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ABSTRACT

In this paper the vibration and buckling problems of orthotropic skew plates
with different edge conditions are formulated in a unified manner on the basis af
orthotropic plate theory using the variarional merhod of Ritz. A double series of
beam characteristic functions appropriate to the particular combination of edge
conditions is employed.  The free vibration problem and the buckling problem of
these orthotropic skew plates are then solved individually as particular cases of the
general formulation. The orthotropic properties corresponding 1o grooved steel
plate, fibre glass-epoxy and laminated boron-epoxy composite are used. Frequen-
cies and nodal parterns of vibration as well as buckling coefficients under direct
and shear loadings are obtained for rhombic plates with all edges clamped and
also for ptates with one pair of opposite edges clamped and the other pair simply
supported. Comparison with available results is made where possible. In the
case of the vibration problem, interesting features such as the crossing of frequency
curves as observed in our earlier investigations on isotropic skew plates are observed
in the case of orthotropic skew plates also. The symmeiries of the nodal patterns
and their variation with skew angle are also very interesting.

1. INTRODUCTION

The need for uvsing orthotropic plate theory arisesin the analysis of
bending, buckling and vibration of wing panels either because of the
anisotropy introduced in the manufacturing processes such as cold rolling or
stretching of the metallic sheet or the use of stiffened comstruction, or more
importantly, the use of modern fibre-reinforced composite materials. It is
well known that the fibre-reinforced construction is being widely used in the
design of aircraft and space vehicles. With the fabrication of composite
laminates, the designer can now control the directional properties of these to
a great extent thus resulting in an efficient design with better utilisation of
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the material and achieve high strength/weight ratio. In recent years many
such materials (Refs. 1, 2, 3) have been developed and are being extensively
vsed.

For the calculation of dynamic response under deterministic or random
excitation as also for an understanding of the panel flutter behaviour of plages
unstressed and stressed, of composite construction, a study of their v1bratim;
characteristics s essential. Equally, buckling sirength characteristics of
plates of composite construction used 1n these applications as well as in other
engincering construction are important. Such plates can ofien be analyseq
usmg orthotropic plate theories. Investigationms in this direction for the
vibration characterisiics of orthotropic rectangular plates with differen:
material properties have been made by various aunthors*=°.  Ashion and
Anderson®, for example, studied both experimentally and theoretically the
vibration characteristics of square laminated boron-epoxy composite plates
with all edges clamped. The problems of buckling ot orthotropic rectangular
plates with opposite sides simply supported and having different boundary
conditions on the other two sides are well covered in the literaturel®-!
The buckling ceefficients of such plates can be deduced from the results of
1sotropic case!®!® and also from the corresponding frequency parameters of
the orthotropic plate!®!?. The problem of generally orthotropic plates has
also been studied in recent years'™!”. Ashton and Love® have carried out
a series of experiments on rectangular boron-epoxy composite plates to
determine the critical buckling loads. Ashton?! appears to have investigaled
this problem analytically also.

However, plates of other shapes such as parallelograms and trapeziums
do not seem Lo have received much attention. Skew plates have obvious
application in the construction of modern high speed aircraft and missiles
with swept wings and tails.  Evaluation of frequency parameters of
vibration?*? and buckling? coefficients of a few such plates were attempted
by the authors in Refs. 22-24.

In this paper, we consider the problems of vibration and buckling of
orthotropic skew plates with different edge conditions. The problem is
formulated in oblique coordinates using the variational method of Ritz.
Frequency parameters and buckling coefficients are presented for different
skew angles for three representative material propertics. The modes of
vibration are plotted for ome significant orthotropic property.  Scveral
interesting features concerning frequency curves and nodal patterns are
observed.” '
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5 . . domaijn of the plate
T .. maximum kinetic energy
U .. total potential energy of the plate
w(x, ¥, 1} .. time dependent plate deflection
WIE 1) .. deflection of the plate
X 6. Y00 .. beam characteristic functions
X5, by .. orthogonal coordinate system defined in Fig. 1
X Pz .. oblique coordinate system defined in Fig. 1
£ 7 .. non-dimensional coordinates, x/a, y/b respectively.
Vi Yy .. Poisson’s ratios of orthotropic material
[ .. mass density of the plate material
@ .. =Dy [Dy,
R - ’“DUIDYz
By 8pmrs =Dy,y/Dy, and Kronecker delta respectively
Gus O, Oy . . oblique siress components defined in Fig. |
2 .. skew differential operator
=s5e¢ ‘l’(**‘ — 25 nzﬁaxay aa; )
& skew angle, as defined in Fig. 1
A - =alb, side ratio
[ phase angle defined in Eq. [2]
w circular frequency in radians/sec.

