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ABSTRACT

The investigations are concerned with a systematic study of the electromagnetic
surface wave characteristics of a cylindrical metallic conductor corrugated uniformly
and excited in BEy—mode  The imvestigations include

(i) Determnation of the parameters of the structire for which it can
support a surface wave.
(1) Study of the different properties of the surface wave such as
(a) Guide wave length
(b) Power flow
(¢) Dispersion charucteristics
(d) artenuation
and their variation with structure parameters.
(i) Study of the effect of higher order spuce harmonics on the propaga-
tion characteristics of the structure.

1. INTRODUCTION

Since the work of Sommerfield!?, Zenneck®, Harms?, Hondros®, Debye®
and Weyl?, considerable amount of work has been done on surface waves
by Wait, Barlow, Brown, Cullen, Karbowiak, Schelkunoff, Chatterjee and
others®~3 and 46 A thorough discussion on surface waves is given in an
illuminating manner by Wait!® un his paper * Electromagnetic surface waves ”.
In the classification of different types of surface waves made by Wait, the
common feature is that surface waves can be supported conly by an interface

*The project is supported by PL-488, contract No. E-262-6% (N) August 1969.
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between two different media. Barlow and Cullen’s'® definition of surface
waves also emphasises that an interface between two different media or in
other words, a physically recognisable surface is essential for supporting 4
surface wave.

Surface wave guides are essentially open wave guides in contrast to the
conventional type of metallic guides with closed boundaries. The concept
of modes excited in a conventional wave guide is well established. The
question arises as to whether the same modal concept can be usefully
employed in the case of surface wave guides, what type of modes can be
supported by a surface wave guide in the absence of sources, their properties
and what is their utility The answers to these questions are discussed by
Marcuvitz, Schelkunoff, Goubau and others!”. The difference between a
closed conventional wave guide and a surface wave guide has been very clearly
explained by Collin®

Since, in practice, launchers for the surface waves are resiricted toa
finite area, the surface wave problem is always associated with radation.
A complete solution to the surface wave problem requires the determination
of source-excited fields. Tt has been shown by Zucker!® that the total field
on a surface wave guide can be synthesised by a superposition of all the
modes excited by the soarce. The resulting field is then given by a contour
integral, the integrand of which has poles and branch points in the plane of
the complex propagation constant. The surface wave modes are associated
with the residues at the poles. The branch poiuts occur at the wave numbers
in the two media on either side of the interface. By an appropriate deforma-
tion of the contour, the total integral can be split up into sum of residues at
the poles plus one or two branch-cut integrals. The branch-cut ntegrals can
be evaluated by means of the steepest descent method. The radiation field is
associated with the evaluation of the branch-cut integral and represents the
radiation field of the source modified by the presence of the structure.

The surface wave and the radiated field are merely different aspects of
the same dynamic electromagnetic phenomenon. The sub-division is made
for the sake of convenience of description. However, the separaticn of the
surface wave field from the radiation field can only be visualised mathe-
matically if the latter is properly defined. Goubau®! has derived the following
orthogonality relation between the surface wave and radiated fields using the
reciprocity theorems

! (Eg % ;IR)~;;(IS= f (E’Rxl}s) - nds =0 n
5

where, the integration is carrled over the equ1 phase surface of the surface
wave. The components ER, HR and ES, Hs correspond to the radiated
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and surface wave fields respectively. The above relation defines uniquely a
radiation field which is not contaminated by the surface wave component.

For any electromagnetic structure to act as an efficient surface wave
guide, 1t is necessary that the power contammed in the radiation field be as
small as possible. This requires that the effiziency of the launcher shouid
be as high as possible. Collin®* has given a complete and comprehensive
weatment of surface wave excitation problems in his book * Field Theory of
Guided waves”. Wait® has made very significant contributions to the
problem of source-exctied ficlds. Difierent types of surface wave launchers
have been studied by Culien®®, Brown and Stachera®® and others®™~*  Three
types of radiation fields (though these may not always exist independentiy of
each other) may appear in any surface wave problem. These fields may
be caused by (1) the radiation from the source in the presence of the guiding
structure (when the efficiency of the launcher is poor), (i1) the radiation from
the structure {when its length is firite), (iii) the presence of leaky waves on
the structure (when the leaky wave poles exist). When the radiation field
arises due to causes (ii) and (iii), the structure is referred to as a °surface
wave antenna® and a ‘leaky wave antenna’ respectively.

In the present investigation, the suiface wave guide is composed of a
cylindrical metallic corrugated rod which is a modified form of Harms-Goubau
dielectric coated surface wave line. The dielectric coating is replaced by an
artificial delay dielectric by loading a cylindrical metallic conductor uniformly
with thin metallic discs. The main differences between this line and the
Harms-Gaubau line are :

(i) The corrugated line is a periodic structure and hencc the total
field on the line has to be represented in terms of an infinite number of space
harmonics, whereas the field on the Harms-Goubao surface wave line is
represented in terms of a single mode and so the question of space harmonics
does not arise.

(i1} In the case of corrugated line, the phase velocity and hence
the field spread in the radial direction can be controlled by varying the two
parameters of the structure, viz., the disc-radius and disc-spacing. 1In the
case of the Harms-Goubau line, the phase velocity 1s controlied by the thick-
ness and dielectric constant of the dielectric coating.

The characteristics of corrugated and other periodic structures have
been studied previously by several authors. A brief survey is given below.

Walkinshaw®® has studied amalytically the properties of a circular
cylindrical wave guide having internal corrugation, with referrence to the
dependence of phase velocity on frequency and wave guide dimensions.
His work is concerned with the study of a linear accelerator For electrons.
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Hurd® has studed the propagsation characteristics of electromagnetic
waves along an infinite corrugated surface by the method based on the
caleulus of residues, assuming that the slot walls are vanishingly thin, Hj
study is mainly concerned with the phase velocity and ‘ mode amplitudey:
of the surface waves.

Rotman® has made an experimental study of a flat grooved plate feq
by a wave guide and also a corrugated eylindrical conductor fed by a co-axia]
Hne 2nd has shown that such types of structures can support surface waves
efficiently. He has also shown that the attenuation in such guides is chiefly
due to ohmic losses in the metal rather than radiation.

Piefke®® has shown in his study on the propagation characteristics of
plane and cylindrical corrugated guides that these guides are similar 1o the
Harms-Goubau guide if the depth of corrugation js small compared to the
free space wave length. He has also shown that the attenuation and the
phase velocity are functions of groove-depth. By increasing the groove-depth
the field concentration around the structure can be increased. His treatment
of the problem depernds on considering the guide as a quasi-homogeneous,
but anisotropic medium whose permitivity and permeability are complex.

Chu and Hansen® have studied theoretically the properties of an
apertured disc-lcaded wave guide and have derived relations for the phase
velacity, group velocity, power flow, energy storage an’ losses.

Barlow and Karbowiak® have discussed the characteristics of the surface
waves on corrugated cylindrical conductor and have concluded that a
substantially pure surface wave mode can be supported by the structure,
They have also shown that if the pitch of the groove is very much greater
than the free space wave length, then the guiding property of the structure s
completely destroyed,

Lines, Nicoll and Woodward®® have discussed the characteristics of a
periodically loaded wave guide using the concept of an equivalent trans-
mission line analogy.

Harvey® has given an excellent and thorough review of the properties
of periodic structures, including different types of slow-wave structures.

Wait® has given a unified treatment of surface waves which provides a
link betwecn the surface waves of Zenneck, Sommerfeld, Norton and
Harms-Goubau. Cases of a metallic plane with a thin dielectric film and a
corrugated surface are also discussed. This paper is considered to have
made a significant contribution towards an understanding of surface waves in
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that 1t has been able to develop a pgenera! connection between the wvarious
forms of seemingly unrelated surface waves. Wait®® has treated the case of
radiation from slots on dielectric clad and corrugated cylinders. Wait®* has
atso discussed the excitation of surface waves in his treatment of ** Guidmng
of electromagnetic waves by uniformly rough surfaces *°.

From the information gathered from the available literature, it may be
said that the work by previous authors on surface waves has made significant
contribution to the subject of surface waves. However, it is feli that there
is still much scope for the study of surface wave and radiation characleristics
of corrugated structures. The study of electromagnetic structures with
uniform corrugations has been undertaken with a view to gain knowledge
and experience which can be utilised to investigate the characteristics
of surface wave modulated structures which is the ultimate object of
this oroject. It is believed that the results reported in this and in the
succeeding two papsrs will make significant contributions to our existing
knowledge on the characteristics of uniformiy corrugated structures used as
surface wave guide or surface wave antenna.

2. THEORETICAL STUDY OF THE SURFACE WAVE FIELD

2.1. Fiela Components :

The structure (See Fig 1) consists of a solid conductor loaded uniformiy
with thin circular discs of the same material as that of the conductor. The
discs are all of the same radius and the structure is periodic.

