n  the 
computational work involved. 



TABLE 4 

Buckline ~oeftirienis%, and R,, for a Clamped Ihornbic Plate 

0" b 6 18 11.1 (E) 

CCCC 15. 6 4 18 1 i . S  (E) 
N,alone 

30" 6 6 I r; 13.0 (E) 

45" 8 8 3' 1S.B (E) 

CCCC 
N,, alone 

CSCS IS" 
N, alone 

31." 

6 6 18 115.8 (E) 

6 6 I8 12.1 (E) 
-23.3 (E) 

X 8 32 10.4 (E) 
-89.4 (E) 

6 6 18 7.72 (E) 

6 6 18 8.11 (E) 

6 6 18 9.49 (E) 

45" 8 8 32 12.4 (E) 

CSCS 

rg" 6 6 18 jz13.9 (E) 

15" 6 6 18 10.8 (E) 
-20.4 (E) 

N,, alone 30" 6 6 18 9.45 (E) 
-35.7 (E) 
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Buckling coefficients ji, and 7, for CCCC an3 CSCS Rhombic Plates 
Material : Fibre glass-epoxy a=4,963. 7-0.25, 8=0.450 - 

goundary condrtions Skew Matrix Buckling coefficients 
and Loading Angle s ~ z e  

4 
x, and E,  

0" 6 6 I8 18.5 (E) 

CCCC 15" 6 6 18 19.0 (E) 
N, alone 

30" 6 6 18 20.9 (E) 

45" 8 8 32 25.0 (E) 
- 

0" 6 6 18 f 24.5 (E) 

CCCC 
N, alone 

15" 6 6 18 20.1 (E) 
-32.7 (E) 

30" 6 6 18 17.8 (E) 
- 50.8 (E) 

45" 8 8 32 17.1 (E) 
-100 (E) -------- 

On 6 6 18 14.9 (E) 

CSCS 15" 6 6 18 15.3 (E) 
N, alone 

30" 6 6 18 16 8 (E) 

45" 8 8 32 20.4 (E) -------- 
0" 6 6 18 ... 

CSCS 
N,, alone 

15" 6 6 18 18.7 (0) 
- 30.8 (E) 

30" 6 6 18 16.6 (0) 
-46.9 (E) 

45" 8 8 32 15.9 (0) 
-90.9 (E) - 
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CCCC 15" 
N, alone 

30" 

cccc 
N, alone 

cccc 
N, alone 

6 6 18 51 S ( 6 )  

6 6 18 51 5 (E)  

6 6 18 5 1  4 (F) 

8 8 32 54.4 (Ej 

IS 5 4 9  7 (0) 

18 44.2 (0) 
-59 4 (0) 

1 X 40.9 (0) 
- 79 0 (E) 

3 2 39 6 (0) 
- 123 (E) 

18 48 4 (E) 

18 47.7 (E) 

18 46.4 (E) 

32 47.0 (E) 

CCCC 
N,, alone 
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