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The investigations are concerned with a systematic stud), of the electromagnetic 
surface wave characieristics o f  a i~ylindrical metali~c conductor corrugated urtgornzly 

ond excited in Po -mode The in~esiigarions include 
(if  Deterrnmation of the parnmefers o f  the structure for which it can 

support a surfore wave. 
( ~ i )  Srudy of the differmt proper lie^ of rhe surfoce wave such as 

(a) Guide wove length 

(b) Power $ow 
(c) Dispersion charucterirtics 
(d) artenualiorz 
and their variation with srructure parameters. 

(iil) Study of the effect of higher order space harmonic.r on the propaga- 
tion characteristics of tiw structure. 

Since the work of Sommerfield',2, Zennecks, Harms4, Hondross, Debye6 
and Wey17, considerable amount of work has been done on  surface waves 
by Wait, Barlow, Brown, Cullen, Karbowiak, Schelkunoff, Chatterjee and 
 other^^-^^ A thorough d~scussion on  surface waves Is given in an 
illuminating manner by Wait'' In his paper " Electromagnetic surface waves ". 
In the classification of diirerent types of surface waves made by Wait, the 
common feature is that surface waves can be supported only by an interface 

*The project i s  supported by PL-480, contract No. E-262-69(N) August 1969. 
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between two d~fferent  media. Barlow and Culien'sI6 definition of  surface 

waves also emphasises that an interface between two different inedla or in  
other words, a pl~ysicolly recognisabie surface is essential for supporting a 
surface wave. 

Surface wave gu~des  are essentially open wave guldes in contrast to the 
conventional type of rnela l l~c  guides with closed boundaries. The concept 
of excited in a conventional wave guide is well establ~slied. i=he 
question arises as  to whether the same modal concept can be usefully 
employed in the case of surface wave guides, what type of modes can be 
supported by a surface wave guide in the absence of sources, their properties 
and what is their utility The answers to these questions are discussed by 
Marcuvitz, Schelkunoff, Goubau and othersi7. The d~fference between a 
closed conventional wave guide and a surface wave guide has been very clearly 
explained by Collin". 

Since, in practice, launchers for Lhe surface waves are restricted to a 
finite area, the surface wave problem is always associated w ~ t h  sadration. 
A complete solution to the surface wave problem requlres the determination 
of source-excited fields. It has been shown b y  Zucker19 that the total field 
on a surface wave guide can be synthesised by a superposition of all the 
modes excited by the source. The resulting field is then glven by a contour 
integral, the integrand of which has poles and  branch points in the plane of 
the complex propsgation constant. The surface wave modes are associated 
with the residues a t  the poles. The branch points occur a t  the wave numbers 
in the two media on either side af the interface. By an  approprlate deforma- 
tion of the contour, the total integral can be  split u p  into sum of residues at 
the poles plus one o r  two branch-cut integrals. The branch-cut Integrals can 
beevaluated by means of the steepest descent method. The radiation field is 
associated with the evaluation of the branch-cut integral and represents the 
radiation field of the source modified by the presence of the stnlcture. 

The surface wave and the radiated field are merely dtfferent aspects of 
the same dynamic electromagnetic phenomenon. The sub-division is made 
for the sake of convenience of description. However, the separation of the 
surface wave field from the radiation field can only be vls~ialised mathe- 
matically if the latter is properly defined. GoubauZ1 has derived the'following 
orthogonality relation between the surface wave and radiated fields using the 
reciprocity theorems 

where, the integration is carried over the equi-phase surface of the surface 
+ .+ + -. 

wave. The components E,, HR and E,, H, correspond to the  radiated 



2nd suri.lce wave fields respectively. The above reletion defincs uniiluciy ;, 
radiat~on field which is not coatamtnnted by the surface wave comporient. 

For any elcctromagnctic structure to act :is an eKicient surface a n \ e  

p i & ,  ~t is necessary that the power contained in the radiation field be a s  
small as possible. This requires :hat tile e%xency of the launcher should 
be as high as  possible. Collinz3 has given a cumplete and comprehensive 
rreatment of surface wave excitntion problems in his book "Fie ld  Theory of 
Guided waves". Waitzb has made very s~gn~ficant  contributions t3 the 
problem o f  source-exctied fieids. D~!Terent types of surface ware  iauncherb 
have been studied by Cullen'', Brown and Stachera" and ot3ers45-4S Three  
types of radialioh fields (though these may i ~ o t  always exisc ~ndepeudenriy of 
each other) may appear in any surface wave problem. These fieids may 
be ciiuscd by (a) the radiation from thc source in the presence of the gu id~ng  
structure (when the eDiciency o r  the launcher is poor), (il) the radiation from 
the structure (when its length is firite), (iii) the presence o f  leaky waves on 
the structure (when the leaky wave poles exist). When the radiation held 
arises due to causes (ii) and (iii), the structure is referred to as  a "surface 
wave antcnna ' and a ' leaky wave antenna'  respectively. 

In the present investigation, the s u ~ f a c e  wave guide is composed of a 
cylindrical metallic corrugated rod which is a modified form of Harms-Goubau 
dielectric coated surface wave line. The d~elect r ic  coating is replaced by an 
artificial delay dielectric by loading a cytindricai metallic conductor uniformly 
with thin metallic d ~ s c s .  The main differences between this line and the 
Ndrnms-Caubau line are : 

(i) The corrugated Iinc is a pe r iod~c  structurc and hencc the fotai 
field on the  line has to be represented in terms of an irfinite number of space 
l~arrnonics, whereas the field on the  Harms-Goubad surface wave line is 
represented in terms of a single mode and so the question o f  space harrnoa~ics 
does not al-ise. 

(il) In  the casc of corrugated line, :he phase velocity and hence 
the field spread in the radial direction can be controlled by varying the two 
paramctcrs of the structure. viz., the disc-radius and disc-spacing. In  the 
case of the  Harms-Goubau line, the phase velocity IS controlled by the thick- 
ness and dielectric constant of the dielectric coating. 

The  characteristics of corrugated and other periodic structures have 
been s t i~dicd previously by several authors. A brief survey is given below. 

W a l k i n ~ h a w ~ ~  has studied analytically the properties of a circular 
cylindrical wave guide having internal corrugation, with referrence to  the 
dependence of phase velocity on  frequency and wave guide dimensions. 
His work is concerned with the study of a linear accelerator for e iec~rons .  



ffurd2"as studcd ihe propagation characteristics 04 electromagnetic 
waves aiong an infinite corrugated surface by the method based on the 
cd;culus of residues, assuming that the slot walls are vanishingly thin, H,, 
study is mainly concerned with the phase velocity and b o d e  arnplitudei' 
of the surface waves. 

~ o t m a n "  has made an experimental study of a Fiat grooved plaie fed 
by a wave guide and also a corrugated cylindrical conductor fed by a co-ax,al 
line and has shown that such types of struclures can support surface waves 
efficiently. He has also shown that the attenuation in such guides is chiefly 
due to ohmic losses in ihe metal rather than radiation. 

~ i e f k e "  has shown in his study on the  propagation characteristics of 
plane and cylindrical corrugated guides that these guides are  sirnifar to the 
Harms-Goubau guide if the depth o f  corrugation is small coinpared to the 
free space wave length. He has also shown that the attenuation and the 
phase velocity are functions of groove-depth. By increasing the groove-depth 
the field concentration around the structure can be increased. His treatment 
of the problem deper,ds on considering the  guide as  a quasi-homogeneous, 
but anisotropic medium whose permitivity and permeability a r e  complex. 

Chu and H B a n ~ e n ~ ~  have studied theoretically the propeaties of an 
apertured d~sc-loaded wave guide and have derived relations for the  phase 
velocity, g o u p  ve!ocity, power flow, energy storage an3 losses. 

Barlow and Karbowiak3@ have discussed the characteristics of the surface 
waves on corrugated cylindrical conductor and have concluded that a 
substantially pure surface wave mode can be supported by the structure. 
They have also shown that if the pitch of the  groove is very much greater 
than the free space wave length, then the  guiding properly o f  the  structure is 

completely destroyed. 