AEDILM I 4

]
) MEDIUM 11 rm_ L

Fic, 1

Metal disc-ioaded Sommerfeld surface wave lice.
a: Radius of the inner rod
b: Disc Radius
1: Period of spasing
l.w: Thickness of the discs
(#): No of the grove
w: Disc spacing
Mediam 1: Syace outside the structure
Medium I{: Space within the grooves
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To derive the expressions for the field components, the whole space i
divided wmto two media T and II.  Medium I (f = b) is the space outside {he
structure and medium IT (¢ = # = b) is the space within the groove formeg
by any two adjacent metal discs and the surface of the inner conductor,

Medium I

Since the structure is periodic of period # according to Floquavs
theorem, any ficld component say, £, can be writien as

E,=f (P, z) exp {—] By 2} Pl

where, f (P, z) is a periodic function of z of period /. Expanding f(p, z)
into its Fourier series, equation [2] becomes

- E= 2 C,(®) exp (—j8,7) 1l

me=—a

where the functions C, (P) involve excitation constants and appropriate
cylinder functions and are different for ditferent values of m. The variable
m takes integral zg‘alués (including zero) from —eo 10 +oo  The different
values of m represent the orders of different space harmonics. The negatve
and positive vdlues correspond respectively to backward and forward space
harmonics. The one corresponding to m=0 is called the fundamental
harmonic.

The quantities 3, represent the axial propagation constants of different
space harmonics and are given by the relation

‘Bm=ﬂo+<2wm/1) {4

wherk, m=0; £1, £2, £3, etc., and B, is the axial propagation constant of
the fundamental harmonic (m=0).

The axial field component Ef! in medium I and the components E{
and HQ’ obtained from Maxwell’s equations are as follows :

Medium I: P=z=b "~

i

S C HP (7Y.0) exp (—j B2

m= -

E®

EP = _i Cm —5"‘—* H (G Y P) exp (= By?)

- 2
HP = 2 Cp b HO(%,P) exp (/i 2) s

m=-= W Mg Ty,
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where, the axial propagation constant 8, 1s related to the propagation con-
stant ¥,, by the relation

Bh="n+ks [61
Medium [I* a <P =<b

Assuming that the spacing between the discs is small, each groove can
be treated as a short-circuited radial transmission line. The dominant mode
m such a transmission line 1s 7 E M. Thus the only field components that
exist in medium II are E, and H,. The field components in medium I can
be wrirten as )

EB e Lo wfkol [A; Jo Uk} + Ay Yo (kg P)] exp { —F Sy nl)

HP —[ A, Jy (kg P)+ Ay ¥y g PY] exp (— By nl) {7
The phase term exp (/B nl) 15 included to match the field components in
media I and II. The integer a stands for the number of the groove counted
from the plane z=0 (See Fig. 1) and 4, and 4, are amplitude constants.
Applying the boundary condition that £ =0 at f#=a, the following relation
between A; and A4, is obtained from equation {7].

Ay Ay = — Yolkon) | Jg (koa) (8]
On substituting for 4; in terms of A, in equation {7] and simplifying, it
reduces o

Egz)'_‘A Fo (kg P) exp (—j Boni)

HP =jAV (#oleg) + Fy(koP) exp (—i Bonl) 191
where 4 is the excitation constant and
F, (ko ) =Jy (ko) Y, (o £) — Y (ko) J, (Ko £) 111

where, the subscript r=0, 1.

2.2 Variation of E, over the mouth of the n™ groove

The characteristic equation is easily formulated by matching the appro-
priate impedance at p =5, when it is assumed that the fundamental surface wave
mode is predominant and the effect of the space harmogics is negligibly small.
A more accurate equation can be derived by assuming a proper variation of
E, over the mouth of the groove.

The variation of E, should be such that it not only satisfies the boundary
conditions but also the singularity condition at the edges of the disc
forming the grooves. The variation of E, assumed below

by = Bexp (] By nd) 1
£ (P=F) VII=Qz, /W) L
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e

is found to satisfy the above conditions. Bis the amplitude constant; tpe
distance z, is measured from the centre of the #® groove and is given by

Zp=z—nl [12]

2.3 Determination of the Amplitude constants C, in terms of B.

The amplitude constants C, of the field components in medium |
(¢ = b) are evaluated in terms of B by equating the expressions for £, in
equations [5] and [11] at B=0, i.e.

2 CuH M (G, b) exp (=) B,2)

{ Bexp {—j Bonl) for |z,] < Wj2
V=2 z,/W) 13
10 w2 =|z,| =12

Multiplying both the sides of equation [13] by exp (jB,,z,) and integrating
with respect to z,, from —I/f2 to +1/2, it becomes,
12
Co Ho™ (1, b) exp [J B, (2, —2)] d2,,
“u2

wi2
& }‘ X (J B zy) ex0 (=i Bonl) ;.

T V= @z, e

Swiz

On substituting for 7z, from equation [12] and simplifying, equation [14]

becomes

+ W2 B,z

1 Co HM (Y, by=B [ exp G BnZa) 4, 131
o (U0 '!W/Z \/[I——[ZZ/W)Z] » t

The integral on the right hand side of equation [15] is equal to (7 W/2)x
JolBn (W/2)).
Therefore, from equation [15] the constant C,, is given by the equation
C=TWEB o (B WD) [16]
A HSE (G, B
2.4 Determination of the amplitude constant A in terms of B.

To evaluate the amplitude constant 4 of the fields in medium II
(@=<p =b) in terms of B, the axial component of the electric field in
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medium 1T is matched with the average value of the axial component of the
electric fleld in medium I over the mouth of the #™ groove, i.e.

E@=EW (average) at P =5 (17
+ 812
. - )
£ (average) - (B/W) | ;‘lp( AL LIS ﬁ/"\yz dz, [18]
at (P =b) Iy VTR
E{P = A Fy (keb) exp (—] Bynl) £19]
at (P =b)
where,
Fy (kob) = Jy (ko) Yo (koh) — Yo (ko) Jo (Kob) 1207

Equating the expressions on the ¢ight hand sides of equations [18] and [19]
and integrating, the following cxpression is obtained for the amplitude
constant A.

A= BJ2) [Fylkgh)1™! 211

where, Fg (ko) is given by equation [20]

2.5  Derivation of the characteristic Equation

The characteristic equation is derived by matching the average value of
the azimuthal component of the magnetic field in medium I (H;”) with the
azimuthal component of the magnetic field in medium II (H@) over the
mouth of the »'™ groove, ie.,

H@ (average)=H P at p~b [22]

The average value of H{at p=b is

H{ (average) at p=b

V]2
=1/ z C,—2 7 H®P(jv,,b) f exp (~j B 2) dz [231
= Twpg Y, wjz
and,
HQ (at p=b)=AjV(€o/te) - Filkob) exp(—jBonl) {24]
where,
Fy (kogb) = Jy (ko) ¥y (fegh) — Yo (kg@) Jy (Kgb) i25%
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Using equations [2.] and [24] in equation {22], it becomes,

2 2 sin (8, W/2]
€O HM (G, by (W) 2 sin [, W)2)

m=re wl“‘ﬂ”’m m

= A IV (€gf Mg} < Fy (kgh) {26)

=

Substituting for 4 and C, from equations [21] and [16] respecuvely ip
equation [26], it becomes,
2ky § S lBa WD sin (B, W2 HIV(i,8) _ . F(kd)
I == B Ve H® (Y, b) Fy (kob)

[2n

Or, writing H{ (j 7, b) and H{? (j 7, b) in terms of modified Bessel functions
Ky (7,,b) and using the relations,
HP GV b)= =] Ko (V1) 2 28]
HP (Y, 0= —K (V,b)2fx [29}
equation [27] becomes,

3 2ko Jo(By WID sin B WD) Ky (V) __ Fi(kgh)
m=-e | B N Ko (7, 0) Fo (kod)

where, Fy (kob) and Fy (k¢b) are given by equations [20] and [25].

26 Solution of the Characteristic Equation
Since B, =By + Q@ m/l}y and Y, =V (BL—k%)

the solution of equation [30] for the determination of the propagation constant
reduces 1o the problem of determining By, the axial propagation constant for
the fundamental harmonic. The arguments B, W/2 and 7, b of the Bessel
functions may vary over a wide range and approximaticns cannot be readily
made for the Bessel functions. The expression on the left hand side of
equation {30] can be simplified by assuming that only the fundamental
harmonic (m=0) is present. This equation then is simplified to

2y Jo (BoW|2) sin (BeW[2) . Ko(Yoh) Fy (koh)
{

S lTo ) Iy Ucgh) [31]
Bo S K (Vg B) Fy hgd)

which is of the form f(8) =g (B,), where

f(ﬁu)= 2_’]‘;0_‘ Jo (Bo W/T)Bsin (Bo W/Z) } [32]
o .
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7

Ko (Vo h) Fy (fob)
o (B = — v, S0l Tof) £y Ueoh)
g (Bo) ® K, (79 0) F, (k)

When B, and Yq are both real, f(8;) and g (B,) are real and continuous and
equation [31] can be readily solved by numerical methods. An approximate
range for S is first of all determined by computing f(8,) ~g(By) over a
suitable range of values of £y  The accurate root is then determined by the
successive bisection method.