2. MATHEMATICAL FORMULATION

A sketch of the skew plate is shown in Fig. 1, along with the oblique
stress system uscd in the analysis. The plate is assumed to be thin, uniform
and orthotropic.

The boundaries of the plate in oblique coordinates are

x=0, x=a; y=0, y=b 1]

For a plate vibrating in its natural mode, the deflection can be expressed as
w (x,,0) = W (x,y) sin (w14 ¢) 121
where W (x.») is the mude shape of deflection.
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Using the classical smalil deflection thin plate theory, the differential
gquation for the vibration of a plate of constant thickness under the actjon
of middle surface forces is given by

D, Wosy w2 + 2(Dy + 2Ds 5 Wy 55,5, + Doy Wa gy 9,9,
FNey Wy s, 2 Nays, Woe 5, + Ny, Won 5 - P AW, u=0 (3]

The boundary conditions considered are combinations of clamped and simply
supported conditions. For a simply supported edge, the boundary condi-

tions are
W=0, M,=0 4]
For a polygonal boundary these can be written as
W=0, YZW=0 {5}

The boundary conditions for clamped edge are given by
W=0, 3 Wdn=0 [6]
where n denotes the direction of the outward normal to the edge. It can be
shown that the boundary condion 3 W/a n=0 in Eq. [6] reduces to
IW/d3x=0 on x=0 and a
3 W/ay=0 on y=0 and & {71
An approximate solution of the problem as stated by the Eq. [3],

together with the boundary conditions such as given by Eqs. {4, 5, 6] as
appropriate to each edge, is solved using the variational method of Ritz.

From the classical small deflection thin plate theory, the total potential
energy of the vibrating plate in orthogonal coordinates is given by

Uz%fsf (D”l Wz’ xpey T+ DJ’; Wz”x—": +2 Dl w, 3% W"‘x"l

4 Dy, W2 oy — Ny W2 =2 Nes, Wos, Wos,

— Ny, W3, dx, dy, [8]
The maximum kinetic energy is given by,
T=Lph ot fsf W2 dx, dy, 91
Non-dimensional coordinates ¢ and 3 are defined as follows .
110}

£=x]a; n=y/b
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Tor the stress system shown in Fig. 1, the expressions for the total potenta
energy and maximum kimetic energy of the plate are given respectively by,

11
U:Oj! (b cos ¢ Dy [20%) [{& W2 4y + (tan™ W, ;5 ~2 A tan o secd W,,,

+ 22 secd Wo)? + 27 Wy (tan® g W, 1, —2 X tan o secof W, ¢,
+Asec?¢ W, + 48 (Aseed W, —tand W, )%}

—(bJ2a) (N, W) + 2AN,, W., W, + XN, WAl1dZ 7y (]
d
an -
T=li w? ab Ph cos !0 w2de¢ dy : {1y

The mode shape W is expressed as a double series in terms of the
¢« admissible functions ”, that 1s, functions which satis{y geometric boundary
conditions. Beam characteristic functions which have been extensively used
in the literature have been used in the present paper. W(§, n) is expressed
in terms of these functions as

M N
Wi, )= 2_1 élcmn X, (5 7, () (13

S p—— =X, %8

FiGc. 1
Sketch of Skew Plate and the Oblique In-plane Stress System
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where X, (§) and 7, (y) are the beam functions satisfying the boundary
conditrons comsidered.
The coeflicients C,, of the series are determined from the condition
3(U-T)

3 C

0 [14]

nin

Using expressions for U and T in Eq. [14] a set of simaltaneous homogeneous,
Iinear, algebraic equations are obtained which can be expressed as

M N
2 E; Crs (& B+ Dyrs + ¥ Epyps +4 8 Fppy
r=1 5=

~R,H®, -R, B, ~R,, H® ~k+25, )=0 {15]

e inrs mars mes)

where
By 122 J20
Diprs= A% sec¥3p 1,0 J22 -2 X sec? s tan ¢ (JOL J2 + 110 12
+A%sec? yf tan?ef (FQ2 J2044 TN 20 g0
—2 Xtand s secqy (FJ2 IS0+ 120 01 - tantyf 122 00
=A% sec?p (L2 J20+ 720 T2 2 A secyf tan o (Z)2 J10+ 72 70h

