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Abstract 
 
The present work extends the method of Srinivasan and Chidambaram (An improved auto tune identification 
method, Proc. Int. Conf. on Digital Modeling & Simulation (DAMS-2003), Jan 6–8, Coimbatore, India (2003)) to 
analyze conventional on–off relay oscillations for a single loop feedback controller to relay tuning of cascade 
controllers. Using the ultimate gain and ultimate crossover frequency of the two loops, the inner loop (PI) and 
outer loop (PID) controllers are designed by Ziegler–Nichols tuning method. The performance of the controllers 
is compared with the results based on conventional relay analysis. The improved method of analyzing biased auto 
tune method proposed for single feedback controller by Srinivasan and Chidambaram (Modified relay feedback 
metho for improved system identification, Comp. Chem. Engng, 27, 727–732 (2003)) is also extended to relay 
auto tune of cascade controllers. The proposed methods give an improved performance over that of the conventio-
nal on–off relay tune method. 
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1. Introduction 

Åström and Hägglund [1] have suggested the use of an ideal (on–off) relay to generate sus-
tained closed-loop oscillations. The ultimate gain and ultimate frequency can be found [us-
ing ku = 4 h/(πa0), where h is the relay height and a0, the amplitude of the closed loop 
oscillation]. PID controllers can be designed by using the Ziegler–Nichols method. Luyben 
[2] has employed the relay feedback method to identify an FOPTD transfer function model. 
Once, ku and ωu are known, then the amplitude criterion and phase angle condition can be 
written down. To get the three parameters of an FOPTD model, the knowledge on the proc-
ess gain or delay should be known. Luyben has noted the delay from the initial portion of 
the relay oscillation. In deriving the relation ku = 4 h/(πa0), an assumption made in the con-
ventional relay analysis is that all higher-order harmonics (of the relay output) are filtered 
by the system. Li et al. [3] have pointed out that an error of –18% to +27% is obtained in 
the calculation of ku by this method. Yu [4] has given an excellent review of relay feedback 
method. Srinivasan and Chidambaram [5] have improved the conventional relay auto tune 
method by proposing a method to calculate the value of ku by using appropriate value of 
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number of harmonics coming out of the system output. This method gives an accurate value 
of ku.  

 Shen et al. [6] have used a biased relay for getting the model parameters of an FOPTD 
model. In this method, the process gain is calculated from  
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Since the value of ku is calculated from ku = 4 h/(πa0), the method does not give good re-
sults. Recently, Srinivasan and Chidambaram [7] have proposed an improved analysis of 
the biased relay auto tune method in which the gain of the process can be easily calculated 
compared to symmetric relay method.  

 Cascade control scheme utilizes two control loops: secondary or inner loop embedded 
within a primary or outer loop. The disturbances entering the inner loop are reduced or 
eliminated before their effect is felt on the outer loop output variable (y1). As two control 
loops present, two controllers need to be tuned. Hang et al. [8] have proposed a relay auto 
tuning of cascade control loops. They have used the conventional on–off relay testing and 
using the value of ku from 4 h/(πa) and Ziegler–Nichols tuning formulae the controllers are 
tuned. With the inner loop under PI control action, the relay test is repeated for the outer 
loop (Fig. 1). In the present work, the methods of Srinivasan and Chidambaram [5, 7] are 
applied to tune cascade controllers. The improved performance of the proposed controller is 
compared with that of the method Hang et al. [8]. Luyben and Luyben [9] have recom-
mended the use of PI controller for inner loop and PID controller for the outer loop.  
 
2. Proposed method-1 

The cascade control scheme is considered here. First, the conventional on–off relay is con-
sidered. The relay is used in the inner loop and the outer loop is kept under manual mode. 
The relay oscillations are noted. For simulation study, the process models assumed are 
(kpGp)2 = exp(–0.1 s)/(0.025 s + 1) and (kpGp)1 = exp(–0.1 s)/(0.025 s + 1). For single-loop 
systems, Li et al. [3] have reported that only for large (τd/τ) ratio, the conventional relay  
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FIG. 1. Relay feedback tuning of cascade control system. 
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FIG. 2. Response in y2 using symmetric relay (with relay 
height ±1) in inner loop. 
 

analysis gives a significant error in calculating the value of ku. Using a symmetric relay 
height of ±1, the oscillation in the inner loop output variable y2 is noted (Fig. 2). The ampli-
tude and frequency of oscillations are noted as 0.9814 and 27.0128, respectively. Using the 
relation ku = 4 h/(πa0), the value of ku is obtained as 1.2974. Based on the transfer function 
model, the exact value of ku is calculated as 1.18. Thus significant error is obtained in ku by 
the conventional relay analysis. Using the results of relay testing, the PI settings are calcu-
lated by using the Ziegler–Nichols tuning method as kc = 0.5838 and τI = 0.1938. 