2.7  Surface wave Roots of the Characteristic Equation

Assumng the structure to be losseless, 1t can act as a surface wave guide
if the roots B, and 7, are both real  For given values of disc radius (b) and
disc-spacing (W) whether equation [31] has a surface wave 160t or not depends
on whether the curves f(8;) Vs B, and g (B,) Vs B, intersect at a real point
or not.  Since f (By) and g (Bg) are both even functions of B, it is sufficient
to consider either positive or negative values of 8, If 8, 15 a root of
equation [31], then —f, is also a root of this eguation. The postiive values
of B, give rise to waves travelling in the positive z-direction. Hence only
positive values of B, have been considered.

28 Variation of f(By). g (Ba) and Fy (kb)[Fy (keh) with respect to their
arguments.

The study of the nature of different functions involved in the characteristic
equation helps in a proper understanding of the conditions of exisience of
surface wave roots.

2.8.1  Properties of f (By) :

(i) f(Byy is an oscillatory function of B, with decreasing amphiude.

(i) [S(B)|—>0as By —eo.
(iii) f(By) depends on W but is independent of &.

2.8.2  Properties of g (By):
(i) g (By) does not change its sign when B, is varied.
(ii) & (Bp) | is an increasing function of B,
(iif) | g (Bg)| > == as By —>oo.
(iv) g(By) depends on 5 but is independent of W.
(v) g(kg)=0.



280 (Miss) H M. Girua anNp S, K. CHATTERIEE

2.8.3  Properties of Fy (ko®) [Fg (ko) :

() Fy (kob)[Fy (kob) varies from —oo to + oo when b 15 varied ove
pesitive values.

(i Fy (kob)/Fu (kgb) has poles and zeros at the roots of Fy (koh) =0
and F; (keb)=0 respectively.

(iii) F, (kob)/Fy (ko) 1s discontinuous when Fy (kgh)=0.

It is 10 be noted that .for any value of b, the sign of g(fg) is pasitive or
negative according as F; (kob)/ Fy (kob) 1s negative or positive.

2.9 Condition for the Existence of Surface Wave Roots,

The coadition of the existence of surface wave roots can be determined
from the properties of the functions discussed in Section 2.8.

Since () oscillates and decreases to zero and ]g(ﬂo)J increases (o
infinity as B, tends to infinity, it follows that surface wave roots exist when

(3 f(ko) and g(By) are of the same sign  For 1f f(kg) > 0 and
g (By) >0 [note that g(B,) does not change its sign when S, 1s varied and
g(kg)=0], then f(kg) > g(ky) and there exists a value B such that
F(B) <«g(B’). Hence, the curves £ (8,) versus and g {f,) versus By intersect
at a point 1 the interval (ko 8°).

(ii) f (ko) and g(By) are of oppcsite signs and |f(8")|>|g (8]
where f(87) is the first minimum value of (). when f (ko) > 0 and its first
maximum value when f(k,) <0. For, if f(ky) > 0 and g (B <0, then
S (k) > g (k) and f(B") < g{(B") Hence, the curves f(S,) versus Sy mntersect
at a point in the interval (ky, B”).

2.10  Classification of Structure Parameters :

The surface wave roots of the characteristic equation [31] exist only if
the functions _/'(ﬁo) and g (B, satisfy definite conditions (See section 29).
Otherwise, such a root does not exist Thus the strycture parameters b and W
can be grouped into two classes. Class T consists of combinations of b and W
(relative to the radius of the inner rod, a) for which a surface wave root
exists and class IT consists of all combmaticns of b and W for which a surface
wave root does not exist.

It follows from the discussion in section 2.9, that all combinations of
b and W satisfying the following conditions (i) and (ii) belong to class I.

(i) Fy (koh)[Fy (kob) and f(k,) are of opposite signs. (in this case
JS(ke) and g (B)) are of the same sign).
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(11) F, (keh)[Fy (kgh) and f (ky) are of the same sign and IFB > 1g B,
where f(B") is the first mmmum value of (8, when Slkyy >0 and its first
maximum value when (k) <0 (In this case f k) and g (B will be of
opposite signs).

The combmations of b and W belonging to class II are such that
Fy (koh) [ Fy (Kob) and f (k) are of the same sign and [F(B")| <|g(B"}]- (8"
being the same as that defined in the previous paragraph).

It 1s to be noted that the existence of only the 7E M mode in the
grooves requires W = Aof2. When W = Xy/2, f(ky) <0. Tt can be seen
that in this case, the classification of structure parameters can be effected
referring to only the values of 5. The condition for the existence of surface
wave roots can be restated as follows. All combinations of & and W such that

(1) Fy Uegh)Fy (hohy < O.

(i) F, (kob)/F0 (kgho) > 0 and if(ﬁ")‘ > lg (B8"Y] where f(B") 1s the
first minmimum value of f(ﬁo) -and W = ,/2 belong to class I. It s obvious
that | £ (87| > | g (B")| implies that F, (kgh)/F, (k,p) is small.

Plots of £ (B, and g (B, Vs B, are given in Figures 2 and 3 for typical
values of b and W. 1In Fig. 2, ¢ (/30) > 0 and hence the curves intersect at o
real point.  In Fig. 3, g(B;) <0 and hence the curves do not interscct at a
real point.

2.11  Discussion of the roor By as a function of b and W :

Since Y,=V/(B2—k3), 7, is real when By =k, That s the phase velocity
v, of the wave 1s less than the free space wave velocity ¢ and the guide wave
length A, is less than the free space wavelength A,. For By=ky v,=0.
By < ky, v,=0. For B, <ky v,> ¢ Tgis imagmary and the surface wave
character 1s no longer maintained Hence the structure paramelers cOrres-
pending to B, =k, or »,=0 may be considered to represent a transition stage
from class I to class [I.

When y,=0, the phase consiant B, may be s.id to be matched to the
free space wave number, which is the condition for the existence of a radiated
wave.

The plot of B, versus the disc radws b for a fixed value of the disc-
spacing W consists of a set of discrete curves. The different ranges of b in
which the curves are defined belong to cluss I.  The allowed range of values
of when b and W belong to class I 1s from &, to oo,



(Miss) H. M GirRua AND S K. CHATTERIEE

2 0 e

b o= 0.4

W02
LE
‘ fey | 20T
14 ]
3(to) 4

b= 0.8
W o= 0.2

} el
~
&
b= AR T4
k2
> t4 -
bt
o
Q.8 -
0.6
041
Q-8
0.2}
[+X3 5
- ¥ I L " 3 B It
-6 276 356 7.56 8.38 9.6
Bo —=
FiGg. 2

Plots of S(Ba). s(R0) verses Bs for values of » and w belonging to class i

b : Disc-radius inem; w: Disc-gpacing in cm.
{All the values are approximated to two places).
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Plots of £(fu). 2(8s) versus fo for values of & and W belonging to class If
b : Disc-radius in em; W: Disc-spacipg io em.
(A1l the values ase approximated to two places)
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Yt can be shown that the extreme values of S, in class | correspond (o
the values of b satisfying the equations F, {kp)=0 and F, (k) = 0. These
two cases are considered in the following scctions,

21011 Root By when Fy(kyh)=0

The characteristic equation [31] can be written in the form,

b Bs g Ky (g b‘;‘ s Fy (gh) il

2k, Ty By W 2y sin (B, W2 K, (7,5 F, Uegh) [34]
when Fy (kb)) = 0, equation [34] becomes,

LK (b Bo Yo 331

L -0
2%y Ky (OB Jy By WJ2) sin (B, W/2)

Tt can be shown that S = k4 is a root of this equation. For when /3'0=k0,
Y =0 and the modified Bessel functions can be replaced by their respective
small argument approximations as follows :

Ky (gb) & — (2[) In (089 Y )

Ky (B == 2/(7x Yy b) -
Substituting for Ko (7,0) and K; {7V, b) in equation [36], the following
equation is obtained™.