+2 tan?y T2 J20

E,

minrs

F,

m

s = A2 seeZgh I3 tan o sec ok (LI2 N0+ 120 JON) tan? ok 122 490

Bi= 1100905 HE =2 10 I B =2 A Lj2 I (163

mnrs ns > mnrs

X7, JPE are integrals of products of beam functions and their derivatives

defined as follows :
1 1 -
= X2 () X2 () dé; JRE=[X2() YFOp dy [17]
[ é

where p and g represent the order of the derivative and m, n and r, 5 are the
mode numbers of the assumed beam functions. The formulae for the
integrals were given in Ref. 25 and the numerical values of these integrals can
be found in Ref. 26. Eq. [15] corresponding to orthtropic skew plates with
different combinations of boundary conditions can be obtained by using
integrals J2¢, JP? appropriate to the particular end conditions, clamped,
simply supported or free. However, in this paper, we consider skew plates
either clamped alround or with a pair of opposite edges clamped and the
other pair simply supported. [Eq. [I5] may be written in matrix form as
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(o[BI +1D1+ TE]+ 451F) {Cp} = Ry [HH{C,} + RI[H®@){C, )
+RUHE®C,} +k"2C, ) 11

Eq. [18] then represents the algebraic eigenvalue problem corresponding to
vibration of stressed orthotropic skew plates. From this unified formu.
lation the eigenvalue problem corresponding to the vibration problem
of unstressed plates as well as the buckling problem with N, N, or N,
present individually or in combination, can be obtained by retaining the
appropriate terms.

For example, the natural vibration problems of unstressed plate is
given by
[4{C} =k {C.} (191
where
[d]=a [BI+[D]+ Y[E]+45 [F] 120}

k*? being the eigenvalue corresponding to frequency of vibration. On the
other hand, the equation corresponding to the buckling problem under
combined loading is given by

AI{C,} = RLTHONC, ) + Ry (HP1{C, ) + R TEIC, } [21)

The buckling problem is solved by assigning numerical values to any two of

the three parameters K, Ry R, and treating the remaining one as the
eigenvalue. For example, if the buckling parameter R} is to be obtained in
the presence of N, and N,,, appropriate values are assigned to R} and R},

and the equation is written as
A7 [HOHC,} = (1/RD{C,} 22
where,
(4] = & [B1+[D)+ YLE] +4 8 [F}) ~ RS [H ) —R%{H Y] 23]

Eq. [22] corresponds to the buckling problem with 1/}{: as the eigenvalue.

The eigenvalues k*? and 1/;2; of Egs. [19] and [22] can be solved by any one
of the standard methods.

For combinations of boundary conditions skew symmetric about the
diagonals the two Egs. [19] and {22] correspondmg to the vibration and
buckling problem respectively can be split into two cases: (m+n) and (r+8)
Even; (m+n) and (r+5) Odd. The Even case corresponds to skew symmetric
modes and the Odd case cerresponds to skew antisymmetric modes. This
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splitting reduces the order of the matrix whose eigenvalues and eigenvectors
a6 to be determined. If K (=M xN) is the order of the original matrix,
then the orders for the Even and Odd cases will be respectively (K4 13/2 and
(k—1)j2 if K is Odd and X/2if K is Even. For the buckiing problem the
jower of the two lowest eigenvalues obtained from the two cases is taken as
whe critical buckling load. For cases where symmetry of boundary conditions
sbout the diagonals is mot there, this splitting 1s not possible and the full
matrix of order K will have to be handled both in the case of vibration and
wuckling problems.

In the case of the vibration problem, the eigenvector C) is made use of
for the calculation of the mode shape.

The entire plate is superimposed by / equispaced lines in the p-direction
and k lines in the x-dircction. The deflection at these grid points are
¢ aiculaged using Eq. [13] as follows :

M N
WI(:?"’ Z2CY X, (ED Y, Orid [24]

s\here I and % specify the point on the plate; i is the mode number;
X80, Yo (n,) values of X, and Y, at £, and 73, respectively C¥/ is the i
e}genvector from Eq. [19].

