
J. Indian Inst. Sci., May–Aug. 2004, 84, 67–76 
© Indian Institute of Science. 

*Author for correspondence.  

 
 

Three-dimensional route planning for large grids 
 
 
 

NATHAN E. BRENER
1, S. SITHARAMA IYENGAR

1*, HUA C. LOONEY
1,  

NARAYANADAS VAKAMUDI
1, DECAI YU

1, QIANYU HUANG
1
 AND JACOB BARHEN

2 
1Robotics Research Laboratory, Department of Computer Science, Louisiana State University, Baton Rouge,  
LA 70803, USA. *Visiting Satish Dhawan Chaired Professor, Indian Institute of Science, Bangalore 560 012. 
2CESAR Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. 
*Email: iyengar@bit.csc.lsu.edu; Phones: +1-225-578-1252;  Fax: +1-225-578-1465. 
 

Received on July 23, 2003; Revised on August 16, 2004. 
 

Abstract 
 
We have developed a 3D route planner, called 3DPLAN, which employs the A* algorithm to find optimum paths. 
The A* algorithm has a major advantage compared to other search methods because it is guaranteed to give the 
optimum path. In spite of this significant advantage, no one has previously used A* in 3D searches as far as we 
are aware. The probable reason for this is the belief that the computational cost of using A* for 3D route planning 
would be prohibitive. In this paper we show that, on the contrary, it is quite feasible to use A* for 3D searches if 
one employs the new mobility and threat heuristics that we have developed. These new heuristics substantially 
speed up the A* algorithm so that the run times are quite reasonable for the large grids that are typical of 3D 
searches. 
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1. Introduction 

Route planning has been widely used for civilian and military purposes. Three-dimensional 
(3D) route planning is especially useful for the navigation of autonomous underwater 
vehicles (AUVs) and combat helicopters. 3D route planning is a very challenging problem 
because the large grids that are typically required can cause a prohibitive computational 
burden if one does not use an efficient search algorithm. Several search algorithms have 
been proposed to perform 3D route planning, including case-based reasoning and genetic 
algorithms. 

 Case-based reasoning [1, 2] relies on specific instances of past experience to solve new 
problems. A new path is obtained by searching previous routes to see if there is one that 
matches the current situation in the features, goals and constraints. The new path is 
generated by modifying an old path in the previous path database using a set of repair rules. 
However, since the number of possible threat distributions is very large for most battle 
areas, it would not be feasible to store old routes for all or most of the possible threat 
arrangements. Thus the case-based method is not suitable for including threats in route 
planning. In addition, when it has to synthesize complete new routes (in an area where no 
old paths are available) or modify old routes by synthesizing new segments, it doesn’t use a 
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guaranteed best-first search algorithm such as A*, but instead uses straight line segments 
that go around obstacles. Thus the routes that it generates are neither locally nor globally 
optimal. 

 The genetic algorithm (GA) method [3–6] is a stochastic search technique based on the 
principles of biological evolution, natural selection and genetic recombination. Genetic 
algorithms generate a population of solutions. Then such solutions mate and bear offspring 
solutions in the next generation. In this way, the solutions in the population improve over 
many generations until the best solution is obtained. However, genetic algorithms have 
been accepted slowly for research problems because crossing two feasible solutions does 
not, in many cases, result in a feasible solution as an offspring. The other disadvantage of 
GA is that although it can generate solutions to a route planning problem, it cannot 
guarantee that the solution is optimal (i.e. it can converge to a local, rather than a global, 
minimum). 

 The A* algorithm [7] is a guaranteed best-first search algorithm that has been used 
previously in 2D route planning by several researchers including some of the authors of this 
paper [8, 9]. A major advantage of the A* algorithm compared to the other methods 
mentioned above is that A* is guaranteed to give the optimum path. In spite of this 
significant advantage, no one has previously used the A* algorithm for 3D route planning 
as far as we are aware. The probable reason for this is the belief that the computational cost 
of using A* for 3D route planning would be prohibitive. In this paper we show that, on the 
contrary, it is quite feasible to use A* for 3D searches if one employs the new mobility and 
threat heuristics that we have developed. These new heuristics substantially speed up the 
A* algorithm so that the run times are quite reasonable for the large grids that are typical of 
3D searches. 
 
