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INTRODUCTION

The subject of ion transport across membranes is one of considerable
current and future interest in various disciplines [1]. A number of vital pro-
cesses in biology are considered to be functions of cell membranes, In
complex biological organisms, the membrane acts as a physical boundary
for each cell to maintain internal conditions, appropriate for carrying out
its role as an individual unit for life processes. The current popular views
about neuro-physiological basis of drug actions and effect of anaesthetics
arc based on the premise that ion transport across biological membranes
are seriously affected by these agents.

The mechanism underlying the maintenance of resting potential and
production of action potential is interpreted on the basis of ‘ ionic theory’
which is widely accepted in the field of cell membrane physiology [2]. The
basic concept of these theories is that the cytoplasm contains a high con-
centration of anions together with various kinds of amino acids that cannot
permeate the cell membrane. On the other hand, the resting membrane is
readily permeable to potassium and chloride ions and sparingly permeable
to sodium jons. 1 is assumed that the movement of potassium and chloride
ions across the resting membrane is caused by the electrochemical forces
resulting from concentration differences of these ions in the extra and intra-
cellular fluids and the difference in electrical potential. The ‘ ionic theory”
proposes that the outward movement of sodium ions through cell membrane
is caused by a sodium pump, pumping sodium ions from intracellular fluid
as fast as they diffuse into the cytoplasm. Such a pump is assumed o be
operated by the energy provided by chemical reactions associated with cellular
metabolism. The concept of the pump and its ability to maintain the intra-
cellular sodium concentration at about ten per cent of extracellular con-
centration is thus a phenomenological definition of ignorance about the
mysterious action of cell membranes.

95
LLSc—1



96 V. S.VAIDHYANATHAN

It would seem incredible that biological membranes could spontaneously
and selectively transport molecules and ions to produce and maintain large
concentration differences. The free energy change accompanying the trans-
port of material against concentration gradient is positive. Since such
processes are observed in nature in the field of biology. and second law of
thermodynamics rtequires that for all spontaneously occurring processes,
such free energy change should be negative, the paradox of active transport
was conceived. The evident explanation, without abandonment of second
law of thermodynamics, is that one should consider the total encrgetics of
all spontaneous processes occurring in the system.

Another popular concept prevalent in physiclogy Is that electrical excita-
bility of nerve cells and muscle cells is due to time-dependent ion permea-
bilities across cell membranes, allowing the electrical potential difference
to shift back and forth between two stationary states. To understand
changes in membrane potentials and permeability properties of membranes
to different ionic species quantitatively, it is important to study these aspects
in as rigorous a manner as possible, taking into account knowledge available
from physical chemistry and physics.

It would be most desirable to combine all available electro-chemical,
thermodynamics, irreversible processes and molecular theory informations
into a suitable complete picture of active biological membrane system. In
principle, such a construction should be feasible, since biological membrane
system consists of molecules, ions, and their interaction through inter-
molecular forces in non-equilibrium states [3].

COMMENTS ON IoN TRANSPORT

Theoretically one approaches the problem of transport of ions across
a diffusion barrier by resorting to the general diffusion theory. One has
the choice of analysing the diffusion process by means of differential equa-
tions, in which one ignores the detailed kinetic theoretical aspects of the
problem. Such approaches will be valid, when the ion size is very small,
in comparison with the thickness of membranes. The other choice one has
is to consider that diffusion proceeds by jumps of the molecules from one

site to another. This basic random walk approach leads to difference equa-
tions.

It is evident that membranes must have a structure somewhat inter-
mediate between solid and liquid states. Certain amount of rigidity is
expected and required for the cell walls to act as a diffusion barrier. Cer-
tain amount of fluidity is also expected and required to fulfil transport func-
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tions. Pliability is necessary for the membrane to respond to constraints
within reasonable time.