In matrix form Eq. [24] may be written as

[Wi21=14,3 1CS] [25]
where
Wi = deflection of % mode at point (5, ny)

Apsie =X, (€Y < ¥y ()
C) =i eigenvector
For symmetric combinations of boundary conditions the deflections of
only one half of the plate, that is, the lower or upper triangle, need be con-
sidered. For other combinations of boundary conditions the whole plate is
to be considered. Nodal patterns are then ploited from this mode shape
information.

3. NUMERICAL CALCULATIONS

Vibratien Problem: Numerical calculations for frequency parameter k*?
have been made for rhombic plate for different skew angles with two combi-
nations of boundary condijtions, namely, all edges clamped (CCCC case) and
one pair of opposite cdges clamped and the other pair simply supported
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{CSCS case). The orthotropic properties considered correspond to grooveg
steel plate, fibre glass-epoxy and laminated boron-epoxy composite. The
number of terms was taken upto M =N =6 which results in matrices of order
18 % 18 each for the Bven and Odd cases. The nodal patterns for different
skew angles for the two combinations of boundary conditions are plotied
from the mode shape data. For the rhombic CCCC and CSCS cases
considered the deflections at 190 points (obtained by dividing the plate into
20 egual divisions in both x and p-directions) of the lower triangle of the
plate are calculated for plotting these nodal patterns.

Buckling Problem: Buckling coefficients have been cakculated for N, and
N,, each acting alone for all the cases considered for the vibration analyss.
From the convergence study carried out for the buckling of isotropic case,
it was decided to have terms upto M=N=6 for i =30° and M=N=8 for
¥ = 30°.

4. RESULTS AND DISCUSSION

Vibration Problem: MNumerical results for the first 6 frequencies of
rhombic plates with /=0, 15°, 30° and 45° are presented. The values are
given in terms of the parameter k. A comparison of the present resulis
for ¢ =0° with those given by Ashton and Anderson is made in Table I and
the agreement is satisfactory. Table 2 gives the first 6 frequencies of the
CCCC plate for different orthotropic properties and skew angles. Numerical
results are not available for comparison in the case of skew plates. Even in
the case of rectangular plates (CSCS case) direct comparison has not been
possible with the results of Ref. 17 for the reason that the orientation of the
two principal axes of orthotrophy is not the same relative to the clamped and
simply supported edges.

In Table 3 the first 6 frequencies of the CSCS plates are given for the
three different materials considered.

TABLE I

Clamped Square Plate, =12, ©=0.042", = p==0.192x 10~ * lb-sec?/in*
Bx;=3.1x107psi, Eyi=2.7x10%psi, »x,y;=0.28, G=0.75x10% psi
(= =11,4815, 7=0.280, &=0.2759)

Mode No. 1 2 3 4 5 6 7 8
Present Paper 1282 163 238 338 354 360 409 496
Ashton and 1250 159 238 329 350 343 397 482

Anderson (Ref. 9)  107¢ 123 204 283 301 343 360 451

* M=6, N=6, calculations; ¢ M=7, N=7, calculations; ¢ Experimental results
Note: Frequencies are given in Haz.
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TaBLE 2

Frequency parameters k=(? /Dyt a'w/x* of composite rhombic plates (CCCC)

Material Mzdc o 15° 30° 45°
1 3.814 (E) 4.031 (B) 4819 (B) 6.800 (E)
%
%’ g 2 7.503 (0) 7674 (0) 8 599 (0) 11.13 (0
) [
EE‘P § 3 8 077 (0) 8.77 () 10.68 (0) 15.7 (B}
= &
IZE~ T < .
7;%:“3?“” 4 11.36 (E) 11.55 (E) 126 (E) 16.3 (0}
§ ans 5 13.4  (E) 144 (B} 173 (B) 21.0 (B
& 147 (B) 15.7 (B) 175 (0) 24.0 (E)
H 4 387 (E) 5.091 (E) 5.841 (E) 7.776 (E)
o~y
:g 2 8210 (O) 8.606 (0) 9951 (03 1292 (0
il
~“@7 3 11.56 (O) 11.99 (0) 13.67 (0 184 (B)
LA
g o S <
g ! 4 139 (B) 13.96 (E) 15.2 (E) 186 (0)
T M2~
A
S 5 143 (B) 156 (B} 19.1 (E) 254 ()
<o
6 193 (0) 19.0 (O 21,0 (0 268 (E)
1 8.166 (E) 8.294 (E) 8.807 (E) 10.33 (B}
N
S\__C”’ 2 1037 (O 10.77 (0} 12.23 (03 15.87 (E}
s
: ,% 3 15.15 (E) 15.92 (E) 18.55 (E) 239  (0)
3w g
%5 I 4 215 (0) 217 (0) 22.52 (0 253 (B)
i< w
E] 5 225 0) 23.3 (B 253 (B) 31.8 (E)
-
]