2. A* Algorithm and our implementation 

2.1. Mobility and threat maps 

Brener and Iyengar, in collaboration with John Benton, have previously developed a 2D A* 
route planner [8, 9], called the Predictive Intelligence Military Tactical Analysis System 
(PIMTAS), for military terrain vehicles such as tanks. Figure 1 shows an example of a 2D 
mobility map (top) and threat map (bottom) that were used as input to PIMTAS. The upper 
map in the figure is an actual mobility map of an area near Lauterbach, Germany, and the 
lower one is a prototype threat map which was generated in order to test the program. Both 
maps have 237 × 224 grid points. The mobility map has four types of GO regions 
represented by the colors green, light green, yellow-orange, and orange, which denote 
unlimited, limited, slow, and very slow areas, respectively. The mobility penalty for grid 
points in the unlimited, limited, slow, and very slow regions is 1, 2, 3, and 4, respectively. 
Thus the minimum mobility penalty at each grid point is 1. In general, the mobility map has 
three types of NO-GO regions represented by the colors red, blue, and white, which denote 
impassable obstacles, water, and urban areas, respectively. This last restriction follows 
military doctrine that urban areas are to be avoided. In the prototype threat map, each threat 
is modeled by a red inner circle where the vehicle is not allowed to go since it would almost 
certainly be destroyed if it came that close to the threat, and an orange outer circle where 
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the vehicle is within the range of the threat. The green regions are outside of the range of all 
of the threats. The threat penalty for each threat varies linearly from 1 to 0 as one goes 
radially outward from the boundary of the red circle to the boundary of the orange circle. If 
a grid point is within the orange circle of more than one threat, the threat penalty at that 
point is the sum of the threat penalties of all of the threats acting on that point. Grid points 
in the green regions have a threat penalty of 0. 

 In our new 3D route planner, which will be called 3DPLAN in this paper, the 2D 
mobility and threat maps described above have been extended to 3D in order to test the 
program. In 3DPLAN, the search region is represented by a digital map consisting of a 
Cartesian grid of points in which the step size in the x and y directions is the same but the 
step size in the z direction is in general different. Both the 3D mobility map and the 3D 
threat map have 237 × 224 × 150 grid points in the x, y, and z directions for a total of 
almost 8 million points. To our knowledge, this is the largest number of grid points that has 
ever been used in an A* search. In the 3D mobility map, each grid point in the GO regions 
has a mobility penalty of 1, 2, 3, or 4 depending on the mobility conditions. Grid points that 
are located in impassible areas are labeled as avoided points where the vehicle is not 
allowed to go. This test mobility map will be replaced with a more realistic map for 
underwater vehicles once we obtain actual oceanographic data. In our prototype 3D threat 
map, each threat is modeled by an inner sphere where the vehicle is not allowed to go and 
an outer sphere where the vehicle is within the range of the threat. For each threat, the 

  
FIG. 1. 2D mobility map (top) and threat map (bottom) 
used as input to PIMTAS. 
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threat penalty varies linearly from 1 to 0 as one goes radially outward from the surface of 
the inner sphere to the surface of the outer sphere. As in the 2D case, if a grid point is 
within the range of more than one threat, its threat penalty is the sum of the penalties of all 
of the threats acting on that point. Grid points that are outside the range of all of the threats 
have a threat penalty of 0. 

 Given these maps, a starting point, and a target to be reached, the military planner enters 
a weight for each of the two path cost factors being considered: (i) mobility and (ii) threats. 
3DPLAN will then quickly generate the lowest cost path from the starting point to the 
target, where the cost of the path is determined by multiplying the weight for each factor by 
the accumulated penalty for that factor. By entering a particular set of weights, the military 
planner can put any desired degree of emphasis on each of the cost factors. For example, a 
large weight for mobility and a small weight for threats would produce a fast path that may 
go close to enemy threats, while a large weight for threats and a small weight for mobility 
would produce a path that stays as far away from threats as possible and consequently may 
require a considerably longer travel time. 
 