Since the early days of Faraday, the transport properties of electrolyte
solutions have provided a challenging field for experimental and theoretical
research. A major portion of existing theoretical attempts on ion tramsport
across membranes is based on the Nernst-Planck equation. The molecular
approach towards ion transport across membranes is based on the quasi-
phenomenological relations of statistical theory of transport. Electrical
interactions obey the coulomb potential. It is well known that the long
range nature of coulombic forces, compared to non-coulombic interactions
between molecules in condensed systems, give rise to many interesting effects
in equilibrium and transport properties of systems of charged species. [t
is this aspect which gave rise to limiting square root concentration depen-
dence term in observed properties of systems of electrolytes. The long
range coulombic interactions cause non-randomness in the distribution of
ions even in extremely dilute solutions, such that any particular ion is on
the average surrounded by more unlikely charged ions. Thus, the position
and velocity of any specified ion is intimately correlated with the posiiion
and velocities of all other ions.

Since the dielectric constant of water is about 78, and the dielectric con-
stants of most lipids are of the order of 2, at normal temperatures, this
intimate coupling between position and velocities of ions of a specified species,
with the position and velocities of other kinds of ions should be stronger.
More co-operative behavior between charged species should occur in a
mediurn of low dielectric constant. Even the equations of electrodiffusion,
based on Nernst-Planck equation, ignores coupling between fluxes of different
species and the variation of mobility with position variable in an inhomo-
geneous diffusion barrier such as biological membranes as demanded by
the properties of charged species and requirements of thermodynamics of
irreversible processes. '

The geneéral conclusion that one arrives at about the contribution of
electrostatic forces to thermodynamic and transport properties in condensed
systems is that the gradient of the thermodynamic potential which represents
the driving force on ions is less than what it would be in an ideal solution
of the same concentration gradient. The velocity of migration for a given
driving force is also influenced by the electrostatic and hydrodynamic inter-
actions between species in the system. In consideration of transport- pro-
perties, so long as one can confine to stationary states, when fluxes can be
regarded as proportional to forces, the proportionality constants -are the
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defined phenomenological coefficients. In the spirit of linear phenomeno-
logical theory one has a system of linear cquations [4],

._Ja:f’_quy,; a=1,2...n (€3]
T

which relate the velocities of different mobile species to gradients of chemical
potentials, J, denotes the flux of species a, cxpressed in moles per unit
area per unit time.

The matrix £ is symmetrical. The chemical potentials for ions of kind
o is defined by the relation,

o= 1" (T, P, Cuy Cy o« C) + Zoeih )]

"when there are n kinds of species in the system, p,° (T, P, Cy ... Cy) is the
non-electrical part of thermodynamic potential. Zse is the electrical charge
of an ion of kind o and  is the electrostatic potential. In ionic solutions,
the normal structurc of so-called ion atmosphere is in equilibrium between
electrical forces and thermal agitation of the molecules. These agencies
are continually operating and will tend to restore equilibrium configura-
tion after every disturbance.

In a membrane sysiem at equilibrium, the electrical potential profile
and concentration profile arc in balance with each other, such that the flux
caused by one force, say concentration gradient, is nullified by the flux caused
by other force, electrical potential gradient. This is the basis of Nernst
cquilibrium potential relation,

0 = dln Cofdx + (Z,e/kT) (difdx) ©)
which leads to
#(x) ~ ¢ (0) = — (KT/Z,e) In {C, (x)/C, (0)} @)

where k is the Bolizmann constant, T is the temperature, i (x) and C, (x)
are respectively the clectrostatic potential and concentration of ionic species
a at location x, in the inhomogensous diffusion barrier. When the two
terms in the right hand side of equation (3) do not equal under the influence

f>f an _cxtemal constraint, the system reaches a stationary state, resulting
m a time independent flux.

The molecular equivalent of Nernst-Planck equation is [5]

= o= (kT[L2) (dCofldx) + (ZaeCof L) (dsfdx) 5)
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where £, is the frictional coefficient of ion of kind «.  Equation (5) is derivable
from equation (1), by neglect of all coupling ferms, 2,5 with a # 8, identi-
fication of £2,, with (C,/%,). and use of the limiting cxpression for chemical
potential u, of ion a

#a (%) = p 0 (T, P) + kT In Cq () + Zoeh (v) (®)

The frictional coefficient ¢, and the diffusion cocficient D, of a molecule
of kind a are related to cach other by Einstein's relation,