6 229 (B) 235 (O 26.6  (0) 330  (0)
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TaniLs 3

Frequency parameters k=(p 2Dy} a'wixv® of corpposite rhombic plate (CSCS)

Material [\,4ng o 150 30 o
1 3142 (&) 3.318 (B) 3.969 () 564 ()
kel
283 2 5639 (0) 5.893 (0) 6.790 (0) 897 ()
& - o
R 3 7701 () 8.187 (O 1000 (0) 134 (Ey
&
RS 4 1004 {E) 994 (0) 10.75 (E) 147 ()
- .
o |,
L%;a;‘ 5 104 (E) 1.6 (B) 14.5 (B} 180 (0
6 145 (0 14.4 (0 153 (D) 200 (B
i 4.370 (E) 4.530 (B) 5.130 (E) 6.720 (B)
:§ 2 6525 () £.833 (0) 7.902 (0} 10.37 (D)
2 e
== o 3 311.02 (F) 11.42 (E) 12.76 (E) 1584 (E)
gm"g
S5 L 4 1129 (O 1.7 (0) 13.2 () 173 (®
w o
5 ; 5 132 (B 13.9 (B) 16.6 (E) 2.2 (0)
6 171 (D) 171 (0) 18.4 () 231 (B}
1 7.879 (E) 7.966 (E) 8.33 (E) 9.46 (E)
S8
o cu: 2 9125 () 9.397 (0) 10.4 (9 13.1 (0
5?- o
N § 3 1259 (E) 13.18 (B) 15.3 (B) 19.9 (E)
[l
oV
i‘}gi 4 1865 (0) 21.56 (B 22.1 (O 246 (0)
gt
;‘E 1 5 2138 (0y 226 (E) 228 () 28.6 (D)
o

6 223 (B) 253 (D) 24.2 (E) 29.1 (E)
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In Fig. 2 the frequency parameters of different modes of CCCC and
£SCS plates are plotted againsi skew angle. The degeneracies observed in
the case of square isotropic plate (Ref. 27) disappear now us a result of the
asymmetries introduced by the material properties. The pattern of frequency
crossings also is different as may be expected.

Fig. 2 (a) gives the variation of the frequencies of mildly orthotropic
malerial (grooved steel plate) for the two boundary conditions considered.
In CCCC case the frequency crossings are seen to be between the 3rd and the
4th at aboutl 41°, between 5th and 7th at about 35° and between 6th and 7th
at about 21°.  In CSCS plate the 4th and 5th as well as the 6th and 7th
frequencies are nearly degenerate pairs in the case of square geometry.
The frequency crossings take place at about 37° between the 5th aad 6th
modes at about 40° between 3rd and 4th modes. Fig. 2 (b) is a plot of
frequencies against skew angle for a particular fibre glass-epoxy composite
plate. The only crossings observed among the first 6 modes for ¢ = 45° are
between Sth and 6th at about 40° in CCCC case and at about 41° in the
€SCS case. The variation of frequencies of a strongly orthotropic material,
namely, unidirectional boron-epoxy composite laminate is shown in Fig. 2{(c}.
The frequency crossing are now seen to be between 5ih and 6th at about 10°
and between 7th and 8th at about 42° in plates with clamped boundaries.
The manner of variation of frequencies for boron-epoxy plate with CSCS
boundary condition appears to be rather different for higher frequencies for
the configurations considered. This may be attributed to the unidirectional
and hence highly anisotropic nature of the material as also the fact that the
edges x=0, x=a arc clamped while the cdges y=0, y=»5 are only simply
supported. In this case (CSCS), the frequency crossings are seen to be
between the 5th and 6th modes at about 3° and also at 24° and between the
4th and 5th at about 28°.