2.2. A* Algorithm 

3DPLAN employs the A* algorithm, in which the total cost, f, of the path that goes through 
a particular grid point on the digital map (this grid point will be referred to as the current 
point) is given by 

 f =  g + h (1) 

where g is the actual cost that was accumulated in going from the starting point to the 
current point and h is an underestimate of the remaining cost required to go from the 
current point to the target. The heuristic h is the key quantity that determines how 
efficiently the algorithm works. h must not only be a guaranteed underestimate of the 
remaining cost, which ensures that no potential optimum paths will be discarded due to 
overestimating their total cost, but must also provide as close an estimate as possible of the 
remaining cost. The closer h is to the actual remaining cost, the faster the algorithm will 
find the optimum path. Thus the success of the algorithm depends on the choice of the 
heuristic h. With a proper choice of h, the algorithm can be highly efficient and can find the 
optimum path in a matter of seconds. 

 The actual accumulated cost, g, is given by 

 g = αmM + αtT (2) 

where M is the accumulated mobility penalty, T is the accumulated threat penalty, αm is the 
mobility weight, and αt is the threat weight. The weights αm and αt are entered by the 
military planner, as discussed above. 

 The accumulated mobility and threat penalties are given by 

 M = ΣRi(Mi–1 + Mi)/2 (3) 

 T =  ΣRi(Ti–1 + Ti)/2 (4) 
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where the sum is over the grid points traversed in going from the starting point to the 
current point, Mi is the mobility penalty at grid point i, Ti is the threat penalty at grid point 
i, and Ri is the stepsize to go from grid point i–1 to grid point i. 

 The heuristic, which is an underestimate of the remaining cost required to go from the 
current point to the target, is given by: 

 h = αmhm + αtht (5) 

where hm, the mobility heuristic, is an underestimate of the remaining mobility penalty and 
ht, the threat heuristic, is an underestimate of the remaining threat penalty. We now describe 
the mobility heuristic and threat heuristic in detail. 

2.3. Mobility heuristic 

Our mobility heuristic is different and better than the straight line heuristic used in previous 
A* approaches, since it is larger than the straight line heuristic and still is an underestimate 
of the remaining cost. We will first describe our mobility heuristic in 2D and then extend it 
to 3D. 

 Figure 2 shows a 2D mobility map that consists of a square grid of points. The step size 
in the x and y directions will be denoted by r1 and the diagonal step size will be denoted by 
r2, where r2 = sqrt(2)*r1. In this figure, each grid point has a mobility penalty of either 1, 
2, 3, or 4 (i.e. 1 is the minimum mobility penalty at each grid point), and P1, P2 and P3 are 
the start point, current point, and target point, respectively. 

 Let nx and ny be the number of steps in the x and y directions, respectively, between the 
current point and the target. Then the mobility heuristic hm is given by: 

 hm =  nyr2 + (nx – ny)r1  for nx > ny (6) 

                                  nxr2 + (ny – nx)r1   for ny ≥ nx 

In the example given in Fig. 2, the mobility heuristic to go from the current point P2 to the 
target P3 is hm = 4*r2 + 2*r1. This is larger than the straight line distance from P2 to P3, 
which is what other authors have used as the heuristic, and is still a guaranteed 
underestimate of the remaining mobility penalty to go from P2 to P3. Thus our mobility 
heuristic will cause the A* algorithm to run faster than it would with a straight line 
heuristic. 

 It is straightforward to extend this mobility heuristic to 3D. Figure 3 shows a cell in the 
3D map in which the step size in the x and y directions is the same but the step size in the z 
direction is in general different. The figure shows the five possible step sizes, labeled r1,  
r2, r3, r4 and r5, that the vehicle can take to go from a grid point to one of its neighbors, 
where 

 r1 = step size in x and y directions 
 r2 = sqrt(2)*r1 
 r3 = step size in z direction 
 r4 = sqrt(r1^2 + r3^2) 
 r5 = sqrt(r2^2 + r3^2) 
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FIG. 2. Mobility heuristic from P2 to P3 (solid line).  FIG. 3. Step sizes in the 3D map. 