Lines, Nicoll and Woodward)' have discussed the characteristics of a 
periodically loaded wave guide using the  concept of an equivalent trans- 
mission line analogy. 

Harvey" has given an excellent and  thorough review of the properties 
of periodic structures, including different types of slow-wave structures. 

Wait49 ha9 given a unified treatment o f  surface waves which provides a 
link betwecn the surface waves o f  Zenneck, SommerfeId, Norton and 
Hams-Goubau. Gases of a metallic plane with a thin dielectric film and a 
corrugated surface are also discussed. This paper is considered to have 
m d e  a significant contribution towards an understand~ng of surface waves in 



that i t  has been able to develop a genera! coi~nection between the various 
forms of seemingly unrelated surface waves. Wait" has rseared t h e  case of 
radiation from slots on dielectric clad and corrugated cylinders. WaitZ* has 
also d~scrnssed the excitation of silrface waves in his treatmen: o f  " Guid!ng 
of electronagnetic waves by uniform!:. rough surfaces ". 

From ihe information gathered from ?he available literature, i t  may be 
said that ille work by previous authors on surfacc waves has made significant 
contribution to  the subject of surface waves. However, it is Pc11 ihat there 
is sti!l much scope for the study of surface wava and radiatior. ciiaracleristics 
of corrugated structures. The study of electromagnetic structures with 
liniform corrugalions has been undertaken with a view to gain knowledge 
and experience which can be uiilised to investigate the  characteristics 
of surface wave modulated structures which is the ultimate object of 
illis nroject. It is beiieved that the results reported in this and in the 
succeeding two papars wil! make significant contributions t o  our existing 
knowledge on the characteristics of uniformiy corrugated structures used as 
surface wave guide o r  surface wave antenna. 

2.1. Field Componrrrts : 
The structure (See Fig 1) consists of a solid conductor loaded uniformly 

with thin circular discs of the same material as that of the conductor. The 
discs are all of the same radius and the structure is periodic. 

FIG. 1 

Metal disc-loadcd Sornrnerfeld surface wave line. 
or Radius of the inner rod 
b :  Disc Radius 
I : Period of spaoing 
I-w: Thickness o f  the discs 
(a) : N o  of the grove 
w : Disc spacing 
Medium I: Syan  outside the 3truc:urc 
Medium 11: Space within the grooves 



TO derive the expresstons for the field components, the whole 
divided into two medra I and 11. Medium I (P 3 b) 1s the space outside the 
structure and m e d ~ u m  I1 (a s P =s b)  i s  the space withln the groove foimcd 
by any two adjacent metal d ~ s c s  and the  surfidce of the Inner conductor. 

Medium I ; 

Since the  structure is periodic of period /, according to F[oql,e,.s 
theorem, any field component say,  E, can be  wrltten as 

Ex =f ( P ,  z )  exp ( -1 2 )  Pi 

where, f (P, z )  is a periodlc function of z of  period I. Expdnding f ( p ,  
into its F o u r ~ e r  series, equatlon [2] becomes 

where the  functions C, (P) involve excitation consiants and appropriate 
cylinder functions and are d~fferent  for different values o f  m. The variable 
m takes in{egralEi+lues (including zero) f rom -a to -too The different 
values of m represent the orders of different space harmonics. The negative 

and positive values,co:respond respectively to backward a n d  forward space 
harmonics. The one correspond~ng to  m=G is called the  fundamental 
harmonic. 

The quantities &represent the  axial propagation constants of different 
space harmonics and are given by the  relation 

. s P,=Po+(2.rrm10 PI 
whet&, m=O, f 1, 5 2 ,  *3, etc., and p, is t he  axial propagation constant of 
the fundamental harmonic (m=O). 

The axial field component EJ1)  in medium I and the components E$') 
and H$') obtained from Maxwell's equations are  a s  follows : 



\\here, the axial propagation constant b,, is related to the propagation con- 
,tact Y ,  by the relation 

8;' - -I; + i.; I61 

Assuming that the spacing between the discs is small ,  each groove can 
be treated as a short-circuited radjal transmips~on line. The dominant mode 
in such a transmission line is T E M. Thus the only field camponents that 
exist in medium I1 are E, and Hd. The field components in medium II  can 
be written as  

The phase term e x p ( j & n l )  1s included to match the  field components in 
media I and 11. The integer n stands for the number of the groove counted 
from the plane z=0  (See Fig. 1 )  and A,  and A, are amplitude constants. 
Applying the boundary condition that E i 2 ' = 0  at P=a, the Eoilowlng relation 
between A, and A* is obtained from equation [ 7 ] .  

On substituting for A, in terms o f  A, in equation 171 and simplifying, it 
reduces LO 

Ei2'=AFo (k ,P)  exp(-jP,n[) 
~ ' 2 ' -  - - J A ~ ( P O ! % )  - F, (k, P) exp (-.iP,nl) 191 

where A is the excitation constant and 

where, the subscript r=O, 1. 

2.2 Variation of E, over the mouth of the n*l groove 

The characteristic equation is easily iormulated by matching the appro- 
priate impedance a? p =b ,  when it is assumed that the fundamental surface wave 
mode is predominant and the effect of the space h a r m o ~ i c s  is negligibly small. 
A more accurate equation can be derived by assuming a proper variation of 
E, over the mouth of the groove. 

The variation of E, shouldbe such that it not only satisfies the boundary 
conditions but  also Lhe singularity condition a t  the edges of the disc 
forming t h e  grooves. The variation of E, assumed below 
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is found to satisfy the above conditions. B is the amplitude constant ; the 
Gislance z, is measured from the centre of the n" groove and is given by 

2.3 Determination of the Ampiitucle constants C, in terms of B 

The amplitude constants C,, of the field components in medium I 
(p z b) are evaluated in terms of B by equating the expressions for E, in  
equations (51 and [11] at P = b, i.e. 

Multiplying both the sides of equation [I31 by exp (j&z+J and integrating 
with respect to z,, from -112 to -k 112, it becomes, 

i"' C, Hoil) ( j  7 ,  b) exp UPm (zn -zX 22, 
- I ! ?  

On substituting for 7, from equation [ I21 and siniplifying, equation [14] 
becomes 

The integral on the right hand side of equation 1151 is equal to  (n W/2) x 

JotP, (Wi2)l .  

Therefore, from equation [I51 the constant C, is given by the equation 

2.4 Determination of the amplitlrde constant A in terms of B .  

To evaluate the amplitude constant A of the fields in medium 11 
(a P 5 6 )  in terms of B, the axial componeni of the electric fieid in 



rnediurn I1 is matched w i t h  the nverage vaiue of the axiai c o m p o n e ~ ~ t  the 
ciectric fieid i n  medium 1 over the mouth of t h e  nth "groove, i.?. 