 Using this PI settings in the inner loop instead of the relay and introducing a relay in the 
outer loop, the resulting oscillation in the outer loop gives an amplitude of 0.695 and fre-
quency of 13.3685 (Fig. 3). Hence the value of ku = 1.832 is obtained. Based on the relay 
test results, the outer loop PID controller is designed as kc = 1.0992, τI = 0.235 and 
τD = 0.0587. The closed loop servo response is evaluated for a unit step change in the set  
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FIG. 4. Servo response in y1 using PID controller for 
outer loop and PI for inner loop for the first example. 
Outer oscillatory response – Hang et al. method; Inner 
solid–proposed method-1; Inner dash–proposed 
method-2. 

FIG. 3. Response in y1 for symmetric relay in outer 
loop (with inner loop on PI settings). 

FIG. 5. Regulatory response in y1 for a disturbance in 
inner loop. PID controller for outer loop and PI for in-
ner loop, for the first example. Inner solid–proposed 
method-1; Inner dash–proposed method-2. 
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Table I 
Controller setting comparisons for (ττd/ττ)inner–loop = 4.0, (ττd/ττ)outer–loop = 4.0 

Loop Controller Symmetric relay Asymmetric Asymmetric relay with  
 settings N = 1 N = 5 N = 5 (with noise, relay noise (σ = 0.5%) 
    σ = 0.5%) 
 

Inner kc 0.5838 0.5307 0.5282 0.5306 0.5309 
 τI 0.1938 0.1938 0.1950 0.1917 0.2 

Outer kc 1.0992 0.9382 0.9549 0.9780 1.07 
 τI 0.2350 0.2350 0.2360 0.24 0.2324 
 τD 0.0587 0.0587 0.059 0.06 0.0581 

 

point and the response is shown in Fig. 4. A highly oscillatory response is obtained. Similar 
response is obtained for a regulatory problem also [with (kLGL)2 = 1] as shown in Fig. 5. 

 The method of Srinivasan and Chidambaram [5] is applied now. As stated earlier, in de-
riving the relation ku = 4 h/(πa0), Aström and Hägglund [1] made an assumption that all 
higher-order harmonics (of the relay output) are filtered by the system. Srinivasan and 
Chidambaram [5] have given a method to find out the value of ku by considering the higher-
order harmonics (refer to appendix A for the summary of the method). The initial portion of 
the relay output gives an indication of how many higher-order harmonics are present in the 
relay output. Five higher-order harmonics (N = 5) are recommended. Let us use their 
method for analyzing the cascade auto tuning. For the system under study, the value of ku 
for the inner loop is obtained as 1.1794 and the frequency of oscillations as 27.0128. Once 
PI controller is designed based on this value and ωu, the inner loop is kept under PI mode 
and then the relay is kept in the outer loop. From the relay oscillation, the value of 
ku = 1.832 is obtained by the conventional method. The method of Srinivasan and 
Chidambaram [5] gives ku as 1.5637. A PID controller is designed based on this value (Ta-
ble I). The servo response is evaluated for a step change in the set point. The response in y1 
is shown in Fig. 4. The response by the conventional analysis using single harmonics gives 
a highly oscillatory response, whereas the method of Srinivasan and Chidambaram [5] gives 
an excellent response. Similar performance is obtained for a regulatory problem 
[(kLGL)2 = 1] as shown in Fig. 5. The ISE values are given in Table II. 

 The effect of measurement noise is studied by adding a random noise (Gaussian distribu-
tion with zero mean and standard deviation of 0.5%) in inner loop and corrupted signal is 
used for the feedback. The present method gives ku = 1.1737, and the frequency of oscilla- 
 

Table II 
Performance comparison of proposed methods  
and Hang et al. [8] method for (ττd/ττ)inner–loop = 4.0, 
(ττd/ττ)outer–loop = 4.0 

Comparison Symmetric relay Asymmetric  
parameters  N = 1 N = 5 relay 
 

ISE 0.7989 0.2765 0.2808 
Overshoot 0.5135 0.2022 0.2494 
Settling time 55 7 7 

Table III 
Effect of change in relay height (asymmetric relay 
testing) on PI settings  

Asymmetric relay PI controller  
 

H γ Ku Kc τI 
 

0.5 4.0 1.1859 0.5336 0.2050 
1.0 2.0 1.1972 0.5387 0.1975 
1.0 2.5 1.1902 0.5356 0.2000 
1.0 3.0 1.1837 0.5327 0.2008 
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tions (ω) is 26.8512. A PI controller is designed by the Ziegler–Nichols method. The inner 
loop is kept under PI controller and the symmetric relay is used in the outer loop. Based on 
the oscillation obtained in y1, the value of ku is obtained for the outer loop as 1.5915. A PID 
controller is designed for the outer loop based on the value of ku. The results for symmetric 
relay with the noise are given in Table I and are very close to those obtained by without 
noise. 
 