Y in(6.89 Y &) ~0 [37}
Yg=0 is a root of this equation,

2.11.2  Root ;90 when Fy (kp)=0.  When F| (kyh) =0 the characteristic eq. [31]
becomes :
2k Jo (B W[2) sin(ﬁoW/Z)'K,(ﬁlﬂfﬂ (381
i By e K (7, b)

This equation has the roots 8, given by

sin (B W/2)=0 {391
T (R W(2)=0 {40]
By=oe f41l

*1t can be assumed that Jo (ko W/2) # 0 and sin (k,W/2) # 0 For the valtids of W that makes
Jo (koW([2)=0 or sin (ko W/2)=0 exceeds N\o/2, but the existence of the 7 E Af mode in the
grooves requires W < Ay)2.
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Thus it is proved that the allowed range of By is from &y to o= The
significance of equations [39) and [40] is discussed later. (see section 18)

912 Field components for the Fundamental Harmonic

When the structure supports only the fundamental harmonic the field
components of the surface wave are given by

EN=CoHP (19,8 exp (-7 B2
EGr=Co(Bol Vo) H (7 oP) exp (=7 By 2)
HY = Co Lk [l g YOIH{ (7Y PYexp (—/ 8, 2) 142

The radial propagation constant A determires the extent to which the field
spreads in the radial direction The amplitude of £, decays radially as
VH{Y (7 Yo #)] and those of E, and H, decay as | H" (j Y P)|. Thus the
rate of decay in the radial direction increases as ¥, ncreases.

Maximum and minimum feld spread occur for values of b satisfying the
equations Fy (kg b)=0 and F, (ky ) =0 respectively. In the former case
Yp=0 and 1n the latter case Yy==oo . These two cases represent the limiting
cases in Class I.

2.13  Phase Velocity and Guide Wavelength for the Fundamental Harmonic

For a given value of kg (or Ag), the values of phase velocity v, (= w/Bg)
and guide wavelength A, (=27/f,) depend on b and W. The minimum
values of A, and », are A,=0 and »,=0 respectively. These values of v,
and A, correspond to the value of b satisfying the equation Fy (ky6)=0. The
maxunum values of A, and v, given by A =X, and v,=e correspond to the
value of b satisfying FD (ko b) 0. It may be noted that p,=0 gives the
condition for the existence of a radiated wave and mmplies that there is no
propagatien in the axial direction.

214 Dispersion Characteristics of the Structure for the Fundamental Harmonic.

The effect of frequency variation on the propagaiion characteristics of
the structure can be studied from the roots of the characteristic equation [31]
The surface wave roots exist only for definite ranges of k, The dispersion
diagrams (B, ’s ko) consist of a discrete set of curves, each defined in rhe
interval (pass band) of k, in which a surface wave root exists. Any two
such consecutive intervals are separated by an interval are separated by an
interval (stop band) of k; in which a surface wave root does not exist. The
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ranges of k, (for fixed values of b and W) n the pass and stop bands are
defined as follows:

(¢} Puss-band :

kg beloags to the pass bund when
(i) flkg) and Fy (kg b)/Fy (kgb) are of opposite signs and
(i) Fikg) and Fy (ky b)/F,N, (kgb) aie of the same sign and
| £(B] = lg (BN, where F/(B") is the Brst munimum value of
F{By
{b) Stop-band:

ko belongs to the stop band when [/ (k) and F, (keb)/Fy (keb) are of
the same sign and | /(AN < [2(BN]).

2.15  Roots ef she Characieristic Equation in the pass-band.

The allowed range of B, (sec Section 2.11) in the pass-band is from
o=kyg 10 By=oco. These two values of By correspond to values of kg
satisfying the equation Fy (kob) =0 and F, (kgb) =0 respectively.
2.16  Effect of Higher Order Space Harmonics.

The characteristic equation [30] can be written in the form

da =~ Fy (kgb) .
P R Tt od 4
I A AT 3
where,
- oI 2 2 si s
FB,- 2k Jo (B W/ sin (B, W/2) Ky (Yub), [44]
! B Yen o (Y,u0)

The nature of the equation [43] is discussed below.

2.6  Inequalities for the finction F(B,.

Numerical computation of the functions F{8,) shows that when
W= X2, |T(B > > |F(B)] for |B,| <|B.}. Since F(8,) is an even
function of f,, it follows that whatever is true of F(8,) for By < & and
m= 0 is true for By > 0 and m =0 also. Thus it is sufficient to study the
characteristic equation cither for B, > 0 and m =0 or B, <0 and m = 0.
In the present case, the former condition is assumed.
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It follows from the above mequality for f(fB,) that the terms of the
series in equation [43] corresponding 10 7 > 0 can be neglected compared to
that corresponding to m~0

The relative magnitudes of B, m different ranges of B, are given in
Table | and are summerised in Fig, 4 For By =8, where 2rm/l)=
ky < B < Qrmfl)+ky (m > 0). Y_, 1s imagimary. Since the discussion 1s
restricted to only real values of 7(B), the values B, are not considered in
the table. It is seen from iable [ that if a quantity By=d belongs to range
{0}, then (2wm{ly—d (m > 0) belongs to range m and (2omfl)+d belongs to
m'.  Similarly, 1if Bg=d belongs to range (0, 1), then 2mm//+d belongs to
the range (m, m-+1). The following 1nequalities for F(B,) follow as a
consequence of the inequalities for f,, given m Table 1.

17 (Bs)]| >> ?_7(,3,”){ , # # 0 in the range (0}
7B | > > |F(B}l . m s —1in the range (1), (1!

[F(Bz)] > = |F(Bu)| . m=~2 In the range (2), (2)".

and
[ 7B | = | TR »> {F(B.3], m£0, —1 m the range (0, 1)
[FB_p| = |FBpl >> |FB], m £ —1, —2 in the range (1, 2), etc.

The characteristic equation [30] can be simplified using the above inequalities.

216.2  Simplification of the characteristic Equatian.

It follows from the above inequalities for F(B,) that the infinite series
on the left hand side of equation [43] can be approximated to the following
sets of equations defined in different ranges of f,

Ses 1:
() 7 (Bg)= ~[F; (koh)/Fg (kob)] m the range (6}
(i) F(B.1)= —[F, (keb)[Fy ko)l 1 the ranges (1), (1)}
(i) F(B_p) = —[F, (kob)/Fy (kob). im the ranges (2), (2)% etc. {45}

Ser 11 .
() F(B) +F(B-1) = 2 F (B = —[F, (kob)/Fy (koh)] in the range (0, 1}

(1) FB) +F(B-)== 27 (B )= —[F, (keb)[Fy (kob)] in the range
(1.2), ete. {46}
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Taser |

Relative magnitudes of £ .m in Qifferont ranges of 8,

>ND. N Ra;ng-@ R Relative mlagnitudes of £, V
0y ke < By o= mfi [ Bl < |8, hm=0; B, < 0forms g
0.1 B = (/) PEs = Byl 18], 18] < |8,]|

i (n/l) < By = A~k Byl <)B.0. m= —1; 8 <g¢
‘ for [m| > o

M @njhrky < By < By |Bul <[ Bl m= ~15 B, <0
for m > 1

(2 Bl =~ Gw/D VB LA 1Bl (R BT < |8
for m< —~1, -2

(2) Grjl)y < By < (An/ly—ky |8, <18, m= =2, B, <0
for fml > 4

@y @/l tky < By < Sfly (8] < | Bul, me 25 B, <0
for fm) > 2

(&) [(2Za—-D) mfl} < B, [ Bl <|Bnl. m= —n; B, <0

< 2w fly~kg for {m| > n—1
(n)? Cnac/D+ky < By {Bonl <| Bl ma ~n., B, <0

< {@n+ 1 wfn for |m| > »
1) | Byl = [@n+ 1) mje 7 [Boul ™ Bornls [B-als [Bouenl

< |B,| for ms= —n, —(n+1)

It can be seen from eguations [45] and [46] that if 8;~=d is a root of the first
equation of the set I, then fy=2wm/l+d(m> 0) is a root of the
(m+1)** equation of the same set. For,

FBow)=F 1By —(2 7 m[1y]
if By=Qxm/h4 d, then
TR =FlE dY=f(d)
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and therefore, if ,6”0 =d 18 a root of the first equalion of the set 1, then
By ={2mm]l) & d s root of the (m 1+ 1y equation of the same set. Stmilarly,
if §g-=dis a ool of the first equation of the set {1, then Qrxmfly + dare
respectively the roots of (m + 1™ and (w1 4-2)™ equations of the same set,
That s the roote of diflerent equations of « set can be derived from any one
equation of the same set. Thys when the exsstence of space harmonics
cannot be ignored, the following cquations have to be solved for

F(Bo)= —[Fy (egb)[Fy (ob)] [47]
where, 8, bclongs Lo the range () and

2F(By)= = Fy thob}iFy (kob) (48]
where, B, belongs to the range (0, {). The roots of the characteristic

equation [43] are then given by the values (2'7\‘m/1) & By (m> 0). Eq. [47]
and [48] can be written in the form

Si (Bgye —[Fy (kb)Y Fy (ke B)]. 149]
where,

S (Bg) =27 (By) for (Bg) in the range (0) 150]

£ (Bo)y=27(By) for (By) in the range (0. 1) (51]

2.17  Relative Amplitudes of Harmonics :

At any point, the ratio of the amplitudes A4, and 4, of the component
E, of the m® and rn™ space harmonics. respectively is given by

Ay | To (BuW/2)

Ay 170 (BLWI2)

Ko (N 5) Ky (mP)

—e . m) 1521

Ko (7,5 Ky (7,9

for W = aj2, |Jo (B WD |2 |/, (B, W/2}]| according as 8, = f, and

Ko B) Ko P gy
Ko (3.0 Ko (7, 9)

according as Y =7,

Thus 4_= 4, according as §,=8,. In other words, the harmonic of
the highest phase velocity has the highest amplitude.
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The results of the last :wo sections 2.16 and 2.17 can be swmmarised as
foltows:

(i} The roots of the characteristic equation 130] are valid not only
when the fundamental is considered but also when boih the fundamental and
space harmonics are taken into acconnt provided B, < <m/lL  Then
27mfl & B, (m > 0) give the roois of the characteristic equation [43].