Fig. 3-6 gives the nodal patterns correspending to the frequencies in
Table 2 for boron-epoxy composite. It may be seen that due to the orienta-
tiou of ali the plies of the laminated plate in the x-direction more number
of nodal lines appear across the y-axis even in the CCCC plate. This is
even more so in the case of CSCS case (Fig. 7-10) as the edges y=0and y=b
ate simply supported. Results of nodal patterns for other material properties
are not plotted.

Buckling Problem: In Table 4, the buckling cocfficients R, and R, are
given for two different boundary conditions, namely, CCCC and CSCS under
both N, and N,,. each acting alone, for different skew angles 0°, 15°, 30°
ind 45° for a grooved steel plate. In Tables 5 and 6, the results for the
wbove mentioned combinations of boundary conditions, loading and skew
ingle are given for fibre glass-epoxy respectively.
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Pundamenials k=8.166

MQODE 3(E) MODE 4{0)
10 375 {5 45 21 51
MODE 5(0) MODE 6(E) MODE 7{0)

22 5 - 229 26 0
Fic. 3
Nodal Patterns of Rhombic Platee (CCCC), #=0° (Boron-Epoxy)
Fundamental: k=8.807

MODE 2(0) MODE 3(E) MODE 4{0)
16.77 15.92 7o
MODE 5(E) MODE 6(0} %}/
FiG. 4

Nodal Pattesns of Rhombic Plate (CCCey, ¥=15° (Boron-Epoxy)
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Fundamental: k=8 807

MODE 2 (0} MODE 3(E) MODE 4(Q)
j 0 \
30
12.23 18.55 2252
MODE S5(E) MODE 6(0) MODE 7(0)
253 2686 318
Fi1G. §
Nodal Patterns of Rhombic Plate (CCCC), # =30° (Boron-Epoxy)
Fundamental: 4=10.33
MODE 2(0) MODE 3(E) MODE 4(0)
W f 7
15-87 23.9 25-3
ﬁjﬁ 5(E) MODE 6(0) MODE 7(E}
318 330 : 43.0
Fi1G. 6

Noda! Patterns of Rhombic Plate (CCCC), ¥=45° (Boron-Epoxy)
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Fandamental: k=7.879

 MODE2(0) . MODE 3(E) ____MODE 4(0)
! | T
p— ) N T
[ ! —
! - 1
9.125 1259 1865
MODE 5(0) MOCE 6 (E} MODE 7(0)
i L3
21 38 223 26 5
Fic. 7

Nodal Patterns of Rhombic Plate (CSCS), ¥=0° (Boron-Epoxy)
Fundamental: k=7.966

MODE 2 (0) MODE 3(E) MODE 4{0)
15°
[—
5397 1318 2i-56
MODE 5(E) MODE 6(0} MODE 7(E)
H _M_,_é,m,
FIG. 8

Nodal Patterns of Rhombic Plate (CSCS), ¥-15° (Boron-Epoxy)
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Fundamenial: 4£=8.33

MODE 2(0) MODE 3(E) > MODE 4(0)
/
30° e
—

10 4 153 FER]

MODE 5(0} MODE 6 (E) MODE 7(0)
228 24 2 287

FiG: 9

Nodal Patterns of Rhombic Plate (CSCS), ¥=30° (Boron-Epoxy}

Fundamental: k=9.46

MOOE 2(0) MODE 3(E) MODE 4(0)
45°
13 1 199 24 6
MODE 5{0) MODE 6(E) MODE 7(E)
266 25 1 381
FiG. 10

Nodal Paiterns of Rhombic Plate (CSCS8), #=45° (Boron-Epoxy)
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From the results given in Tables 4, and 5 and 6, it could be seen that
the buckling coefficients vary widely with the orthotropic property of the
plate, increasing in magnitude with the rigidity constant « (=D,/D,). Tt
is also seen that the buckling coefficients under direct compression N, vary
only very slightly with skew angle in the case of borom-epoxy which is
highly anisotropic in comparison with fibre glass-epoxy and grooved steel
plate. Tt is useful to compare this feature with the corresponding range of
variation in the case of isotropic plate. This comparison shows that the
range of variation in the latter case is more. From this it appears that, on
the whole, the more highly unidirectional the orthotropic properties are, the
less effective is the influence of skew angle in raising the magnitude of the
puckling coefficient. In the case of shear, two critical values exist, pesitive
and negative, positive shear (acting in a way so as to reduce the skew angle)
being always less than the negative shear for the combinations of boundary
condition and materia] properties considered. While the positive shear
decreases with the skew angle, the negative shear increases in magnitude with
the increase in the skew angle as observed in the case of isotropic plates.