E ! ~ ' = E ? )  (average) a1 P -h [ 17i 

n here, 

4 (kohl = J, ( k d  (kohl - Yo ( k , d  Jo (k&) Im 
Equsrillg the expressions on t h e  right hand sides of equations [I81 a n d  [IS] 
and integrating, the followmg cxpressio!a is obtained for t ? ~ r  a m p l i t i ~ d r  
constant A 

A = (% B / 2 )  jFG(koh)]-' I213 

where, F, (k&) is ~ i v c n  by equation [20] 

2.5 Derivation of the characteristic Equation 

The characteristic equation is derived b y  matching the average value of 
the azimuthal component of the magnetic field in medium 1 ( H ; ' )  with thc 
azimuthal component of the magnetic field in medium 11 (AS ' )  over the 
mouth of the nth groove, i .e., 

The average value of H$"at P - b  is 

H 2'  (average) a t  P -b 



Using equatians [2,] and 1241 in equation 1221, i t  beconres, 

Substituting for A and C,, from equalions [211 and I161 respectsveiy i n  
equation [26],  it becomes, 

or, writir,g N?) ( j  7 ,  b) and HI:) ( j  7, b)  in terms o f  modified Bessel functions 
K, (Y,b) and using the relations, 

equation [27] becomes, 

where, 6 (kob) and F, (kOb)  are given by equations [20] and [25]  

2 6 Solutidn of the Ch;wocreris;ic Equation 

the solution of equation [30] for the determinarion of the propagation constant 
reduces to rhe  problem of determining Po, the axial propagalion constant for 
the fundamental harmonic. The arguments j3, W / 2  and 7,  b of the Bessei 
functions may vary over a wide range and approximations cannot be readily 
made for the Bessel functions. The expression on the left hand side of 
equation [30] can be simplified by assuming that only the fundamental 
harmonic (m = 0) is present. This equation then is simplified to 

whieh is of the form f (Po) = g (Po,, where 

7 k JO (6, Wl2) sin (13, W/2) f (13,) = y . --- WI 
P o  



When Po and Yo are both real, f (Po) and g (,&j are resl and continuous and 
equation [31]  can be readily solved by nurnerlcai methods. An apprcxin!ale 
range for Po is first of a l l  de t r rm~ned  by computing f@,) -g (P , )  over a 
suitable range of values of Po The accurate root is rhea determined by the 
success~ve bisection ne thod .  

2.7 Surface wave Roots of the Characrerisric Eqttation 

Assum Ing the structure to be losseless, it can act as a surface wave guide 
if the roots Po and To are both real For given vniues of disc radliis (b )  and 
disc-spacing ( W )  whether equation [31] has a surface wave icot o r  not depends 
on whether the curves f ( P o )  Vs Po and g (Po) 1,s Po intersect at a real point 
or not. Since f (Po) and g ( P a )  are both even funct~ons  of Po, it is sufficient 
lo consider either positive or negative values of Po If Bo is a root of  
equation [31], then - P o  is also a root of this equatron. The postttve values 
of Po give rise to waves travelling in the positive z-directton. Hence only 
positive values o f  Po have been considered. 

2 8 Variation o f f  (Po) ,  g ( P o )  and F, (kob)/Fo lk,h) wit11 respect lo  rheir 
arguments. 

The study of the nature of different functions involved il? the charactertstic 
equation helps in a proper understanding of the conditions of exisrence of 
surface wave roots. 

2.8.1 Properties o f f  ( P o )  : 

(i) f (Po) is an osctllarory function of Po with decreasing amplitude. 

(ii) If ( P o )  1 4 0  as PO--)-. 

(iii) f ( P o )  depends on W but is independent o f  b. 

2.8.2 Properties of g (Po):  

(i)  g (Po) does not change its sign when Po is varied. 

(ii) [ g  (&) I is an increasing function of Po 
(iii) jg(Po)1-+-as Po-+-. 

(iv) g ( & )  depends on  6 but is independent of W. 

(v) g (ko) ==O. 



280 (MISS) 13 M. GIRIJA A N D  S. K. CHATTERJEE 

(i) F, ( k&) /F ,  (kohl varies from -- to i - when li ts varied we, 
pcsitive values. 

(ii) F,  (k,b)/F, ( h o b )  has poles and zeros a t  the roots of Fo (k ,h)=o 
and F, (kob)=O respectively. 

(iii) F, (lc,b)/F, (k,h) is disconrinuous when F, (k,h) - 0.  

It is to be noted that .for any value of b, t!le sign of g ( & )  is positive or 
negative according as F, ( k , b ) / ~ ,  (/cob) I S  ncgatlve or positive. 

2.9 Condition for rhe Exisrrnce o f  Sur fke  Wme Roorr 

The condition of the existence of surface wave roots can be determined 
from the properties of the functions discussed in Section 2.8. 

Since ,f (Po) oscillates and decreases to zero and I g (Po) 1 increases to 
infinity as flo tends to  infinity, it foliows that surface wave roots exist when 

(i) f (k,) and g (Po) are of the same stgn For if f ( ka )  > 0 and 
g (Po) > 0 [note that g (Po) does not change its stgn when f l ,  is varied and 
g(k,)=O], then f (k,) > ,q (ko)  and there exists a value 8' such that 
f ( P ' )  .: g (P'). Hence, the curves f ( P o )  versus and g (Po) versus p, intersect 
at a poiot In the interval (k,, P'). 

(ii) f (k,) and g(j3,) are of oppcsite signs and I f  (P") / > 1 g (P") l ,  
where f (B" )  is the  first minimum value o f f  (Po) ,  when f (k,) > 0 and its first 
maximum value when f (k,) < 0. For, i f f  (k,) > 0 and g (19,) < 0, then 
f (k,) > g(k,) and f (P") < g ( P " )  Hence, rhe curves f (Po) versus Po intersect 
at a point i n  the interval (k,, p). 

2.10 Classificarion of S r r u ~ f u r ~  Parameters : 

The surface wave roots of the characteristic equation 1311 exist only if 
the functions f(i3,) and g (Po) satisfy definite condttions (See section 2 9). 
Otherwise, such a root does not exist Thus the structure parameters b and W 
can be grouped into two classes. Class T consists of combinations of b and W 
(relative to the radius of the inner rod, a )  for which a surface wave 1m0t 
exists and class TI consists of ;ill combtnnticns of b and W for which a surface 
wave root does not exist. 

It follows from the discussion in section 2.9, that all combinations of 
b and W satisfying the following conditions ( i )  and (ii) belong to class I .  

(i) F, (k,h)/F, (kohl and f (k,) are of opposite signs. (in this case 
f (k,) and g (Po) are of the same sign). 



The combinations of b and W belonging to ciars 11 are such that 
F, (koh)/F,, (kob) and f (k,) dre of the same sign and I f  ( F " )  1 < ,y(/?") - ( p "  
being the same as  that defined in the prev~ous pa r~graph) .  

It is to be noted that the existence of only the T E  M mode in the 
grooves requires W s h o / 2 .  When W 3 X,/2, f (k,: < 0. It can be seen 
that in this case, the clavsification of structure parameters can be eEected 
referring to only the values of b. The cond i t~on  for the existence of surface 
wave roots can be restatedas foliows. All combinations of h and W such that 

(li) F, (k,h)/Fo (kobo) > 0 and / f ( P " )  / > 1 g (/?"\ I where f ( P " )  is the 

first m i n m u m  value of f (Po) . and W s Xo/2 belong to class I. I t  is obvious 

that 1 f (/i"') 1 > I g (Po) 1 implies that F, (k,h)/Fo ikoh) is small. 

Plots o f f  (Po) and g (Po) Vs Po are given in Ftgures 2 and 3 for typical 
values of b and W.  In Fig. 2, g (Po)  > 0 and hence the curves intersect at a 
real point.  I n  Fig. 3, g ( P o )  < 0 and hence the curves do not interscct at a 
real point. 

3.1 1 Discussion of the roor Po as a JI~nction of h and W : 

Since ~ ~ = z / ( P ~ - k ~ ) ,  Yo is real when z k,, That is ihe phase velocity 
0, of the wave IS less than the free space wave velocity c snc! the g u ~ d e  wave 
length A, is less than the free space wavelength ho. For  Bo=ko, u,=O. 
Po < k,, y,=O. For  Po < k,, 0, > c. *So is 1magii1:iry and the surface wave 
chardcter is no longer maintained Hence the structure parameters corres- 
pcnding to & = k ,  or up= 0 may be considered to represen: a transition stage 
from class I io class 11. 

When o,=O, the phase cons'nnt Po may he s L i d  to be matched to the 
free space wave number, which is the condilion for the existence of a radiated 
wave. 

The plot of Po versus the  disc radius b for a fixed v.ilue of the disc- 
spacing W consists of a set of discrete curves. The different ranges of h in 
which the  curves are defined belong to class I. The allowed range of values 
of when b and W belong to class I is from k ,  to 00. 