 
Let nx, ny and nz be the number of steps in the x, y and z directions, respectively, between 
the current point and the target. The 3D mobility heuristic hm is then given by 

 hm = nx*r5 + (ny – nx)*r4 + (nz – ny)*r3 for nx ≤ ny ≤ nz  (7)  

 nx*r5 + (nz – nx)*r4 + (ny – nz)*r1 for nx ≤ nz ≤ ny 

 ny*r5 + (nx – ny)*r4 + (nz – nx)*r3 for ny ≤ nx ≤ nz  

 ny*r5 + (nz – ny)*r4 + (nx – nz)*r1 for ny ≤ nz ≤ nx 

 nz*r5 + (nx – nz)*r2 + (ny – nx)*r1 for nz ≤ nx ≤ ny 

 nz*r5 + (ny – nz)*r2 + (nx – ny)*r1 for nz ≤ ny ≤ nx 

2.4. Threat heuristic 

As far as we know, a threat heuristic has never been used in the A* algorithm. The probable 
reason for this is that the minimum threat penalty is 0 rather than 1 (the minimum mobility 
penalty is 1 in our test map). Thus if one tried to use the same technique for the threat 
heuristic as was used for the mobility heuristic, the threat heuristic would be 0. In this 
paper, we present a threat heuristic that is different from the mobility heuristic and is, in 
general, nonzero. Thus our new threat heuristic will speed up the A* algorithm compared to 
not having a threat heuristic at all. 

 We will first describe our threat heuristic in 2D and then extend it to 3D. Figure 4 shows 
the same square grid of points that was shown in Fig. 2, where P1, P2 and P3 are the start, 
current and target points, respectively. The threat heuristic ht will be an underestimate of 
the remaining threat penalty to go from the current point to the target point. In order to 
construct this threat heuristic, we draw concentric squares around the target; these squares 
are labeled 1, 2, 3…, as shown in the figure, and the target point is square 0. In order to go 
from the current point to the target, the vehicle must visit each square at least once (i.e. it 
must visit at least one point in each square). In order to ensure that the threat heuristic is a 

P1 

P2 

P3 
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guaranteed underestimate, we will use the minimum threat penalty in the square as the 
threat penalty of the point that the vehicle visits. The threat heuristic is then given by 

 ht = r1(Tc + Tn,min)/2 + Σr1(Ti,min + Ti–1, min)/2 (8) 

where Tc is the threat penalty of the current point, Ti,min is the minimum threat penalty in 
square i, n is the number of squares between the current point and the target, the sum is 
over all squares between the current point and the target, and we have multiplied by the 
smaller of the two step sizes that the vehicle can take, r1, in order to ensure that the threat 
heuristic is an underestimate. 

 It is straightforward to extend this 2D threat heuristic to 3D. In 3D, we will use 
concentric rectangular boxes around the target. The vehicle will then have to visit each box 
at least once to go from the current point to the target. For the large boxes, the minimum 
threat penalty in the box may often be 0, depending on the distribution of threats. However, 
for small boxes (the ones close to the target), the minimum threat penalty in the box is less 
likely to be 0, especially if there is a dense distribution of threats around the target. In these 
cases, the threat heuristic will significantly speed up the A* algorithm. 
 
2.5. Dynamic threats 

3DPLAN can also handle dynamic (changing) threats. If new threats appear or known 
threats disappear or move while the vehicle is traveling along its path, the military planner 
can quickly update the threat map. 3DPLAN will then rapidly generate a new optimum path 
from the current position to the target. 
 

3. Test calculations and comparison of heuristics 

In this section we give the results of some optimum path calculations using our new 3D A* 
route planner, 3DPLAN. In these sample calculations we used two different mobility maps, 
labeled M1 and M2, and two different threat maps, labeled T1 and T2. In the mobility map 
M1, all of the grid points in the GO areas have a mobility penalty of 1 (i.e. the mobility is 
uniform except for the obstacles), while in mobility map M2, the points in the GO areas 
have a mobility penalty of either 1, 2, 3, or 4. The threat maps T1 and T2 contain 24 threats 
and 26 threats, respectively. All four of these maps have 237 × 224 × 150 grid points for a 
total of almost 8 million points, which is the largest number of grid points that has ever 
been used in an A* search as far as we are aware. We used four different combinations of 
these maps: M1T1, M1T2, M2T1, and M2T2. For each of these combinations of a mobility 
map and a threat map, we calculated three different paths by choosing three different pairs 
of start/target points (Table I). Thus, altogether we calculated 12 different optimum paths in 
 
Table I 
Paths for test calculations 

Path Start point Target 
 

1 (6, 22, 0) (236, 218, 149) 
2 (6, 22, 0) (136, 218, 89) 
3 (100, 0, 50) (236, 218, 149) 
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FIG. 4. Concentric squares in a 2D threat map.  FIG. 5. Path 1 for the map combination T1M2. 