(1) The roots B of equation [30] nearly equal to =fl, are not valid
when the fundamental and space harmonic are considered as, in this case, the
presence of the first order backward space harmonic should also be taken
into account.

(ii1) The harmonic of highest amplitude has the highest phase velocity
and hence the lowest8,. Thus, of all the terms of the characieristic
equation, only one or two are of importance and these correspond to the values
of m which are such that kg <|f,] <~=flor, |B, |~ =~/

2,18.  Range of B4 in class I when the Higher Order Harmonics are present:

The phase constant ﬂo can vary between kg to eo (see section 2.11).
When 8y =ky, b satisfies the equation Fy {kob)=0. When B ~oo, b satisfles
the equation Fy(kob)=0. When Fg (ko) =0 other roots of the characteristic
equation [31] arc given by equations {39] and [40]. Wher, in addition to the
fundamental, space harmonics are considered, though the allowed range of
values of 8 is from k; to oo, there exist different sub-ranges of S, in which
different space harmonics have highest amplitudes. The orders m of the
harmonics and the corresponding ranges of 8 in which they have the highest
amplitude are giver in Table 2.

TasLE 2

The order m of the harmonic of relatively high amplitude and the
corresponding range of Be(fe* £’ (Sce Section 2.16.1)

Range of B4 m
ky < Bo < <7l 6
[Bolm m/t 0. -1
il < < By < <3x/l -1
IAESLY —1 -2
G-/l < < B, < <{@n+Dn/I} —a

!Boim[(’l"*‘l)’ﬁ//] -5, —{nt1)
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¥n the case when Fy(kyb)=0, the characteristic equation [30] has (he
roots By =2~ mfl) = kg, m=0, 1, 2, ... Thatis, the different values of 8,
corresponding to d.fferent values of m give the extreme values of B viz.,

1B, K

When F, (k b} =0, the root By =o= implies that either the harmonic of
order 1afiniry has the highest amplitude or the period / of the disc loading
tends to zero in which case the fundamental has the highest amplitude
The latter 1s a trivial case and the former is considered as a limiting condition
at which the surface wave ceases o exist. The other roots of the characteriste
equation when F, (k% =0 are given by equation [39] and [40].

Equation {39] has the roots

Bo=Qrm/W) = (2rmil), m=0, L1, £2
Since these values of B, do not belong to any of the ranges defined
Table 1, they are of no interest. Equation [40] gives the root

Ba=(48/1), (11.04/1y, (17.3/D), etc.
Whether these roots are of any interest or not depeunds on the value of k.
When f, belongs to the ranges defined in Table 1, rhe different roots of

equation [40] correspond to different harmonics. However, the limiting
value of B, equal to /! cannot be readily derived from the condition

F, (kob) 0.

2.19  Power Flow for the Fundamental Harmonic :

The total power flowing in the axial direction (2) is given by the relation

-1 ”E ~H} dA {531

Where, 4 represents the cross-sestion transverse to the z-axis. The power
flowing in the azimuthal direction is zero, since there is no magnetic field
component in the axial direction. The power flowing in the radial direction
is reactive, since in this case

e k2 -
E H=j—"8 K (7,0 K, (V,0): P 541
wl“o.yo 0( 4] 1( o) [

>
Where, P is the unit vector in the radial direction and the mod:fied Bessel
functions K; and K, are used as these have real values for real arguments.

Pr‘*”’;‘f .f ’90 ke <2/vv) K2 (7,0 pdp dy {551

b ¢ omu.o
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The infinite integral converges since PK? (V4P tends 1o zero as # tends to
infinrity.  On integrating and simplifying, equation [55] reduces to

Py= (7 /2) (CHVY Ve DY K3 (7, 5)

42 Vg b Ky (Vg by Ky (Vo b3 — {7, b K2 (g b)) (56}
where
B 12 482
ct _:COE_BLI‘_O_’ ;\ ' {37}
o fg T ] :

Conscquently, the power flowing outside a radius £ is obtained by putting
b =P in equation {56]. Hence, the percentage of power P' flowing outside
the radwus £ is given by

G (Y 0)

pr—top 2Llo )
G (X b

[58]
where,
G (Y Py =(Yg £)? Ky (VoY +2 (Y B) Ky (Vo #) K, (Yo @) — (0, )2 K2 (VP 159]

Cr, the percentage of power P, contained within a radius P is given by

P, —100] 1—& (Za® {60]
G}

which indicates that P, increases as 7, increases for any fixed value of
p—h. That is, the power concentrates within a smaller region round the
structure as the guide wavelength decreases.

In the two extreme cases when 7Yy==0 and V4 = oo, P, is independent
of P and becomies equal to oo and 0 respectively, since the fields themseives
have the amplitudes oo and 0. As mentioned previously V=0 is the condi-
tion for existence of a radiated wave and when 7y = oo, the surface
wive ceases to exist.

2.20  Arttenuation Constant for the Fundammental Harmonic:

The attenuation constant « can be derived from the field components
for the lossless case, using the usual perturbation technique and is given by

Py
o == 9 61
55, {61}

Where, P, and P, represent iotal power transmitted and power dissipated
per unit legth of the structure and to simplify the evaluation, power
dissipated from different parts of the structure is calculated independently.
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Thus.,
Pu=(Py i Pyt Pp[I [62%
Where,

P, = Power lost per period atong the rim of the disc j.e.,
in the region #=5.

P,~Power lost per period in the inner rod, j.e.
in the region =g, and

P, —Power lost per period along the surface of the dises, fe,
in the region « =P <bh

The expression for any P,, r=1,2,3 18 given by

P, (7]2) fo Hy ’1"[: ds [63%

where, Hg s the complex conjugate of ihe tangential componzng of
magnetic field Hgand § s the surface over which Ay s defined. 7 s
the intrinsic impedance given by

AY
"
i /\/ ( %;f’} {643

where, & 1s the conduetivity of the structure material.  Accordingly,

Ph
Py=dy ([ {Hs H3}p e bdglU-W) (©31
&

Tatrodueing the value of H,

k2 o X
Hy = Co —=2— HI(j % P) exp (— j By 2)
w My Ty
equation [65] reduces to
2 k? 2 .
Py=C3bm oy {___‘L_j [HM (D) (1~ W5 [66]
w Mo Ty

where
w W B Jy (e WD

Cy = Zoile B/
20 HE (e by

Substituting equation [16}, in equation {66], it reduces 1o

B2r¥ Wiy (I-WYIKEb €4 KE(V4b)
P = 07 Ze i le” ;2 7
s PyEE o KE Wb Ji (8o W2y [67]
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27

Py= _’L{ H, H3) zqubiw
2 Foea 777
a

where,
€ .
Hy=J 4 V(—"~> Fy (ko Py exp (—f By n)
\ Mo
Thus
42w p Fflgay~a
vuo

where

Fykyay=Jag(kga) ¥y (kg a)~ 1y (kg @) Jy (kga) = —

A"E;’ Fo (ko 03171

Fo (ko b) =1y (ko a) Yy (ke b)— Yy (kg a] Jo (kg b)

Equation [69] reduces to
B Wy eo !
Az (koh)

Py=
Pr=

a

27

H4, Hypdpdg

o

where, #, 15 given by equation{9]  Thus,

Py=(B?[8) [*y [ 8 F 3 (kyb) ] (€ o/ ) {6 {F § (Kyb)
~Follgd) Fylke b)) —4/(* k

where,
Fylkoby=Jo(koa) YVylkeyb)— Yo(koa) J, (ko)

2 70
— T0
7 kya {701

E 73]

[741

and Fy(kob), Fy(k,b) and 4 are given by equations [20], [25] and [21] respec-

tively.