Lo = (KTIDy) ]
The equation of continuity for species o is given by the expression,
OC o) =7 . Js 4+ Jn (8)

where J,, is the matter flux. The quantily (3C,/d) represents time variation
of concentration of species o, which should vanish under conditions of
stationary state, since there can be no explicit dependance on time 7 The
term J, of equation (8) denotes the production’or consumption of species
o, when o participates in a chemical veaction occurring in the system. By
convention, when species a is a reaclani it is assumed consumed. In inhomo-
geneous diffusion barrier, the rate of the reaction is a function of position
variable and is called the rcaction rate profile. If « participates in a reaction
of the type
Ky
o~ ﬁ = Y (9)
ks
where &, and k, are raie constants, the rale of reaction is given by the
expression,
Jr () = ki Cy (x) Cp (x) -~ lesCy () (10)

When Jj == 0 the reaction is said to be in equilibrium. In equation (9) it
is expressed that « participates in a chemical reaction of association-
dissociation type. One can propose some other chemical reaction in which
a partivipates, for example, an enzyme catalyzed reaction. One has that
for all reaction mechanisms that one can visualize, in which o participates
under stationary state condilions,

7 S A Je () = 0. (1)

The important point is that the flux of species « is a function of position
variable x, in the membrane phase, when it participates in a chemical reac-
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tion which is not at equilirium at all locations in the membrane. Cne also
has the conclusion that if a specified species o does not participate in a che-
mical reaction occurring in the membrane phase. its flux is a constant, indepen-
dent of position variable. However, the magnitude of the flux of the speci-
fied species o, when it does not participate in a chemical reaction occurring
in the membrane phase will be different than the flux that would be observed
in the absence of such chemical reactions.

This change in magnitudes of flux of a species for a given boundary
values of concentration differenice arises due to altered resistance that the
membrane diffusion barrier profers for transport of molecules of this specified
species. This important point is made clear from the following expression
from molecular theory for the resistance that a molecule of kind o suffers
during transport when it is located at x,

L (x) = %’ Ce (¥) Lep (%) (12)

The parameters {,g (x) represents the contribution from molecules of kind
B present in the system, through intermolecular forces, to the resistance
suffered by 2 molecule of kind o present at x[6]. Evidently this contribution
is proportional to the number of molecules of kind B present. The summa-
tion is to be carried out over all species present in the system. Equation
(12) represents the variation of the positional dependence of frictional
coefficient of o. If a reaction of the type presented in equation (9) occurs
in the system and the reaction is not at equilibrium, then the concentrations
of the three species a, Band y vary with position. This variation is reflected
in the variation of the frictional coefficient resistance for the transport of
molecules of kind o, which is specified not to participate in the reaction.
Since the magnitude of flux of o is determined by the forces responsible for
its transport and the resistance, its flux is altered in the presence of chemical
reaction. Whether this resistance represented by frictional coefficient is
increased ot decreased at a specified location x, depends on the concentra-
tions of the species o, 8 and y at this location and the strength of interaction
parameters Lo, {¢.and {,,. These parameters called partial frictional co-
efficients can be either positive or negative since from molecular theory,
they are dependent on the pair potential energy of interaction weighted by
probability functions. Thus, magnitude of flux and permeability coefficient
P, for the species o gots altered. Thus, one can understand that the diffusion
barrier, which has been permeable for the species o, can becorme more per-
meable or less permeable and even impermeable to the same species @, in
the presence of chemical reactions. Since equation of continuity demands
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that flux of the species o should be independent of position, the collective
behaviour of concentration gradients and electrical potential gradients
should be such as to insure the constancy of fluxes of non-participating
species.

The quantitative computation of these effects is feasible from our current
knowledge of molecular theory. However, onc is beset with the difficulty
that experimental information about partial frictional coefficients are not
available for quantitative comparison. One requires knowledge about
concentration profiles of all species present in the system in addition to the
type of chemcial reaction occurring in the system,

PERMEABILITY COEFFICIENT

The phenomenological definition of permeability ccefficient is given
by the relation,