Plots of / ( P o ) ,  s (pd verses PI for values of b and w belonging to class 
b : Disc-radius in cm ; w :  Disc-spacmg i n  cm. 
(All the values are approximated to two places). 



Plots of i(pu). s(@d versus (30 for vslues of b and W belonging to class I I  
b : Disc-radius in cm; W :  Disc-spacing in cm. 
(All thz values nie approximated to two places) 



2.11.1 Root P, ~r>lieri To (k,h) 0 

The charac tens t ic  equalion [31] can be wril ten in the form, 

Nhen F, (k,h) = 0, equatron 1341 becomes, 

TI can be showri that p, = ko i s  a root of this equation. For when Po = k o ,  
Y = 0 and the modlfied Bessel functions can be replaced by rbeir respective 
small argument approximations as follows : 

Substituting for K, (7, b)  and & (Yo h)  in equation [36] ,  the foilowing 
equation 1s obtainedf. 

?,=O is a root of this equation. 

2.11.2 Root B, when F,  (kob) = 0. When F, (k,f)) = 0 tire chararscrDti~. eq. [3 11 
becomes : 

This equation has the roots P o ,  given by 

*It  can be assumed that J ,  ikoCV/2) * 0 and sin (k .W/ i )  ;i 0 For che vallicc of w that makes 
J o  ;k.W/Z)=O or sin (k,W/2)-0 exceeds b12,  but the exlslonce of  the T E M  mods In  lhc 
grooves requires W F h.12 



~ h u s  i t  is proved that the allowed range of Po is from k o  to - The 
s;gnlficance of equations [391 and 1401 is discussed later. (see section 18) 

2 12 Field componenfr for the Fundumental Harmonic 

When the structure supporls only the fnrtdamental hvrmonie the field 
components of the surface wave are given by 

E ~ " = c , , H ~ " ( ~  Y,P) e x p ( - j & z )  

E:)=C, ( p , I Y o )  H ~ ' ' ( ~ ? , P )  exp ( - . j ,Boz )  

H(dj)=.C, ~ k i ' / ( , w  ,u, Y , ) ] H j i ' ( ~  2 ,  P )  exp ( - j p ,  z )  [42] 

The radial propagnt~on constanl A, determires the extent to wtrich the field 
spreads in the radial direction The dmplitude of EZ decays radial!y as 
I H d i i ( j  Yo P )  I and those of E, and H+ decay as 1 H,(" ( j  Yo P ) /  . Thus the 
rate of decay in il?e r a d ~ a l  d~rect ion increases as 7, increases. 

Maximum and minimum field spread occur for values of b satisfyjnp the 
equations Fo ( k ,  b )  - 0  and F, (k ,  h)-0  respectively. In the former case 
3,=0 and 111 the latter case Yo-- .  These two cases represent the limiting 
cases in Class I. 

2.13 Phase Velocity and Guide Wavelrngrh for the Fundamental Hurmoni~ 

For a given value of k ,  (or A,) ,  the values of phase velocity 0, (- w/&) 

and guide wave!engrh X,(=Zw/&) depend on b and W. The minimum 
values of A, znd up are  A,=O and u,=0 respectively. These values of up 
and A, correspond to the value of b satisfying the equation F, (k ,b)  = 0. The 
maximum values of A, and ", given by ic,=X, and u p - e  correspond to the 
value of b  slit~sfyinp F, (k ,  b)--0. It may be noted that v,=O gives the 
condition for the existence of a radiated wave and ~mplies  that there is no 
propagatlcn in the axial direction. 

2 13 Dispersion Characteristics of rhe Srrurrure ,for f k 2  Fundamentui Harmonic. 

The effect of frequency variation on the propagation characteristics of 
the s t ruc~ure  can be studied from the roots of the characteristic equation [311 
The surface wave roots exist only for definite ranges of ko The dispersion 
diagrams ( P o  T's kO) consist of a discrete set of curves, each defined in the 
interval (pass band) of k,  in which a surface wave root exists. Any two 
such consecutive intervals a r e  separated by an interval are separated by an 
interval (stop band) o f  ko in which a surface wave root does not erist. The 



(i) ( k , )  and  Fj (ko h) /&  (k,b) are of opposite slgna :~nd 

:b) S l o p - b a d  : 

k, heiongs to Lhe stop band when .,'-(I<,) and li, (knh)/Fo (k,h) a w  of 

the same sign and I .I' (P") I 1 ,r (fir') 3 . 

2. ! 5 Rouis of she Charnrierisric Eqirirrio~r in ?ire pass-burzii. 

The allowed range of /3, (see Section 2.IP) in the pass-b~nd is from 
Po-k, t o  Po-- .  These two values of Po correspond to values ol' l+, 
satisfying the equation F8 (k,h) = O  and F8 (kob) -0 respectively. 

2.16 Effect of Higher Order Sprice Hunnonics 

The characteristic equation [30] can be written in the Form 

The nature of the equation [43] I> discursed b e h w  

2.16 Ineqzrairties /or the function 7@,) 
Numerical computation of the functions j(j3,,,) shows that when 

w - IT(&) 1 > > j7(&) / for 1.6, [ -c 1 P. 1 . Since f (P,,,B,) is an even 
function of P,,, it follows that whatever i s  true of f@,) for ,So < 0 and 

m 3 O is true for j3, =- 0 and IR  5 0 also. Thus it is sufficient to study the 
characteristic equation either for p, r 0 and m 3 0 or Po < O and nz 3 0. 

In the present case, the former condition is assumed. 



It follows from the above mequailty for i(P,) that the terms of the 
series in equation I431 corresponding 10 m > 0 can be neglected compared to 
that corresponding i0 m =0 

The relative magnitudes of ,R, 111 different ranges of are given is 
'Table 1 and a re  summer~sed in Fig, 4 For 19, =&, where (2xml l j -  
k, < 19; < ( 2 . ~ m / l ) - k k ~  ( m  > 0). Y-, IS imagrnary. Since the discussion is 
restricted to only leal values of ?@), the valucs & are nor considered in 
the table. I t  is seen from table I that if a qui?ntity ,Ro=:d belongs to range 
{O), then (2rrmll)-d ( m  > 0 )  belongs to range m and (??rm/l)-id belongs to 
ml. Similarly, ~f &=d belongs to range (0, i ) ,  then 2 . x m l l i d  belongs to 
rhe range jm, m A l ) .  The f3llowlng inequalities for 7(&) follow as a 
consequence of the inequalities for ,I?, given In Table I. 

nnd 

The characteristic equation 1331 can be simplified using the above inequalities. 

2  16.2 Simplijicatiun of the characreriszic Eqidotian 

It foliows from the above inequaliiies for 7(Bmj  hat the infinite series 
on the left  hand side of equation [43] can be approximated ro the following 
sets of equations defined in different ranges of 8, 

Sei 1 : 

( i f  7 ( ,do ) = - [F ,  (k,h)lF, (k,b)] in the iansc (0) 

(ii) f(p-,) = -[A'+, (k,b)/F, (k,b)] !n the ranges (I ) ,  (1)' 

(iii) f (B+) = -[Fl (kob)/Fo (kob), in the ranges (Z), (2)l, etc. 1451 

SPI I1 : 

i i)  T(&) i -7 (8- , )  2 f (pas,) = - [F,  (k,b)/F, (k,b)l in the range (0, I) 

(ii) 7(P-,)  + f ( j3 . .2 )~  27(p- , )  = -IF, (kob)/Fo (kob)l i11 the range 

(1.2), etc. 1461 



I A ( ,  m i* - - n .  p-, -c 0 
for J m l  r n 

It can be seen from equalions 6451 and I461 that if ,&!,-$ is a mot of the first 
equation of the set I, then &,=2 -K m/l * d (rn P 0) is il root of the 
(m+  l ) I h  equation of the same set. For, 

?(B-,,,i ==.?I& - ( 2  R m/r)j 

i f  P o  - (2  ./r m / l ) f  d, then 

?ca-, , , - .Ei  d )  ==?(dl 



T T T  
s o -  & 6 & 

A i l  



2 17 Relative Amplitr~des of bfunnorrics : 

A t  any point, the ratio of the amplitudes -4, arid A, of the component 
5, of the mtb and n* space harmonics. respectively i s  given by 

12.1 J . igmW13  / KO (7% b) KO (kf? 
A,, I J~ (P ,WI~ )  K o ( 7 , b )  K0(Y,p)  

according as Ym g Y, 

Thus A,% A,  according as ,!?, S 8,. In other words, the harrnonlc of 
the highest phase veloc~ty has the highest amplitude. 