The total power transmitted (P,) is given by (See equation 56)

Py=(m CH2Y2) G (Y, b)

where, C! is given by equation [57] and

(73]

G (Vgb)= (Vb K2 (b)Y +2 74 B Ky (14b) Ky (Yob) — (VB K} ('1‘,17%761
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Substituting for ¥, equation [75] becomes,
P-4 B W3 Bg kg Vi€ ug) - G (VM /(1P yd
g B WIDNH VG P 77

The attenuation constunl « determined from

a =(Py+Py) + P2 P, [78]

is a function of the disc-radius B, the disc-spacing W and the phase constant
B, of the fundamental harmonic. The nature of the dependence of « on
h, Wand £, is not apparent from equation [78] as it 1s complicated. The
numerical computation in section 3 will however reveal the functional
dependence of o on various physical parameters of the structure. The
frequency dependence of « is discussed in section 3.

3. NUMERICAL RELSULTS

The numerical evaluation of the roots of the characteristic equation,
phase velocity, guide waivelength, etc., and therr variation with parameters of
the structure (b, w) is dealt with.

3.1 Roets of the Characreristic Equarion:

The surface wave roots of the characteristic equation (for the funda-
mental harmonic)
2ky Jo (Bo WD sin(By W/D) o Ko (V4h) Fy (k)

i £, K, (0b) Folkoh) e

are determined by the successive bisection method with the aid of a digital
computer (Elliott 803) for the following values of a, & (I-w), A, and k,

@ : Radiuvs of the inner rod =.25 cm

b : Raaius of the disc =.4 cm to 4 cms at intervals of 0.2 cm
W : Disc-spacing® =0.2 cm to 1.6 cm at intervals of 9.2 cm.
1-W : Thickness of the disc =0.047 cm

Ao : Free-space wavelength =32 ecm

kg : Free-space wave number =1.9635 rad/cm

*The maximum _value of W considered is only 1.6 cm (= 1,/2) for reasons mentioned in the
previous section.
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The roots of the characteristic equation [31] are also determined for 5=0 5 cm.
Discs of thie radius have been used for experimental veafication.  These
roots are considered in a paper which is under publication 5 which deals
with the comparative study of experimental and theoretical results.

The values of A for which a surface wave root exists and does not exist
are given 1n Table 3.  The values of 510 the first and second coloumns of
Table 3 are classified as class | aud class II respectively. The numerals
inside the paranthests (1), (2), (3) in this table refer to the different ranges of
b belonging to class I.

The approximate ranges of b belonging to classes I and IT can be
determined from a plot of g(,@o) versus b. g (/30) is given by the eqnation

$(B) == Yo [Ko (Vg 8K, (Yo 03]« [F (kb)Y [Fy (kob) 133)

Iu is seen from the plot of g (8,) versus 5 (Fig. 5) that for values of b
approximately equal to '.7 and 3.4 cms, F (kyh)=0 and for the values of b
approximately equal to 0.85, 2.5 und 4.15 cms, Fy (kgh) =0 These values of
b respectively correspond to the mimimum and maximum values of Bo m any
range, {See section 2). In the former case, ,‘30 =k, and in the latter case
By=ee. It has been pointed out that the values of b for which B4 =k,
represent & transition stage beiween classes I und 11.  Also, B, =k, is the
condition for existence of a radiated wave. When 8, —=o, the surface wave
cases to exist.

TabLr 3
Vulues of b for which a surface wave root exists (b belongs to class I) and doas not exist
{b belongs to class L) tor the values of W considered i.e. W=0.2¢cm to 1.6cms
at intervals of 0.2 cm.

Values of & {cm) belonging to Values of b (cm) belonging to
Class 1 Class I1
0 4[ [
06 (N 1.2]
0.8 el
16/

Hence, the range 04 =h =03 Hence, the range 1 =6 = 1.6
1.8y 26
2 28,
- 3
5.l @ @
2.4) 32!

Hence, the range 1.8 =) =24 Hence, the range 26 < bg 3.2
3.4,
36!
3| G}
4 J

Hence, the range 34<b=<4
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The effect of b on the propagation characteristics obtained from a sudy
Fig. 5 1s summerised in Table 4,

The vanatton of the root f as a function of b and W ic shown m
Figs. 6 and 7, respectively. In these figures the numerals 1n the parenthesit
(1), (2), and (3) correspond to different ranges of b belonging to class I.
The following observation can be made from Figures 6 and 7.

In any range b,

(i) B, increases with b for any fixed value of W

(i) plots of B, versus b become steeper as W is decreased and are
similar in different ranges of &.

(iii) plots of By versus W are also similar in different ranges of 5 and
give straight lines for the smailest value of » in the ranges (2) and (3).

(iv) B, decrease with W in general. When it increases with W, the
increase is very small.

5 ==

T \

.85 2.5 4 .45

9 (Bo) —

1 b N cm —s

Fi1G. §
Plot of 2(fo) verses b [see eq. (2.38)]
&: Disc-rading .
Be: Phase constant for the fundamental harmonic
=2.3636 radiansfcm.
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TaBLE 4

Effect of & on the propagation characteristics

b in cms. Effect on the propagatien characteristic
a<h <085 i The structure supports a surface wave with y,<0.
1.7-<h «2.5 | The ranges of b belong to Class 1.
34p 415 )
b0 85 ! Correspond to a limiting case when the surface wave
p=235 l ceases to exist {p,=0).
b=4.15 J
085<h <1 ) A part of the interval [corresponding to Fy(kh)/Fy(kyb)
being very small] belongs to class I. The remain-
25<b <26 J ing part belongs to class I1l.
f<h <17 } The strucsure does not support a surface wave. The
26<bh <34 J ranges of b belong to class 1.
b=17 ll Represent the transition stage between classes I and I7.
b=34 i vy =L

32 Delay Radio and Guide Wave length for the Fundammental Space Harmonic.

The propagation characteristics of the structure can be further studied
in terms of guide wavelength A, and the delay rtatio c¢/v,, where », is the
Phase velocity.

The following conclusion can be draw from Figures 6 and 7.

(1) Considering the three different ranges of b belonging to class 1
(See Table 3) wiz., (1) b=04cm to 08 cm, (2) b=18cm 10 24 cm and
(3) b=3.4 cm to 4 cm, in each range,

(a) A, decreases and cfv, increases with increasing b, for any fixed value
of W.

(b) A, increases and ¢/v, decreases with incseasing W, for any fixed
value of 4 except in the following case (i1).

(i) A, decreases and ¢fv, increases when W is increased from 0.2 to
04 cms for b=0.4, 1.8, 2. 3.4, 3.6 and 3.8 cms.

(iif) Tnm any range of b, the minimum value of A, and maximum value
of c/"p occur for the largest value of b and the smallest value of W.
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Plots of fv versus b for different values of W,
fo: Axial phase constant
b: Disc-radius
W Disc-spacing in em.

Ao: Free space wavelength=3.2 cm.

Sze table 4.1 for the definition of ranges (1), (2) angd {3).
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(iv) The minimum values of A, and the

Plots of Be versus ¥ for different values of 4.
phase constant; W : Disc-spacing

b: Disc-radius mcm.; Ao: Free space wavelength=3.2 cra.
See table 4.1 for the Definition of rangss (1), (2} and (3).

£o: Axial

t/vp in different ranges are

}‘2
clv,
AS

¢fo,

efs,

min.
max.
min.
max.

min.
max.

-0.7219321 |
~4.49316 |
=1.1093822 )
~2.884488 |
~ 1 2026836 }
~2,660716 |

in the ra

corresponding maximum values

In the range (1)

nge (2)

in the range (3)
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Thus the nuamum value of Ay increases from range 10 range and the
maximum valune of C,/u‘, decreases from range {0 range

(v) Of all the values of h and W comsidered, ihe lowest guide wave-
tength aund hence the highest delay ratio correspond o b-08 cm ang
W=0.2 cm.

(vi) In any range, the maximam value of A, and the mimmum value of
L‘,/UP oceur for the smallest value of b and the largest value of W.

(vii) The maximum value of A, ard the minimum value of r/'gp n
different ranges are

A, max. =30913437 |} . e .
clo, min.  —10351ag | 17 theranze (D)
A,  max. =3 1985603 |

v the range (2
clo, min,  —topi72z | ‘M theranee ()
A, max. =3 1983407 ) in the range (3)
ey, min ~1.002039 | ange .

(vii1y The largest guide wave length and hence the smallest delay ratio
therefore correspond to b=1.8 cm and W=16 cm.

it may be noted that in any range of b, the value of & for which A, i»
(minimum and c/u, is maximum, lies 1 the vicinity of a root of F, (k,5)=0
'Sec Fig. 5 and Table 4) and the value of b for which A, is maximum and
-vp is minumum lies in the vicinity of a root Fy (kg #)=0. The roots of

, (kg B)=0 give the root Sy=oo or A,=0 and c/p,~oo (See section 2.11}.

be roots of Fy(kyb)=0 or A, =A; and ¢/y,=1. The exact values of 5 for
Which the characteristic equatron [31] has the roots Sy =0 and By=Fk, are not
Meluded in Table 3. However, the values of & giving maximum and
Minimum values of A, lie in the vicinity of the toots of Fy(kyh)=0 and
F, (ko b)=0 respectlvely. The maximum value of A, is nearly equat to Ay

3.3 Field Component E, of the Fundamental Harmonic.

The radial field component £, of the fundamental harmontc is given by
By 1 .
£, = CO-,)T'H] (J7,8) exp (~f By 2) [42]
0

Plots of the field component £, normalised with respect to the field ampiitude
at a distance of Ism from the struciure are shown in Figures §-10.