3. Proposed method-2 

In this section, the biased relay auto tune method is applied with a relay height of +2 and  
–1. The method proposed by Srinivasan and Chidambaram [7] [refer to Appendix B for a 
summary of this method] is extended to series cascade systems. The value of ku for the in-
ner loop based on the assumed FOPTD model (kP = 0.8722, τ = 0.0088, τd = 0.1073), ob-
tained by the relay method is 1.1792. A PI controller is designed by the Ziegler–Nichols 
method. The inner loop is kept under a PI controller and the asymmetric relay is then used 
in the outer loop. Based on the oscillation obtained in y1 and hence based on the identified 
FOPTD model (kP = 1.0684, τ = 0.11, τd = 0.162), the value of ku is obtained for the outer 
loop as 1.63. PID controller is designed for the outer loop based on the value of ku obtained. 
The results of the relay test are given in Table I. The servo response in y1 for a unit step 
change in the set point is shown in Fig. 4. The performance is as good as the performance 
of the proposed symmetric relay method. 

 The effect of measurement noise is studied by adding a random noise (Gaussian distribu-
tion with zero mean and standard deviation of 0.5%) in inner loop and corrupted signal is 
used for feedback. The results for the asymmetric relay with the noise are given in Table I. 
The results are close to results obtained by without any noise. 

 In the modified symmetrical relay method proposed by Srinivasan and Chidambaram [5], 
the value of order (N) of higher-order harmonics is to be selected, whereas in the asymmet-
ric method of Srinivasan and Chidambaram [7], no such value of N is required. In the 
asymmetric method, the model is to be identified and then the controller settings are calcu-
lated, whereas in the symmetrical method, the controller settings are calculated based on the 
ultimate values obtained from relay test. Figure 5 shows the regulatory response for a step 
change in the inner loop disturbance. The proposed two methods give an improved per-
formance than that by the conventional relay analysis (Table II). 

 In the literature for single-loop asymmetric relay tuning method, the value of γ = 2 is 
used. Therefore, the relay height of +2 and –1 is used in the present study also. However, 
simulations studies are carried out with different relay heights of γ = 2, 2.5, 3 and 4 (Table 
III). We have observed that the resulting PI controller settings have not changed signifi-
cantly. 
 
4. Second example 

A second example is also considered. The model assumed for the inner loop is (kpGp)2 = 
exp(–0.1 s)/(0.01 s + 1) and for the outer loop is (kpGp)1 = exp(–0.1 s)/(0.1 s + 1). This ex-
ample considers a lower value of (τd/τ) in the outer loop. Using a symmetric relay with a 
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height of ±1, the oscillation in the inner loop output variable y2, is recorded. The amplitude 
and frequency of oscillations are noted. By the conventional method of analyzing the relay 
testing, the PI settings are calculated by Ziegler–Nichols tuning method. Using this PI set-
ting for the inner loop, and symmetric relay in the outer loop, the oscillation in the outer 
loop are noted with an amplitude of 0.44 and frequency of oscillation (ωu) 11.6788. Hence 
by the conventional method of relay analysis, ku is calculated as 2.8937. Based on ku and 
ωu, the outer loop PID controller is designed and the values of controller settings are given 
in Table IV. 

 The proposed methods-1 and 2 are also applied. For method-2, the value of γ = 2 is used 
(Table IV). The closed-loop servo response is evaluated for a unit step change in the set 
point. The response in y1 is shown in Fig. 6. Since the error is small, integral of the absolute 
value of the error is calculated for performance comparisons and the results are shown in 
Table IV. The proposed methods-1 and 2 show good performance. 
 