 

a search space of approximately 8 million grid points in order to test our new program. In 
all of the path calculations, the mobility weight αm and the threat weight αt were both set 
equal to 1. For each of the 12 optimum paths, we did four different calculations using the 
following four combinations of the mobility heuristic and threat heuristic: 

 (1) Our new mobility heuristic, our new threat heuristic 
 (2) Our new mobility heuristic, no threat heuristic 
 (3) Straight line mobility heuristic, our new threat heuristic 
 (4) Straight line mobility heuristic, no threat heuristic 

Combinations 1, 2 and 3 enable us to compare our new mobility and threat heuristics with 
the heuristic that other authors have used in A* searches (combination 4). 

 These optimum path calculations were done on a Dell PC with a 4.3 GHZ Pentium IV 
processor. One of these optimum paths, Path 1 for the map combination T1M2, is shown in 
Fig. 5. The spheres in this figure are the inner spheres surrounding the threats, the 
rectangular solids are the obstacles in the mobility map, and the optimum path goes from 
the lower left to the upper right. 

 Table II gives the CPU time in seconds for the optimum path calculations described 
above. It shows that when our new mobility and threat heuristics are used, all of the path 
calculations require less than a minute of CPU time. It also shows that for the 12 test paths 
considered, our new heuristics cause the route planner to run up to 4.3 times faster, 
compared to a straight line mobility heuristic and no threat heuristic, which is what other 
researchers have used in A* searches. In addition, it shows that our new mobility heuristic 
alone causes the planner to run up to 3.2 times faster and our new threat heuristic alone 
causes the planner to run up to 1.2 times faster, compared to a straight line mobility 
heuristic and no threat heuristic, respectively. These results demonstrate that our new 
mobility and threat heuristics significantly speed up the A* algorithm. 

P1 

P2 

P3 

3 

4 

5 

2 

1 
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Table II 

CPU time in seconds for optimum path calculations 

Map T1M1 Map T1M2 Map T2M1 Map T2M2  

Path 
1 

Path 
2 

Path 
3 

Path 
1 

Path 
2 

Path 
3 

Path 
1 

Path 
2 

Path 
3 

Path 
1 

Path 
2 

Path 
3 

Our    
mobility 
heuristic, 
our threat 
heuristic 

18.6 7.8 9.8 54.7 9.8 17.3 6.8 26.1 13.4 49.6 33.2 33.6 

Our    
mobility 
heuristic, 
no threat 
heuristic 

23.6 11.0 12.9 59.5 11.9 20.8 9.1 30.8 16.0 52.3 36.8 36.3 

Straight 
line    
mobility 
heuristic, 
our threat 
heuristic 

44.9 19.6 22.7 71.2 19.2 30.8 24.9 35.8 29.6 66.4 41.0 48.8 

Straight 
line    
mobility 
heuristic, 
no threat 
heuristic  

51.3 22.6 26.4 75.4 21.9 35.1 28.9 41.0 33.1 69.7 45.8 51.8 

 

4. Conclusion 

We have developed a 3D A* route planner, called 3DPLAN, which runs efficiently for the 
large grids that are typical of 3D maps. The A* algorithm has a major advantage compared 
to other search methods because it is guaranteed to give the optimum path. To our 
knowledge, this is the first time that A* has been used in 3D searches. The probable reason 
for this is that most researchers think that the computational cost of using A* for 3D route 
planning would be prohibitive. We have shown that, on the contrary, it is quite feasible to 
use A* for 3D searches as a result of the new mobility and threat heuristics that we have 
developed. These new heuristics substantially speed up the A* algorithm and make it a 
useful and efficient method for 3D route planning. 

 In the future we plan to test 3DPLAN with real oceanographic and battlefield data and 
adapt it to autonomous underwater vehicles and combat helicopters. 
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