(dgs/dt) = P,A(Cr — Cpo) ay

where C,; and C,, are the stationary state concentrations of the substance
o in solutions on either side of the membrane phase. (dg,/df) represents
the rate at which substance o crosses the membrane barrier of area 4. The
dimensions of P, is, thus, cm. sec™t. The permeability coefficient P, is charac-
teristic of the substance and the membrane in question. Since concentra-
tion of substance ¢ in the aqueous phase C,, need not equal the concentra-
tion in membrane phase at x =0, C,(0), one introduces the equilibrium
partition coefficient K, for distribution of solute o between lipid and water
phases. Thus, permeability coefficients of two substances in the same
membrane expresscs the refative ease with which they are transported across

the membrane.
EQUATIONS OF ELECTRODIFFUSION
For ionic species in multicomponent systems, the expression for chemical
potential (¢f. eq. 2) is written as [7]
#a () = p® (T, P) + pa(Car Cp ... Cn) + Zoth 14)

where 1, (7, P) is the chemical potential (per molecule) in some defined
standard state, and pg (C, C ... Cy) is the composilion dependent part of
chemical potential. The precise evaluation of this composition dependent
part of chemical potential is the essential problem of thermodynamics of
mixtures. The variation of chemical potential of a specified component in
a mixture due to variation of concentration of another species is an unknown
finction. The total electrostatic potential ¢ (x) of equation (4) should satisfy
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the Poisson equation, and includes contribution to potential at x due to
presence of all charged species in the system and any externally applied
electric potential. In the case of ideal solutions, the composition dependent
part of chemical potential is by definition proportional to logarithm of iis
mole fraction. The logarithmic dependence on mole fraction arises from
the relation between entropy and probability. Only for a very dilute solu-
tion, one can approximate this expression for ideal solution as

wi=u® +ETInC; 1s)

where C; represents concentration of uncharged species 7. 'When one assumes
the validity of equation (15) and from (14) the Nernst-Planck equation is
obtained, An improved correclion due to Kirkwood [8] for the composi-
tion dependent part of chemical potential can be expressed in the form,

pe(Car Cp o Cu) = kTInCp 4 3 CpHug* (16)
2

where H.g* are integrals over the potential energy of interactions between
a molecule of kind o and a molecule of kind 8. Substitution of equations
(16) and (2) in (1) yields the fundamental relation for flux of an ionic
species as a function of concenlration and electrical potential profiles
in an inhomogeneous barrier. The resuiting Nernst-Planck type equation
includes coupling between fluxes of different species.

Under conditions of stationary states, the sum of forces over all species
should balance, which is expressed by the Gibbs-Duhem relation,

Z G =0 an

"I‘he gradient of electrochemical potential of a charged species « in an
inhomogeneous system is given by the expression,
(dpofeix) == KT (d In Cofdx) + Zoel' (x) + 5 Cp Hog* (18)
[
An expression for the same quantity obtained from molecular theory is
(ditaldx) = — (T L/C) + X Jglog 19)
8
One may verify the}t equation (19) satisfies equation (17) when summed over
all species present in the system. From equations (18) and (19), one identi-
fies that [9]

“Je = KTIL) CY A (ZaeCof Ly o
Jugaa = Haa.*ca/

Tplep = Hog*Cy' (20)
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In equation (20), the plausible assumption that the molecular integrals
H,,* and partial frictional coefficients £,, may be regarded as position
independent in the inhomogeneous diffusion barrier has been employed.
Thus, one observes the origin of Nernst-Planck equation and the manner
in which coupling between fluxes of different species should be taken into
account. The expression for the flux of a charged species ¢, is thus given

by

— Jala = KTC, + ZeeCal' + Z JslasCa @1)
Equivalently,
Cd 4 (ZaCalkTY Y = = (aLafkT) = (kT) 1 8 Hoo* CoCyf (22)

Equation (22) yields a formal expression for the relation between concen-
tration and electrical potential profile as

C, (x) = C,(Dexp [~ Z e/ \p/kT]
— (kTY Yexp {— Zaoh (WYAT}[Gulx) + 2 Fop (2]
G (x) = _r“ Jolaexp {Zed (xX)k T} dx

Fugld) = [ Ho* Co(x) C,f (¥ exp (Zaeh (/KT dx

I

§ T olaeCa () exp {Z o0 ()T} dx
P (x) -~ 4 (0) 23)
The expression for permeability coefficient of ionic species in the membrane,
P,, is given by

Pa = JaKu/[Cu (/7) e Cu (O)]

== J Ko {Co (0) [0n exp {— Zoe AY/KT} — 11}
Ko= Co(0)/Cqy = Co (N)/Coy
By =1 — [CaO) KTT exp (— Zpey OVATY{Go(h) + T Fop ()}
4

where # is the thickness of diffusion barrier. When there is no chemical
reactions occuring in the membrane phase, the expression (12) with the

assumptions that fluxes of all species and partial frictional coefficients are
independent of x, may be substituted in the intergrals of G, (x) and Fy, (x).

yax’;

fi
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Thus, one obtains an equation for permeability of « in the membrane involy-
ing only C,(x) and ¢ (x).