The results of the  last rwo sections 2.15 and 2.!7 cdn be su~;.imnriied ns 
f0I:oU's : 

(i) The roots oi the characteristic equatian 1301 are val:d not orliy 
when the fmdamentai  is considered but also when bo:h thc fundamental and 
space haanomcs  are taken into acconnt provided F ,  < .i- = / I .  ?^hen 
2 %  m / l +  p, ( m  > 0) g w e  the roots of %he characteristic eg.-ration 1434. 

j l i )  The  roots Po of equation [Sil l  neeriy equal to r / i ,  are not valid 
*,hen the fundamental and space harmonic are considered as, In this case, the 
presence o f  the  first order backward spacc harmonic should illso be taken 
into account. 

(iii) The  barnionic of highest amplitude has the highest phase veioc~ty 
and hence the lowest p,?:. T ~ L I S ,  of all the rcrms of the chracteriatic 
equation, only one or two are of importance and there correspond to :he xaiues 
of m whlch are  such thaL k ,  < / Prn j < x / i  or, I ,t9; / = ~ 1 1 .  

The phase constanl 8, car, vary between k o  to m (sec section 2 1 1 ) .  
When P, -k,,  b satisfies the equation F ,  (k,b)=O. When p, .-oo, 6 satisfies 
t!ie equation FII.',(lc,b)==O. When Fo (k,6) - 0  oiher roots of the charactesistic 
equation [31] arc  given by equations 1391 and (401. Wher ,  in nddition to the 
hndamental,  space harmoaics are considered. though the allowed range of 
values of p, is from k, to m, there exist ditferent sub-ranges of Po in which 
d~ffcrcnt space harmonics have hrghest amplitudes. The orders irr of the 
harmonics and thc corresponding ranges of 6 ,  in which Lhey have ihe highest 
amplitude are giver. in Table 2. 

The order m o f  the harmonicof relativzly high dmplttudc and the 
corr-sponding range of F a  ( B B  f P ' d  (Sce Section 2.16.1) -- ~ 

Range of 130 m - ~ - - . -- ..- .- 



rn the case when Fo(koh)=O, the characteristic equation [30] has the 
roots /3, = ( 2 m  mil) 2 k c ,  m=U, 1, 2, . . . That  is, the d~f fe ren t  values 
corresponding to d,R:rent va!ues of rn give the  extreme values o f  P,,, ViZ,P 
i Pm I :- ko 

When F, (k,b)-=O, the root Po =- implies that either the  harmonic of 
order 1nfini.y has the highest ampiitude o r  the  period f of the  disc loadlng 
tends to zero in which case the f'mdamental has the highest amplitude 
The latter IS a r r~v ia l  case and the former is considered as a l i m ~ t i n g  condltlon 
at which rhe surface wlve ceases Lo exist. The  other roots of the  characteristic 
equation when F, (k,hp = 0 are  given by equation [39] and 1401. 

Equation [3Q] has the roots 

P o = ( 2 n r n / W ) . t : ( 2 m r n / i ) ,  m = 3 ,  & I ,  k 2 ,  . . . 
Since these values of P o  d o  not belong to  any of the ranges defined in 
Table 1, they are  of no interest. Equation 1401 gives the root 

Fa =(4 a//), (1 1.04/1), (17.3/1), etc. 

Whether these roots are  of any interest o r  not depends on the  value of k,. 
When ,9, belongs to the ranges defined in Table I ,  the different roots of 
e q u a t i o ~ ~  [40] correspond to different harmonics. However, the limit~ng 
value of P, equal to .rr/l cannot be readily derived from the c o n d ~ t ~ o n  
F, (k ,b)  LO. 

2.19 Power Flow for the Fundamental Harmonic : 

The rota1 power flowing in the axial direction (2) is given by the relation 

Where, A represents the cross-se-tion transverse t o  the z-axis. The power 
flowing in rhe azimuthal direction is zero, since there is no magnetic field 
component i n  the axial direction. The power flowlng in the radial dlrecrion 
is reactive, slnce In this case 

Where, P is the unit vector in the radial direction and the modrfied BesseI 
funct~ons KO and K,  are used as these have real values for real arguments. 

8 7 2  

P.=-+[,[ C: '<.-%-- (2/*)'K:(?,P)piipd+ 
7, w ,u, Y o  

1551 
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 he infinite integral converges since P KT (Y P tends lo zero as P tends to 
0 .  infinity. On integrating arid simplifying, equacon [55J redaces to 

P, = ( n / 2 )  ( C 1 / Y Z )  [(Y,b)Z K: ( 7 ,  h )  

: 2 7 ,  h K, ( Y , h )  KO;,(?, h ) - ( ? ,  11)' h': (Y, h)] [:6)  

Consequently, the power flowing outside a radius 
6 = P in equation 1561. Hence, the per-centape of 

the r a d ~ u s  f is givcn by 

P is obtained by p-~tting 
power P1 flowieg outside 

Or, the percentage of power P, conlained within a radius P is give11 by 

which indicates that P, increases as Yo increases for any iixed value of 
p -h.  'Fha: is, the power concentrates within a s~n:i l ler  region round the 
structure as Lhe guide wavelength decreases. 

In  the two extreme cases when ) , L O  and 7, - m, P p  is independent 
of P and becomes equal to - and O respectively, sincc the fields themseives 
have the amplitudes - and 0. .4s mentioned previously Y,=O is the condi- 
tion for existence of a radiated wave and when 7 ,  =- - , the surface 
wlvr ceases t o  exist. 

2 20 Atrenuation Constant for the Fzmdmnerrtal Hanxonic : 

The attenuation constant oi can be derived from the field components 
for The 1os4ess case, using the usual perturbation technique and is g ~ v c o  by 

Where, P, and P,, represent total power transmitted and power dissipated 
per unit legth of the strilcture and  to simplify the evaluation, power 
dissipated from different parts of the structure is calculated independently. 



Where, 

P,-Power. kohl  prr period along the rlni n i  Ehe disc i . r .  
in the region P-b. 

P,- Power Joui per period irr the inner rod, i.e. 
in the ~xg lon  $ = a .  and 

r",-Power lks: per period along tilc surfsce OF ihc discs, i e , 
In ~.hr region u p s h 

where. ;I: I S  :lie complex conjugate o f  the iangcntml componr'na of 
magnetic field H+ and S I.; the surfdce over which N4 1s defined. ,, 
the in~rinslc liiiped~nce gi,,en by 

where, n I S  thc conduciiv~fy of the  structure material. AccorSingly, 

equation [65] reduces t!, 

Substituting equation [16], in equation j661, it reduces to 



where 

F, ( k ,  a ,  = J, (k, a )  Y1 (ko a )  - & ( A ,  (1) J ,  (XI) a) - 

Equation [69] reduces to 

I731 
where, 

The total power transmirred (P,) 1s given by (See equation 56) 

P,=(T c1/2 7;) G ( Y , ~ )  1751 

where, C1 is given by equation [57] and 

G ( Y , ~ ) = ( Y , ~ ) ~ K :  ( Y , b ) f 2  Y o  b K ,  ( Y , b )  K,  ( ~ , h ) - ( 9 , b ) ' K ;  ( 7 , b )  
f76 



is a function of the d~sc-radius 6,  the disc-spacing W and the phase cons:ant 
p, of  the fundamentd! harmonic. The nature of the dependence of a! on 
h, Wand is not apparent from equatlon [78] as it I S  cornpl~cated. The 
numerical coinputation in section 3 wili however reveal the f u n c t ~ o n ~ l  
dependence of a! on various physical parameters of the structure. 
frequency dependence of a! is discussed in section 3. 