The normalised field amplitude is given by the relation

Ky (%P)

- , P=b+01 179}
Ynorm K17 (0 +-11)
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The following remarks may be made from Figures 8-10.  (These also
follow from the plots of /30 versus b and W),
(@) Tn any tange of b,

(i} the rate of decay of the field ‘componente in the radm! direction
mereases as b increases for any fixed value of W,

(i) the raie of decay decreases as W increases for any fixed value of b.

(1ii} maximum rate of decay and the minmnum field spread correspond

to the largest value of & and the smallest value of W.

(1v) munimum rate of decay and maximum field spread correspond o the
smallest value of 6 and the largest value of B~

Of all the structure parameters considered, minmmum field spread corres-
pond to b=0-8 cm and W=0-2Z cm. and maximum field spread correspond to
b=1-8 cm. and W-1.6cm.

5.0 1.0 10
b =0.4 b =6 ) begp
o8 08 o8 -
f ﬁ
T b
> oer 06k 06
a
b L L R
2T
or)
T ot 0.4+ o4
&
)
2z - - L
0.2 Woml [o% 2o wWed 6 o2 wW=i.$
i
w= 0.2 W 0.2 weD.2 J
: o) 1 i L
ok 3 3 653 2 6 ) 2

Fia. 8

Field plots for the component B,
b Disc-radius in cm.
W: Disc-spacing in cm.
o, Distance measured from the axis of the structure.
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b =48
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¥ield plots for the component £p
b: Discradius incm WO- Disc-spacing in cm. #. Distance measuted from the axis of the struciure.
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Field plots for the component £, o
: Disc-radius in cm.  W: Disc-spacing mn em. £ : Distance measured from the axis of the struciure:
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3.4 Dispersion characteristics Jor the Fundamental Harmonic

The effect of vartation of the frequency of excitation on the propagation
characteristics of the structure 1s determined by solving the characterisye
equation {31) for the following range of values of kg

ko~ 0-8 radiaus/cm. to 4-8 radians/cm. in steps of 0-4 radiaus/cm.
This corresponds 1o a frequency range of 3-82 GHZ to 22-93 GHZ n steps of
1-91 G H, The values of b considered are those belongimng to the ranges
(1) and (2} (See Table 3) only one value of W. viz, W= 0-2 cm. 1s constdered
for stmplicity.

Table 5 gives the values of & and k, for which the structure can support
a surface wave. The values of kg for which the structure supports a surface
wave belong to the pass-band. The values of kg for which the structure does
pot support a surface wave belong to the stop-band.

Figures 11 and 12, 13 and 14 represent the plots of B, versus ky and
A/ Ao versus ko respectively. (It 1s to be noted that plots are not made n the
pass-bands which contain only one value of &, (See Table 5). The following
conclusions can be drawn from these plots

(iy The whole range of %, considered belongs to pass-band for
b=0.4 cm.

(1i) The number of pass-bands increases with increasing b.
(ii1) 1n any band the ratio A {A; decreases with increasing k.

(iv) The rate of decay of A, /A, with respect to k, decreases with mcreas-
ing b in the range (1) (See Table 3}.

{v) The rate of decay of A, does not vary significantly as b is varied
in range {2) (See Table 3).

{vi} For any fixed value of b, the rates of decay in different bands are
nearly equal.
3.5 Effect of Higher Order Space Harmonics.

The effect of higher order hormonics on the roots of the characteristic
equation is studied by solving the following equation

2 ko [J,, (B W[2) sin (BoW/2) K, (%8

7 1 A0

.Bo ’Yo Kﬂ ('\/ob)

L Jo (B WD) sin (B W2) K, (7., b)] = F (k)
ﬁ-l 7-! KD (')’_1 b) FU (ko b)

[80
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which is obtawned from equation (30) B_; and VY_, are respectively the
axial and radial propagation constarms of the first order backward space
harmonic. It is necessary to consider only the roots B, such that kg <fB<w//
{See section 2-16).  This requires the maximum value of W to be resiricted

to 1-4 cm. {Table 3.)
TABLE 5§

Values of &, the corresponding frequency and b for which surface wave roots
exist (W =0,2 cm.)

b ems Rangze cfk(, m rad/em. and f‘requency {(fyin G Az
0.4 kg=0:8 to 4-8 in steps of 04
= 3-82 10 22-93 1n steps of 1.9
0-6 kg=0-8 to 3-6 in steps of 0.4
F=3:82 to 17-19 1n steps of 1-91
0.8 ky=0-8 10 2 in steps of 0-4
J—3-82 (0 9-55 in steps of 1-91
1.8 kg=2 10 2-8 in steps of 0 4
J/=9.55 to 13-38 1n steps of 1.9
ky=4-4, 4.3

I=21.01, 22+94

kg=1+6 to 2 in steps of 0-4
2 Ff=T7-64 to 9-55 1n steps of 1.91
kg=3-6 t0 48 in sieps of -4
F=17-19 to 22.94 in steps of 1.91

kg=2, 2-4

2.2 F=9.35 11-47
ka=3-2 to 4 in steps of 0-4
F=15-29 to 19-1 in steps of 1-9¢

ky=4-8

f=22-94

Ko 1:6, 2
2.4 Jf=T7-64, 9-55

ky=3-2

f=15.29

ko=4-4, 48

F=21.01, 22-94
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Dispersion diagram for the fundamenial harmonic.

Pq¢: axial phase constant ;

W: Disc-spacing==0.2 cm.

ky: Free space wave number; b: Disc-radius in cm.
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Dispersion diagram for the fundamental harmonie.
go: axial phase constant ; W Disc-spacing=0.2 cm.
ko: Free space wave number; b: Disc.radius incm.
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Ko IN RADUANS/cm
Fig. 13
Plots of Ag/Ae versus kq.
b Disc-radius in cm ; Ag o Guide wavelength in cm.
W : Disc-spacing=0.2 om ; no: Free space wavelength in com.
ko ! Free space wave nomber.

Tables 1 to 3 of the Appendix contain the values of B, and ., obtained
from equation (80). The roots of §; of the equation {31) for the funda-
mental harmonic are given in the same table for the sake of comparison.

The following observations* can be made regarding the roots By and f_;
{contained in Tables 1 to 3}
(1) ., = > By for almost all values of b when W is small
(it) For any value of &, B, ~ f, decreases as W increases

(iii) For any value of  in any range, the largest value of W for which
a root is given in the tables decreases as b is increased.

{iv) The difference 8., ~ f4 is minimum in range (1} for the smallest
value of b and the largest value of W (b=08 cm. and W=1cm.}. In the
ranges {2) and (3), B, ~ B, is minimum for the largest value of W and the
second smallest value of h (W=1.4 cm, b==2 cm and =36 cm).

* Statements (1) to (iv) refer to the roots of eguation (80).
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(v) The value of the root B, computed from equation (31) is always
less than that compuled from equation (80).
(vi) The difference between the two values of 8, is, in general very
small when W 1s small.
{vii) For any value of 5, the difference between the two values of Be
increases as W increases.

b=2.2 b = 2.4
1.0 -G
0.8 DB~
o o6 [- X3S
<
S
&
<
€4 F 0.4 fe
0.2 -8 34
[+] L ] -] 2 )
] 3 [ 3

kp IN RADIANS fem

Fic. 14
Plots of Azfhe versus kg
Ae; Guide wavelength in cm
A . Free space length in cm
b: Disz.Radius mem
W: Disc-spacing=02cm
ky: Free space wave number
36 Relative Amplitudes of E, for m=0 and m= ~ 1.

The ratio (RY) of the amplitude 4, of the fudameniai harmonic to that
of the first order backward space harmonic 4., for the field component
E, is given by

R~ A 1Yo (ﬁuw_/z)_ . !gﬂ_(j—té) Ko (5 P) 181}
Aoy LB Wil Ko (M B) Ko (Y 40)

which is obtained from equation (52).
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The ratic Ap/A_, has been computed from equation (51) for different
values of b and W and the corresponding values of B, and B_q (Tables | to 3)

Plots of Ag/A_, versus P for diffevcat values of & and W are given
in Figures 15 and 16 It can be seen that

be0s
wWa08

PO

7wt ? 10 2°
E im ”Uﬂ-l;h LR N hﬁm | 20 B2 71 . Be2 1
i;e‘: 5/ o B o
weo8 eos on
1/ : : .
et o

s
welo 9

g o (03} 3 w0

W [ i ;/ Los

et Wapd

f . o
’ / weoé Weld

B Weta B
hozas
oL x*
5 s
fnt
L N > H .
J CH 0% 5} 17 ol ER) 09 13 17

P-b —s

Fi1G. 15

Plots of relative amplitudes of E- for m=0and
m=—1 versus distance {in cm ) {rom the strucrure.
b=disc-radius in cm.