Equation (24) expresses the variation of permeability of ionic species
across biological membranes as a function of concentrations and electric
potentials, Recall that this is the fundamental concepi of * ionic theory’
in nerve excitation and cell physiology. The implication of equation (24)
is that the diffusion barrier, which is permeable to a specified ionic species
a under cerlain circumstances, can become impermeable for the same species
under different values of difference in eleciric potentials, concentration of
other species and existence of occurrence of chemical reactions. Under
these conditions, the system is capable of maintaining difference in concen-
tration of the specified ionic species under conditions of stationary states,
This is a characteristic of active transport systems [10].

AN EXaMPLE

Consider a system of (hree permeable ions, «, 8 and y transporting
across a diffusion barrier of thickness /A, and participating in ion-pair
formation reactions of the kind

kl
oy =3
key
ks
Bty =c¢ 2%
kd
where ky, ky, ky and k, are assumed position independent rate constants.
Imposing that Z, = Zg == — Z,, = |, the resulting ion-pairs are electrically
neutral. The two reactions rate profiles
T (%) = ko (%) Cy (%)~ kyCy (x)
Tea () = kyCa () € () — kyC, () (26)
and the five equations of continuity
QC,/or) = 4 Ju + (dJ,{dx) 7

determine the concentration profiles of this system. The electrical potential

profile is given by Poisson equation. From equations of continuity, one
has for stationary states that

— T =T = T (%)
Ty = I = Ty (3)
oy = Uy () + Ty ()] (28)
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Solutions of these reaction rate profiles are i general difficull. However,
if one invokes the plausible assumption that concentrations of neutral ion-
pairs, C; and C., are independent of position variable, and that reaction rates
and concentration profiles are analytic functions of position variable such
that they may be expanded in a Taylor series, the evaluation of reaction rate
profiles become simplified [11]. When the concentrationsat the boundaries
are C, (0) = 8 X 107* moles per litre, Cg(0) =2 x 10 2, C,{0) =3 x 10
Cy(hy =110 Cg(h) == 10 x 10" *and C, () = 5 % 10-2, and the rate
constants are k; = 2 % J0% ky =4 > [0* mole~! cm?* sec1, ks = 3 sec!
and k, = 2 sec’?, the reaction rate profiles can be computed as

S gy (X) = Sy S Spx?
Jpe (%) = Ty - Tox + Tyx? + Tox®

Sy == 1-433 x 1075 mole cm® sec™!

S = — 10 mole cm* sec™ !

S = — 2-8 X 107 mole cm~? sec~!

Ty =56 x 10®

T =16

T, =9-6x 107

T, = 6.4 x 101 (29)

In obtaining equation (29), it is assumed that membrane thickness is 1 x 109
cm, and that higher order Taylor expansion coefficients arc of decreasing
importance. The conditions that the reactions are confined to take place
within the membrane phase, yielding position independent values of con-
centrations of ion-pairs is utilized to terminate the Taylor series with finite
terms. The concentrations of ion-pairs satisfying the boundary values of
concentrations and rate constants are, respectively, C; == 1-122 > 10-% mole
em? and C, = 4 x 10-*mole cm~®. The concentration profiles of the three
ionic species consistent with the above assumed values are

Co (%) = ag + arx

Cp () = Dy + byx -+ byx*

Cy () = ¢y + o1x

ay = — 70 mole cm™, b, = 0, ¢, = 20 mole cm™*

by = 8 x 107 mole cm™? (30
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Thus, for the system under consideration, the reaction rate profiles
J () and Jp, (%) consistent with boundary values of reactants and the con-
dition that

om0 dx = 0= [ Jpo(x) dx @31y

and the imposed condition that concentration of neutral ion-pairs are position
independent are satisfactorily computed. inclusion ol higher order Taylor
expansion coefficients are necessary to satisfy the conditions mentioned
above, for different values of rate constants and boundary concentrations
of the reactants. It is possible 1o evaluate the concentration and reaction
rate profiles in these cascs, except thal the computation may be numerically
tedious.