The numerical evaluation of the roots of the characteristic equation, 
phase velocity, guide wa\elength, etc.. and t h e ~ r  variation with parameters L.f 

the structure ( b ,  M') is dealt with. 

3.1 Root, of the Characrerisfie Equnrion : 

The surface wave roots of the characteristic equation (for the funda- 
mental harmonic) 

-- Zk,.JO % Y ~ 2 ) ~ i n ( P o W J Z ) _ - 7 0  K o ( Y b  0 ) .  1 F ( k b )  0 

I P o  K t  (YOb) F,lk,b) 

are determined by the successive bisection method w ~ t h  the aid of a digital 
computer (Elliott 803) for the following values o f  a, b ( I - w ) ,  X, and k, 

u : Radius of the inner rod =.25 cm 

b : Radius of the disc = . 4  Cm to 4 cms at intervals of 0.2 crn 

W : ~isc-spacing* =0.,2 crn to 1.6 cm at  intervals of 0.2 c n ~ .  

(-W : Thickness of the disc -0.047 cm 

A. : Free-space wavelength = 3.2 cm 

li, : Free-space wave number = 1.9635 rad/cm 

*The maximum value of W considered is only 1.6 cm (= X,/Z) for reasons mentioned in the 
previous section. 



The roots o f  the characterist ic equation [31] are  also de t e rm~ned  for b=O 5 cm. 
Discs of thie radius have been used for exper~menta l  ve~~f i ca t i on .  These 

are considered In a pbper w h ~ c h  is under publ~cat ion  which deals 
with the comparative study of expenmental and theoretical resuils. 

The  values o f  1. for  which a surface wave root exists and does not exist 
are g ~ v e n  in Table 3. The  values of b In the first and second coloumns of  
Table 3 are  classified a s  class 1 aud class I1 respectively. The numerals 
inside the paranthesls ( I ) ,  ( 2 ) ,  (3) in this table refer to the different ranges of 
h belong~ng t o  class I. 

The  approximate ranges of b belonging t o  classes I and I l  can be  
determined f rom plot of  g ( P o )  versus 6 .  g ( P o )  is g!ven by the  eqnation 

g ( P o ) -  - 7,  1x0 ( 7 0  ~ ) / K I  ( 7 0  b) l .  [I; ik,h)/Fo (kohl  [3 31 

It is seen from the plot of g ( P o )  versus b (Fig .  5) that for values of b 
approximately equa! to ' . 7  and 3.4 cms, Fo  (koh)  = O  and for the values of b 
npproximately equzl t o  0.85, 2.5 and 4.15 cms, Fl (koh)  = 0 7 hese values o f  
b respectiveiy correspond to t h e  minimum and maxlmun: values of 9, ~n any 
mnge, (See secrion 2). I n  the former case, 8, =k, and in the latter case 
Po=- .  IT has been pointed oiit rhat the  values of h for whlc'n P o  -k,  
represent a l r an s i t~on  stage between classes I rind 11. Also, = k o  is r h s  
condition for  existence of a radiated wave. When Po -=, the surf'tce wnve 
cases to exist. 

TABLE 3 
Values o f  b for which a surface u,ave root exists (b belongs to class I)  and doas not exiat 

( b  belongs to class 11) for the values o f  Tconnidrred i.e. W-0.2 cm to 1.6 cms 
at intervals of  0.2 cm. . 

pp 

Values of  b (cm) beiong~ng to Values of b icm) belonging to 
Class I CIdss I1 - -- 

Hence, the  range 0 4 < h - 0 S 

1.8-, 

:.,I (2) 
2.4! 

Hence, the  range 1.8 s h = 3.4 

3.4,  

1 6  
Hence, the range 1 I h 5 1.6 

2 6- 

; ', (2) 

3 2 
Hence, the range 2 6 6 b < 3.2 

4 !  
Hence, the  range 3 4 g b c 4 



The &ect of h on the propagation character~stics obtained from a sLu$ 
Frg. S IS sunanier~sed ~n aahle 4 

Tbe variation of the roo: PO as rr function oT b and W is shown In 

Flgs. 6 and 7, respectively. In these figures the numerals In the parenthesid 
(I ) ,  (2) ,  and (3) correspond to differen1 ranges of b belonging to class 1. 
The Foliowing observation can be made from Figures 6 and 7. 

In any range 6 ,  
(i) ,8, increases with b for any fixed value of V' 

(ii) plots of /3, versus b become steeper 3s W 1s decreased and are 
similar in different ranges of b. 

(iii) plots of Pa versus Ware also stmilar in different ranges of b and 
give straight lines for the smaiiest vdiue of 6 in :he ranges (2) and (3) .  

(iv) ,L?, decrease with W in general. When it increases with W, the 
increase is very small. 

5 1 
FIG. 5 

Plot of z ( P o )  verses b [see eq. (2.38)] 
6: Disc-radius 
B e :  Phase convtant for the fundamental barmonic 

-2.3636 radianslcm. 



?'ABLE 4 

bffecl of b on the propagation charzc?cri;tics 

5 in cms. Eifcct on  the propa~atlon characteristic 

The strucLu:e supports a surfiace wLve wlth v p c r O .  
The muges of h belong to Class  I .  

Correspond to a limiting case when thc slirface wave 
ceases to exist (v,=O). 

A part of the interval [corresponding to F,(h-,h)/Fo(X,b) 
belng very sma!l] belongs to  class I. The remain- 

ing part belongs to class [I. 

Tbe strucsure does not support 3 surface wave. The 
ranges of b belong to class 11. 

Represent the translllon 7t3ge between classes I and I f .  
0 =c .  

3 2 Delay Rudio and Guide Wave length for the Fundamental Space Hormo!zic. 

The propagation characteristics of the structure can be further studied 
in terms of guide wavelength A, and the delay ratio ciu,, where u, is the 
phase velocity. 

The foilonlng conclusion can be draw from F ~ g u r e s  6 and  7 

( I )  Considering the three different raases of b belonging LO class I 
(See Tnble 3) viz., ( I )  h-0.4 cm to 0.8 cn1, ( 2 )  I?= 1.8 cn-i to 2.4 cnl and 
(3) h=3.4  c1n to 4 cm, in each range, 

(n )  A decreases and r/", increases with increasing b, for any fixed value 

of W. 

(b) A, increases and c/o, decreases with incseasing W. for any fixed 
value o f  b except in the following case (ii). 

(ii) A, &creases and clop increases when M' is increased from 0 2 to 

0 4 cms for b-0.4, 1.8, 2.  3.4., 3.6 and 3.8 cms. 

(iii) Jn any  range o r  b, the minimum value of A, and maximum value 
of c/", occur for the largest value of b and the smallest value W. 



I 
"I- 

. I- 
4 - 

3 - 

Blots of F o  versus b for different values of W. 
F o  : Axial phase constant 
b : Disc-radius 

W :  Disc-spacing in cm. 
xo : Free space wavelengtR=3.2 cm. 

S.ze tahle 4.1 for the definition of mnges (I), (2) and ( 3 )  



Piots of 8 0  versus W fur d~fferene values of h. 
P a  : Axial phase constant; R': Glsc-sparing 
6:  Disc-radius in cm. ; ho : Free space waveleng~h-3.2 cm. 

See table4.E for the Definition of ranges ( I ) .  ( 2 )  and 13). 

(iv) The minimum values of A, and the corresponding maximum values 
c/o, in different ranges are 

A, mm. -0.7219327 1 In the range( i )  
c/d, max. -4,49316 J 
A, min. I :::$::: ,"f in the range (2 )  c/o, max. 