W=disc-spacing i cm.
p=distance from the axis.
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Fig. 16

Plots of relative ampliudes of Ex for m—0and
m=—1 versus distance (in cm.) from the structure.

b==disc-radius in cm.
W==disc-spacing in cm.
pe=distance from the axis.

(i) R! increases with # which means that the fundamental harmenic is
more predominant that the first order backward space harmonic at larger
distances from the structure.

(i) for small values of W, Ag/4_; is very large.

(iii) for any values of b, dof4.; decreases as W is increased.

The effect of & on the relative amplitudes of space harmonics is sum-

marised in Table 6.
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3.7 Power Flow for the Fundamenial Harmonic.
The percentage of power flowing in the axial direction within a radius ¢
is given by the relation
G (V)]
PP*KOG {‘i--—‘ w( Gf’))j [60]
L G n
where,
G Py=(g PV KE g8 1 2 MR K1 B) Kl By = (0 P K09, 8)
Figures 17 to 19 show the piots of P, wversus W for different values of
b and p. It is observed that, in general, £, is a decreasing function of W.

TaBLE ©
Effect of b and W on the relative amplitudes of harmonics

b in em W mem Relative magnitudes of 4,

04 02 =W=14 Ag> A,
W= 16 A=A,
0.6 02 =W=12 Ag> A,
W=1.4,1.6 Ag> 4,

058 W=02,04 A= 4,
0.6 <W=1.6 A=A,
1.8 02 =W=14 Ag> 4,
We1.6 A> 4,
2 02 == L4 A= A,
Wel.6 A >4,
2.2 02 sW=14 Ay> A4,
W=1.6 A >4,

24 02<W=08 a4,
I sW=16 A=A,
3.4 02 <W=14 Ay,
W 16 A4,
36 02 W= 14 A A,
W= 1.6 A >4,
38 02 sW=14 T A A,
W= 1.6 A4,
4 02 =W=t A4,
02 =W=16 A >4,
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Plots of Py versus W.
Py : Percentage of power flowing within a radivs p (cm.)
b: Disc-radius in (cm.)
W: Disc-spacing
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Plots of Pp varsus W,
Pp: Percentage of power fiowing within a radius p fem.)
b: Disc-radius i cm,
W: Disc-spacing
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L
@

3.8 Evaluution of the attenuaiion Constani &
The atlenuation constant « 1s determined from
P+ Pyt Py
20p,
Where, P,, £,, £ and P, are given by equation [67]. {71], [73] and [77)
respectively.

(78}

The following values have been assumed for the constants o, €5 and wu,
o : Conductivity of copper: 5 8x 10° mhos/cm
€g: Permitlivity of free space; 2.854 <107 Farad/cm
ug: Permittivity of free space: 4w x 10-° Henry/em
Plots of o versus W for differcnt values of b are shown in Figure 20 which
leads to the following conclusions :
Tn any range :
(i) the attenuation constant « increases as b increases for any fixed
value of W.
(i1} o« decreases with increasing W for any fixed value of &.
{iil) minimum attenuation occurs in structures with minimum value of &
and maximum value of W,
{iv) maximum attenuation occurs on a structure with maximum value of
b and minimum value of W.

The maximum and minmmum values of « are given in Table 7. Itis
seen that o, decreases from ranges {1) to {2) and increases from ranges (2)
10 (3}, whereas, o, decrcases continuously from ranges {1) to {3).

min

TasrLe 7
% max A0 Ay
Rangeof & Hinem Winem o, wn nepersfcm. o, in nepers/cm.

M 08 0.2 0.118658 % 10* -

04 1.6 0.430446 < 107*
(2) 2.4 0.2 0.93560¢ x 10~
- 18 1.6 0.653606 x 107*
(3) 4 0.2 0.12207 x 10~1 .
) 3.4 1.6 0 64682 }0'5

3.9 Variation of o with Frequency.

The variation of a with frequency is studied by computing the values
of « from equation {(7%) for different values of kg and the correspondiug
values of 8. Plots of « versus ky are given in Figures 21 and 22. Tt is
obvious that « increases with frequency.
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W Disc-spacing

b Disc-radius in cm,
2o Free spacing wave length=3.2 cm.
See table 4.1 for ranges (1), (2} & (3).

Plots of attenuation constant  versus W,
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APPENDIX

TasLe 1

Root f of the characteristic equation [30], Ist value.

{When the existence of the first order backward space harmonic is taken
into account).

8@ phase constant of the first arder backward space harmonic,

2ad value.
BV Root of the characteristic equation {31}, 3rd value.
b disc-radius W = dis-spacing
b in cms
W in cms. e e o —
0.4 0.6 ! 0.8
l
02 2.2591 3.32086 | 10.29134
23.17885 2211714 i 15.14666
2.2589522 3.3142470 ‘ 8.8223036
2.27298 3.27238
04 11.78336 10.78396
2.2727705 3.2538756 6 5287367
06 2.24614 3.07966
7.46512 6.6316
2.1448904 3.0281279 5.0972945
0,8 2.2055 2.91154
5.21258 4.50662
2.2016848 2.7957136 4 1940993
2.16310
10 3.838032
| 2.1541235 2 59296355 3.579270&
. 2.12774
1.2 | 2.910981
; 2.1081694 2 4245809 3.1357619
[.4
i 2.0670798 | 2.2879881 2.8023634
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Root Bg® of the characteristic equation [30] Ist value.

APPENDIX—(canid.}

~

TABLE 2
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(when the existence of the first order backward space harmonic is taken

/3_‘(2):

2nd value.

ﬂo(l) :

b disceradius

W in cms.

0.4

06

0.8

1.4

inio account}.

Phase constant of the first order backward spacc harmonic,,

Root of the characteristic equation [31], 3rd value.

W = disc~spacing

b in cms.
’ T
i.8 1 2.0 2.2 [ 2.4
1.96666 | 216774 2 84186 ‘ 5.80336
2347134 | 2327026 2259614 | 19.63434
1.9666588 2.1675894 28388579 | 5.6636794
|
1.96636 2.18112 284252 | 5.27434
12 08948 1187522 1121382 8.782
1 9668776 2.1810149 2.8353941 4 8748824
1.96666 2.1609 2.71924
7.74460 7.55036 6.99202 |
1.9666758 2.1599859 2.6971739 | 4.0860549
1.96663 2.12944 2 583748
5.45186 5.28872 4.83068
1 9662861 2.1264975 2 5385054 3.5066084
1.96582 2.09634 249166
403531 3.90479 3.50947
| 9658036 2 0599321 23931166 | 3.0823378
{
1 9653 2 06778 '
307334 2.97086
1.9652937 2.0554430 22700041 | 2.7641264
i
1 96482 2.05848
2 37739 2.28373
| 9645068 2.0257939 21702208 | 25204426
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APPRENDIX—(coneld )

~

Taprr 3

Root By of the characteristic equation [30], Ist value.
(when (he exisience of the first order backward space harmonic is taken
into account)

,3_1(2)_- Phase constant of the first order backward space harmonic,
2nd value.
B Root of the characierisuc equation {31}, 3rd value
b dise-radius W - disc-spacing
b incras.
Won cms. e —
34 ! 1.6 3.8 4.0
1 9675 i 2 14442 2 75522 ‘ 5.32162
02 23 4705 | 23.29358 22.68278 \ 20.11638
1.9674991 ‘ 2.1443018 27527022 52243046
1.96782 \ 2.15742 2.7623 | 487294
04 1208852 | 11.59892 11.29404 9.18340
IoL96TS00r | 21573416 2.7565504 4 6040083
D1 9gs4 ‘ 2.1389% 26511
06 | 774372 1 1.57228 7.06016 \
1.9675218 \ 2.1381493 2.6326993 ‘ 3.910713
| 196695 | 210998 2 5283 ‘
0.8 345118 | 5.30818 4 88986
1.9669900 ‘ 2.1073290 2.4871411 ‘5 3.3838332
[ 196634 | 207946 2.43322
1.0 403479 1 3.92167 3.56791 \
| 1.9663419 | 2.0737589 [ 2.3524649 | 29918257
i !
© 196570 . 2.05206 ‘ [
12 Lo3o7a84 1 298558 | ,
L 1.9656711 l 2.0423495 | 22381041 ‘ 2.6954176
i I
1.9651 T VIFI
1.4 237711 | 3.30079 \
1 9650466 [ 20157274 | 21457167 2.4677260
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