TNELUENCE OF CHEMICAL REACTIONS ON FLUX OF A NON-PARTICIPATING SPECIES

Consider the system described in preceding section, with the additional
stipulation that i addition to the three ionic species «, £ and y, an inert
species 7 undergoes transport across the same membrane. The four fluxes
are computable in principle from the four simultancous relations,

—Jy= kT C]L) + (Z,eCol L)
FAC L) Valao -+ Tplpe -+ Tnlye |- Tyloe)

o =ua, Bory
— L Ly =kTC, -+ Cy ooy -+ Jplpy + Tolyy + Tl (32)

‘When the reactions specified in equations (25) do not occur in the membrane
system, the fluxes J,, Jp, J, and J, are constants independent of position
variable, x, in the system. Whether the reactions occur or not, the flux of
species 1, which does not participate in ihe reactions, is independent of
position variable. Its magnitude will be different, however, in the presence
of fluxes of other species and chemical reactions cccurring between thesce
species. Quantitative computation of this variation of flux and permeability
of such inert species is the vexing problem of biological transport.

The requirement from equations of continuity yields,

0= KTIC)" — (GO 4 1€, = (Coly/ [ E) Z Joly (ER)

Equation (33) expresses the manner m which concentration profile of #
adjusts to variation in frictional ceefiicients with position, intensity of intér-
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actions with other lransporting species, such that its flux is independent of
x, under conditions of siationary states. Equation (33) is valid when there
is no chemical reactions in membrane phase. When the reactions specified
in equations (25) occur in the membrane phase, one obtains in place of
equation (33), another equation of constraint,

0= (Terms in right hand side of equation (33))
— (Col L) Uy (Lag + Lo + Tan (Lgy + L] (34)

The influence of chemical reaction on fluxes of inert species are thus com-
putable from knowledge of partial frictional coefficients concentration pro-
files and electrical potential profiles of all species in the presence and in the
absence of chemical reactions. An example in which all such required inputs
for solutions of the set of equations (32) is provided in this communication.
Since flux of the inert species v is independent of position variable it suffices
to compute the flux at any convenient location in membrane phase, where
all required information for solution of equation (32) are available.

For the purpose of numerical computations, assume that the diffusion
coefficients D, (0) = 5 X 1077, Dg(0) =6 x 1077, D, (0} =10 X 10~7 and
D,(0) = 8 x 107 (expressed in cm?®sec !). The frictional coefficients of
the four species at 300° X, are (expressed in ergs cnr %sec), {, (0) = 82-825
x 1079, L (0) = 69:023 x 1079, £, (0)=41-4132 x10-*and {,(0) = 51- 7666
X 10~%, Defining the contributions to frictional coefficients of species o,
from molecules of the membrane system other than a, B, y and », as 4, =
X Cjlj,, and assuming these values as A4, (0) = 40-825 x 1079, A44(0)
H
= 39023 x 1079, 4, (0) = 21-4132 x 1077 and 4, (0) = 31-767 X 10-° one
has four equations relating the partial frictional coefficients which may be
expressed as

Zaa Zu.ﬁ gwy Zan [ Ca, (0) " 40 {

Lag Lag Loy e Cg (0) _ 30 | « 107

bay Loy Lyy Inm Cy (0 120 1

Lan Lon Lyn C, (0) . 20 \ (35)

where it is assumed that C,(0) == 3 x 10~°mole cni-®. The assumed values
of A, are significant fraction of {,(0). Insisting that Lo, Lup Zgps Loye 2nd
L,y are positive definite and that {,, and lg, are negative definite, one has
that the values, {,, = [gg=4 X 107, lapg =574 X 107, [ =—~1-5 X 10
Loy = — 8-976 % 1074, [,y = 17-784 X 1074, [y = 4-333 X 107, Loy = gy
=1x 10 and {y,=—1x10"* satisfy the set of equations (35).
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Ignoring the coupling terms and electrical potential terms. assuming
Fick’s law and linear concentration profiles, for the specified boundary con-
centrations, and diffusion coeflicients, the flux of the four species at location