A, min. - 1 2026836 ' 
.,/ap ma,. -. 2,660716 \ in the '"'" ") 



Tlius tlic :nl,l,rnum value of A, increases from r:inge 10 range il;7C[ : j l e  

n?auimun~ vnlune o r  decrc,iwc from range to range 

( \ c j  01 311 the values oT h and  W considered, tile Eowcsi guide M,avc. 
lel?gth and hence r", hhiphest delay ratio c tmespurd  Lo b -  0 S cm and 
M ' ~ 0 . 2  cn;. 

jvi) In any r.irlge, the m,ixi!riorn v:~lue oi' A, and Ihe minin~um v;lue of 
c lv ,  occur for the s~risllest vAue of b a ~ d  the largest value of W .  

( v ~ i )  The maxinlum \slue of' A, 2nd the minimum value of c ; ' ~ ~  i n  

d~Kerenl rmgcs -re 

A, max. - .3 lYX3437 
c aP n ~ i n  = I M 2 0 V  

j n tile rrngc (3) 

( Y I I I )  The largest guide wake length and hence :he smaliest delay ~-:it;o 
:herefore correspond to  b =  1.8 cm and W= 1 6 cm.  

It may be noted rhnt in any range of 6 ,  the  value of b for which A, ia 
(minimum and c/o, is maximum, lies in the vic in~ly  of a root of F, ( i t ,  h)  =O 
See Fig. 5 and Tdblc 4) and the value o f  b for which A, is maximum and 

>/+ is mintmum l ~ e s  i n  the vicinity of a root Fo (ko b)  =O. 2 he rook  of 
T"ko b)=O give the root P o = -  or A,=O and c/+=oo (See section 2.11). 

h e  roots of Fa iko b) - 0 or  A,-- A, and c/o,= 1. The exact values of b for 
Which the characieristic equation [311 has the  roots P o = -  and &--k, are not 
included in Table 3.  However, the  values of b giving maximurn and 

values of A, lie in the vicinity of the roots of Fo (ko h)=O and 
F1 ( k ,  b ) - 0  respccrlvely. The maximum value of A, is nearly equal to A, 

1 . 3  Field Componmt EBB of i h c  Fui~dnmenrrrl Flar~not7ic. 

T h e  radial field component E, of rhe fundanienlal harmoiatc is glven by 

?lots of the fizid co~nponent E,  nor~nalised with respect to the 5eld ampiitudc 
a t  a disrance of I rnm from rhc structure are  shown in Figures 8-10. 

The normaliced field amplitude is given by the relation 



( i )  Lhe rn:e o r  decay of the field .corn:mr~ent~ i.1 t h e  rad::!l d~rectioii  
incrc:>scs as b Increases for any fired va lue  o f  U'. 

( i ~ )  the  rate of decay dccrcases a s  1V incrmsrs for any fixed valuc o r  O. 
(rii) maxinl~im rate of decay and the minimum f i e ld  spread ~01-respo11~3 

tl; the largest value of LT and 1lie smallcs! v:liaz of' W. 

( i x )  iilznin~uin rate of decay and maximum field spread correspoiid io thc 
s~nallcst i a lue  of b and thc iaigest value or i 3 -  

Of xi1 thc structure parameters considered, mi t i~mum held spread correc- 
nond iv b =- 0. S cn-I and W - 0.2 cm.  and m:!sirnum field spread correspo~id to 
h - 1 - 8  cni. and W - I . 6 i . m  

Field plots for  the componcnl Fa. 
b :  Dkc-radiu? in cm. 

W: Disc-spacing i n  cm. 
.*. Distance messured from the axis of the  sfruchrre 



Fieid piots for the conlponunt L;i. 
11: Di6c-rad:us in cm N': Disc.spacing in cm. ;l. Distance rncasu~ed fronv ths nxks or thc  rtructure 



Field plots for t b o  component Ep. 
: Disc-radiL8s i n  cm. W: Disc-rpacing In cm. P : Distance measured f iom the axis of t h e  structure 



The effect of variill!on of the frequency o f  CXCitStiOn or1 the propapt inn 
characteristics of the structure is determlued by ~ol!~:i;g tlic characterlsilc 
equatio~i (31) for the following range of v:ilues of k, 

k, -- 0.8 radlau>/cm. 10 4.8 rud~ans/cnr. in steps of 0.4 radiaus/cm. 

This corresponds ic  a frequency range of 3.82 G H Z  t o  22-93 GHZ in steps of 
1.91 G H ;  The values of b considered are those belonging to the ranges 
(1) and (2) (See Table 3) only one value of W .  vi: , W ~ 0 . 2  cm. I S  cons~dered 
for s~niplicity. 

Table 5 gives the values of 6 and k o  for which the structure can strpporl 
:i surSace wave. The values of k, for w h ~ c h  the structure supports a surface 
wave belong to the pass-band. The values of k ,  for which the strbcture does 
not support a surface wave belong to the stop-band. 

Figures I 1  and 12, 13 and i4  represent the  plots of fi0 versus I(, and 
&/AO versus ko respectix,ely. (It  I S  to be noted that plots are not made In the 
pass-bands whlch contaln only one value of k,  (See Table 5). The follow~ng 
conclusions can be drawn from these plots 

( i )  The whole range of ko considered belongs to  pass-bdnd fur 
b - 0 . 4  cm. 

(ii) The number of pass-bands increases with increasing b. 

(iix) In any band the ratio A,/& decreases with increasing ko 

(iv) The rate of decay of XJX, with respect to ko  decreases with Increw- 
ing b in the range ( 1 )  (See Table 3). 

(v) The rate of decay o f  A, does not vary significantiy as h is barred 
in range (2) (See Table 3). 

(vi) For  any fixed value of 6 ,  the rates of decay in different bands are 
nearly equal. 

3-5 Effect of Higher Order Space Hwmonics 

The effect of higher order harmonics on the roots of the characteristic 
equation is studied by solvmg the following equation 



which is o b r a m d  from equation (30) P - I  and 7-, are respectively the 
axial and radial Propagation constavis of the first order backward space 
harmonic. It is necessary to consider oniy the roots P, such illat /i, <13,<~/1 
(See section 2.16). This requires the maximum value of W to 5e reslricted 
to 1.3 cm. (Table 3.) 

Values o i  k ,  t h e  corre?ponding frequency a n d  h for whi<.h surPace wave roofe 
exist I W = 0.2 c m . )  

- - -- - - -- - - .- .- 
b cms R a n s e  of k,, ~n rad/cm. and frequency ( / I  in G H z  

0.4 ii,- 0.3 to 4.8 in steps of 0;4 
( -3-82  to 22-93 in steps of 1.91 

0.6 k,=-0.8 to 3-6 in steps of 0.4 
.f-3.82 to 17b13 In steps of 1-91 

0.8 k "s0 .8  la 2 in steps of  0.4 
f - 3 .82  lo 9.55 i n  steps of 1-91 

1.8 k,=2 to 2.8 in steps of 0 4 
f-9-55 to 13-38 In steps of 1.91 

k o -4.4, - 4.8 
f-21.01. 22.94 

k,= 1.6 to 2 In steps of 0-4 
j ' s 7 4 4  to 9-55 i n  steps of 1.91 

k,=3.6 to 4-8 in steps of 0.4 
j's 17. 13 10 22.94 i n  steps o f  1-91 

ko-2. 2.4 
2.3 1"-~9.55 ,  11-47 

ko-3.2 to 4 in s!cps of 0-4 
f -  15-29 to 19- 1 in steps of 1-91 

.k0-4.X 
,f - 22.94 



Dispersion diagram lor the fundamrninl harmonic. 
P o :  axial phase conslant ; W :  Disc-spacing-0.2 cm 
ko: Free space wavenurnber; b ;  Disc-radius ia cm. 



Dispersion diagram for the  fundamental harmonic. 
p o :  axial phase constant; W: Disc-spacing=O.Z cm. 
&: Free space wave number: b :  Disc-radius In Em. 