5. Conclusions 

The modified analysis of relay auto tuning proposed for single feedback system by Sriniva-
san and Chidambaram [5] and modified analysis of asymmetric auto tuning by Srinivasan 
and Chidambaram [7] are extended to tune cascade controllers. Both the methods take care 
of higher-order harmonics effectively. The performances of the PI-PID controllers are com-
pared with the conventional relay analysis (principle harmonic analysis). The present meth-
ods give a superior performance over that of the conventional analysis. 
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Appendix A: Srinivasan and Chidambaram method [5] 

Srinivasan and Chidambaram [5] have recently reported the derivations for analyzing sym-
metric relay tuning. Here, final equations are given to present application to cascade control 
systems. With a symmetric relay, the output oscillations are recorded. Let us consider the 
time (t*) at which 

  t* = 0.5π/ωu, (A.1) 

where ωu is the frequency of observed output oscillations. From the output oscillations, it is 
possible to calculate y(t*) at time t*. If observed output oscillations are close to the rectan-
gular waveform then amplitude (a) is calculated  [5] as 

  y(t*) = a[1–(1/3) + (1/5)–(1/7) + (1/9)–.......]. (A.2) 

Let the number of terms to be considered in the above equation be denoted as N. If the os-
cillation deviates from pure sine wave and depending on the extent of deviation, N = 3 or 5 
or 7 can be considered. Using the limiting value for the summation term (0.25π), we get 
from eqn (A.2): 

  a = 1.273y(t*). (A.3) 

Similarly, if the observed output oscillations are close to the triangular waveform then the 
amplitude is calculated [5] as 

  y(t*) = a[1 + (1/9) + (1/25) + (1/49) + (1/81) +.......]. (A.4) 

Using the limiting value for the summation term (0.125π2), we get from eqn (A.4): 

  a = 0.810y(t*). (A.5) 

After getting the above-corrected amplitude, the value of ku is given by 

  ku = 4 h/(aπ). (A.6) 
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Appendix B: Method of Srinivasan and Chidambaram [7] for asymmetric oscillation  

Srinivasan and Chidambaram [7] have recently reported the derivations for analyzing 
asymmetric relay tuning. Here final equations are given for application to a cascade control 
system. 

 Let us denote G(s) as the FOPTD model to be identified. With asymmetric relay, the re-
sponses in output (y) and input (u) are recorded. The process gain kp is calculated as 

  
2 2

0 0

( ) ( ) / ( ) ( ).pk e t d t u t d t
π π

ω ω= ∫ ∫  (B.1) 

G(jω) can be written by substituting s = jω in the above equation 

  G(jω) = a + jb = (c1 – j f1)/(c2 – j f2), (B.2) 

where a is real part and b is imaginary, and 

  1 1

0 0

( ) cos( ) ; ( )sin( ) ,
p p

c u t t dt f u t t dtω ω= =∫ ∫  (B.3a) 

 2 2

0 0

( ) cos( ) ; ( ) sin( ) ,
p p

c y t t dt f y t t dtω ω= =∫ ∫  (B.3b) 

where P = 2π/ω and ω is the frequency of oscillation observed in the output response. 
(Equations (B.3a) and (B.3b) can be evaluated numerically) 

  a = (c1c2 + f1 f2)/(c2
2 + f2

2),  (B.4a) 

  b = ( f2c1 – f1c2)/(c2
2 + f2

2). (B.4b) 

We can write G(jω) as  

  a + jb = kp[cos(τdω)–j sin(τω)]/(1 + jτω). (B.5) 

On cross multiplying and equating the resulting real and imaginary part to zero we get 

  a – bτω – kp cos(τdω) = 0  (B.6) 

  aτω + b + kp sin(τdω) = 0 (B.7) 

substituting ωu for ω, an analytical solution of eqns (B.6), (B.7) gives the values for τ and 
τd. 
 
Nomenclature 

a amplitude of oscillation corresponds to the principle harmonics calculated from 
eqn (A.2) 

a0 amplitude of oscillation observed from the process output 
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c1, f1 as defined by eqn (B.3a) 

c2, f2 as defined by eqn (B.3b) 

d1 disturbance entering outer loop 

d2 disturbance entering inner loop 

G process transfer function 

h relay height  

kc controller gain 

kc,max, ku controller ultimate gain 

kp process gain 

(kpGp)1 transfer function of the outer loop process 

(kpGp)2 transfer function of the inner loop process 

(kLGL)1  transfer function for load disturbance in the outer loop 

(kLGL)2  transfer function for load disturbance in the inner loop  

N number of terms considered in eqns (A.2) or (A.4) 

Pu period of output oscillation 

s Laplace variable 

s1 = 8/ts 

ts time taken to reach three invariant cycles of oscillations in the output 

t time 

t* = 0.5π/ωu  

u  input variable 

y1 outer loop output variable  

y2  inner loop output variable   

τ process time constant 

τd process time delay 

τI integral time 

τD derivative time 

ω frequency of oscillation 

ωu ultimate frequency of oscillation 

Subscript 
0 outer loop 

1 inner loop 

Symbols 

 Manual switch 
 
 Comparator 