5. CONCLUSIONS

The vibration and buckling problems of orthotropic skew plates with
different combinations of edge conditions are formulated in a unified manner
using the variational method of Ritz. Numerical results are obtained for two
sets of edge conditions and three sets of orthotropic properties. Crossing of
frequency curves is seen to take place as in the case of isotropic plate.
The effect of orthotropy on the nodal patterns and their symmetries is studied.
The buckling coefficients are obtained under compression (N,) and shear (N)
for these configurations. For buckling under shear (oblique components),
wwo critical values exist, with the magnitude of positive shear being less as
in the case of isotropic plate.
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TasLE 4
Buckling Coefficients ;._Px and TKW for a Clamped Rhombic Plate
Material: Steel Plate Grooved on one side a———1;265; j: 285 60339
};o\;r?é;xf;(;;\xi{tlons Skew M N Matrix Buck“gg coefficients
and loadng Angle - ;,flzew B ) Ry and ﬁv
0° 6 6 I8 1.1 (B)
CCCC 15° 6 6 18 11.5 ()
N,alone
30° 6 [ 18 13.C (E)
45° 8 8 32 15.8 (E)
9° 6 6 18 +15.8 (E)
15° ) 4] I8 121 (B)
—23.3 (E)
ccee
N,, alone 30° 6 6 18 10.6 (E)
—40.6 (E)
45° g 8 32 10.4 (E)
—89.4 (E)
o° [ 6 18 7.72 (E)
CS8CS 15° 6 6 18 8.11 (E)
N, alone
3t.° 6 6 18 9.49 (E)
43° 8 3 32 12.4 (E)
0° 6 6 i8 +13.9 (E)
15° 6 6 i8 10.8 (E)
—~20.4 (E)
CS8CS
N,, alone 30° 6 6 18 9.45 (E)
—35.7 (B)
45° 8 8 32 9.39 (E)

—78.7 (E)
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Buckling coefficients R, and }xy for CCCC and CSCS Rhombic Plates

19

Material : Fibre glass-epoxy a==2,963. 7=0.25, §=0.450
soundary conditions Skew Matrix  Buckling coefficients
and Loading Apgle size %, and Exy
0° 18 18.5 (E)
ccee 15° 18 19.0 (E)
N, alone
30° 18 20.9 (E)
45° 32 25.0 (E)
0° 18 +24.5 (B)
15° 18 20.1 (E)
—-32.7(E)
CCCcC
N,, alone 30° 18 17.8 (E)
—-50.8 (E)
45° 32 17.1 (E)
. —-100 (BE)
0° 18 14.9 (E)
CSCs 15° 18 15.3 (E)
N,alone
30° 18 16 8 (E)
45° 32 20.4 (E)
0° 18
15° 18 18.7 (0)
—30.8 ()
CsCs
N,, alone 30° 18 16.6 (0)
—46.9 (E)
45° 32 159 (0)

—90.9 (E)
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TABLE 6

Bucklmg coefficients R.and l?, for CCCC and CSCS Rhombic Plates
v=0.28, 8-0.274

Material: Boron-epoxy «=11.48,

Buckiing coefﬁcl?:;;-

Buund;;; coniditions Skew M N Matrix i
and loading angle S,‘Z,:, N R, and RTw
0° 6 6 18 S18(E)
cecee 157 6 6 13 515 (E)
N, alone
30° 6 6 18 51 4 (F)
45° 8 8 32 54.4 (E)
0° 6 [ 18 +497 (0)
15° 6 6 18 44.2 (0)
—594 (0)
CCCC
N,, alone 30° 6 6 18 40.9 (0)
—79 0 (E)
45° 8 8 32 396 (0)
—123 (B)
0° 6 6 18 48.4 (E)
CCCC 15° 6 6 18 47.7 (E)
N_alone
30° 6 6 18 46.4 (E)
45° 8 8 32 47.0 (E)
0° 6 [ 18 +47.9 (0)
15° 6 6 18 42.8 (0)
—56.2 (0)
CCCce
N,, alone 30° 6 6 18 39.2 (0)
—73.4 (0)
45° 8 8 32 36.8 (0)

—117.1 {(E)
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