Plots of Xg/ha versus k ~ .  
5 :  Disc-radius in c m  ; A, : Guide wavelungth in crn. 

W : Disc-spasing=0.2 cm ; A,: Free space waveiength in cm. 
k. : Free space wave num beh. 

Tables i to 3 of the Appendix contain the values of P, and P_l obtained 
from equation (SO). The roots of Po of the equation (31) for the funda- 
mental harmonic are given in the same table for the sake of comparisou. 

The following observations* can be made regarding the roots a n d  P - ,  
(contained in Tabies 1 to 3) 

( i )  P-l J- > & for almost all values of b when W is small 

(!i) For any value of b, /3_, - decreases as  W increases 

(iii) For any value of 6 in any range, the largest vnlm of W for which 
a root is given in the tables decreases as h is increased. 

(iv) The difference ,%, - is miniinurn in range ( I )  for the s~nallest 
value of h a n d  the largest value of W (h-13 8 cn1. and W -  l cni.). In the 
ranges (2) and  (3), j3-? - P, is minimum for the  largest value of W a n d  the 
second smallest value oC h ( W =  1.4 cm, b-=2 cn2 and h - 3  6 cm). 

*Statements (11  l d  ( iu)  refcr to the roots o f  cquatton (80) 
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(v) The  value of rhe root & computed from equation (31) is always 
jess than that computed from equation (80). 

(vi)  The d~fference between the two values of Po is, in generat very 
when W 1s small. 

(vii) F o r  any value of A, the d~fference between the two values of $, 
increases a ts increases. 

FIG. I4 
Plots of W X o  versus k. 

A#:  Guide wavelength in cm 
Lo : Free space length in cm 
5 :  Dw-Radius In cm 
W: Disc-spacing-0 2 crn 

k.: Free space wave num bcr 

3 6 Relative Amplifu(fes of E, for m - 0 and m = - I .  

The ratio (R') of the amplitude A. of the fudamentai harmonic 10 tha t  
of the first order b ~ c k w a r d  space harmonic A _ ,  for the tield colnponent 
E- is given bv 

which is obtained from equation (52). 



 TI,^ fatic A,/,!._, has been compo:cd fro111 equation (51) for 
values of b and Wand t i e  correspoud~ng valucs of ,6, a d  /3_, (Tables 1 to 3) 

plots  of A,jA_, versus p for different values of b rnd W are given 

in Figures i 5  and 16 It can be seen that 

Plots of  relative amplitudes of Ez for rn-0 and 
In=-> verwr distance (in cm ) :tom the stiucrure. 
b=disc-radius in cm. 

IV='=disc-spacing m cm. 
p=distance from the axis. 



FIG. ! 6  
Plots of relative ampinudes of El for rnsOand 

m=-1 verws distance (in cm.) from the structure. 
b=disc-radws in cm. 

W=disc-spacing in cm. 
,=distance from the axis. 

(i) R' increases with p which means that the fundamental harmonic is 
more predominant that the first order backward space harmonic at larger 
distances from the structure. 

(ii) for small values of W, A,/A-, is very large. 
(iii) for any values of 6, A,jA.., decreases as W is increased. 

The effect of b on the relative amplitudes of space harmonics is sum- 
marised in Table 6 .  



3.7 pc ?lo ,+, fi,,r f i h ~  F"l,m!minieriia~ lfc3-vzonic. 
~ 1 , ~  oercen!npe of  power Rowing in the axial dlreclioil within a radius p 

Figures 17 to 19 s l~ow the piots of P,  versus W for different values o f  
b and p .  It i s  observed that, in general, Pi is a decreasing funct~on of W.  

Tb.8r.E 6 
Blfect of b and Won ih: relative ampliiudts of harmonics 

6 in cm FV 10 ern Relative magn~ludes of -4, 
- _ _  

0 4 0.2 s W = 1.4 4; A,,, 
W =  1.6 A-,=-An, 

h'orr : &<.n/l when A,, A ,  and P,>ri/l when A _ , > & .  





FIG. 18 

Hots of P p  versus W. 
Pp : Percentage of powerflowing within a radius (cm.j 

b :  Disc-radius in (cm.) 
W :  Disc-spacing 
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F I G .  I9 

Plots of P p  versus I+'. 
P p :  Percentage of powzr flowing ~ l t h l n  a radius p (cm.1 

b :  Disc-radius in cm. 
W :  Disc-spacing 



Where. P , ,  P z ,  P, and P, a x  glven by equstiori [lil], [7!], [I31 and [77j 
iesprctivciy. 

The  coilowing values have been assumed for the constants o, 6, and u0. 

o : Conductivity of copper : 5 8 :. PO5 !nhcs/cm 

c0 : Permittivity of her: space ; 3.854 x 10." Farad/cm 
p,; Permitti.:ity of  free space : 4n- x Menry/cni 

plots of a versus W fox diflercnt values of b are shown in F ~ p u r e  20 which 
leads to the follcwlnp cimclus~ona: 

Tn any  range : 
( i )  the attenuation constant a increase? as b increases for any fixed 

value of W. 
(ii) a decreases with increasing W for any fixed w l u e  of 6. 

(iii) minimum attenuation occurs in structures with minimum value o r b  
2nd rnaximunl value of W. 

(ivj rnaxlrnum attenuation occurs on il structure with maximum value of 
6 and minimum value of W. 

The rnaximiim and rnirr;mum values of a are given in Table 7. it is 
seen tha! C L , ~ ~  decreases from ranges (1) to ( 2 )  and incre:..ses From ranges (2) 
to (3). where.is. a,,i, decreases continuously from ranges (1) to (3). 

TARLE 7 

a,,, and a,,, 
~ ~ 

Range of b b in cnl W in cm a,,, i n  nepers/cnl. a,,, in nepers/cm. 
- 

('1 
0 8 0.2 0.1 18658 x 10-' 
0 4 1.6 .... 0.430446 x lo-' 

( 2 )  
2.4 0.2 0.935601 x 10A2 ...... 
1 8  1.6 ...... 0.653606 u 1W5 

(3) 
4 0.2 0.12207s 10': .. . 
3.4 1.6 .... - 0 64682. 

.- ~ -- -. -. - . 

3.9 Variatior~ of a with Frequency. 

The variation of a with frequency is studied by computing thc values 
of a from equation (78) for different values of  ko and the correspoi~diog 
values o f  Po. Plots of a versus k ,  are given in Figures 21 and 22. It i s  
obvious tha t  n: increases wiih frequency. 



Ploh olaltenuation constant I vztsus I'J. 
W :  Disc-spacing 
6: Disc-radius in cm. 
io: Free spacing wave length-3.2 cm. 
See table 4.l forranges (1). (2) & (3). 



Val-ia:iun o f a  with I,,,. 
6 Disc-radius in em. 

I+': Disc-spacing=O.Z cm. 
k*: Free space wave number .  



FIG. 22 
Variation of a with lie. 

6 :  Disc-radius in  cm. 
W: Disc-spacing=O.Z cm. 
k. : Piee space wave number 
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APPENDIX 

TABLE I 

Roo: ,f3C' of  the characteristic equation 1301, 1st value. 
(When the existence of the first order backward space harmonic is taken 

into account). 

,8?1: phase constant of the first order backward space harmonic, 
2nd value. 

,861) : Root of the characteristic equation 6311, 3rd value. 

h : disc-radius W = dls-spacing 

h in  cms 
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APPENDIX--(rorird.) 

- 
I A R L E  2 

Root Po"' of the characieristic equation [;0] 1st value. 

(when the existence O F  the firs1 order backward apace: harrnonic is taken 
into account). 

,8-#'" : Phase constant of the first order backward spacc harmonic,. 
2nd value. 

/3,[?' : Root of the characteristic equation [31], 3rd value. 

6 : disc-radius W =disc-spscina 



W In cms 

- - . 

0 2 

0 4 

0 6 

0.8 

1.0 

1 2  

1.4 
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