=0, ar¢ computed as
Jy == — 0-35 x 10 *moles cm~* see !
Jg =+ 0-48 x 10
Jys=+0:20 x 10°*
4 0-40 x 10 (36)

i

The negative sign associated with the magnitude of flux indicate that flux
occurs in a direction of increasing x, i.e., from lefl hand side to right hand
side, while the positive sign denotes that flux has a direction from right to
left.

Using the assumed values of partial frictional coefficients when the
gradient of electrical potential at x = 0, ¥’ (0) equals zero, the computed
fluxes of four species using the set of four equations (32) in the presence
of chemical reactions {denoted by asteris) and in the absence of chemical
reactions (denoted by superzero) are listed in Table 1. One concludes from
the values listed in Table 1, that inclusion of coupling terms affects the magni-
tude and direction of fluxes of species rather seriously.

TaBLE 1

Computed values of fluxes af x = 0, using equations (32) when ' (0) equals zere

S = — 7-8139 x 101 S o= - 28375 5 1074
Jg¥ =~ 4-8638 x 1071 Jp¥ = — 116010 x 107%
Iy = 13-1947 x 10 St = 36059 ¢ 107
It = — 1:5762 x 10~ Sy ¥ e — 01952 x 107}
kTC,' (0) = -~ 2-8989 x 10-12 ergs mole cm™

KTCy' (0) = 3-3130 % 10722
KTCy' (0) == 0-8283 » [0-12
KTC, (0) = 1-6565 x 1042
KTCy*0) = 0

.The flux of species o has the same direction as dictated by its concen-
tration gradient. However, its magnitude (% 10%) has increased from 2
value of — 0-35 given by Fick’s law, to — 78 when coupling terms are
included in the absence of chemical reaction and to — 28 in the presence
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of chemical reactions. The flux of the inert species o, (Jy X 10%), has
changed both its magnifude and direction from a value of 0:40 to —[-57
in the absence of chemical reaction and to a value of (-2 in the presence of
chemical reactions in which this species does not participate. The direction
of flux of 7 is evidently in a direction opposed to that prescribed by its
concentration difference across the membrane barrier. This is active
transport. Thus for this system one will conclude that both v and B are
actively transported while a and ¢ arc passively (ransported. However,
these values listed in Table |, are based on validity of assumed values of
partial frictional coefficients and restricted to the assumed case when ¢’ (0)
equals zero.

EVALUATION OF ELECTRICAL POTENTIAL GRADIENT

In order to compute the fluxes of the four species using the set of four
equations (32). one needs the values of 4’ (0) mn the presence and absence
of chemical reactions. Substitution of equation (18) in (17) and inte-
gration once of the resultant yields.

T[Co (x) + Cg (%) + Cy () + Cp ()] + 3 T H,,Cp (x)?

+ ¥ %‘ H,5C, (x) Cs (%)
P
= (/8=) {§ (x)}* -- constant. an
Evaluation of the value of expression (37) at x =0, and subtraction
yields,
AT X {Co(x) — Co (O} + 5 2 Hyp {C, () — C, (97

+ X %‘ Hs {Cy (x) Cs (x) — Cp (0) C5 (035
b

= (&/8m) [ (0)* —4" (0)7]
P () = P (0) — (Bmefe) o (x) -+ £g (x) — 1, (0}

1.{(x) = ] C, (x)dox. (38)

Therefore,
(0 — ¢ (02
= — Bmef) ¥ 0) I I, (x)Z, + (16x2e¥ D) { 3 I, (X} Z,}*
39
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Thus, one obtains,

kT 5 AC, (1) + (Hys terms)

=—ef (0 Z L (W Z, - Que¥e} { 3 1, () Z,3* (40)

where for the system under consideration, AT 5 AC, (A) equals 174656
x 10° ergs cm3, ¥ I, (h) Z, =95 x 107" moles cm™ in the absence of

chemical reactions. When contributions from unknown H,5 terms are
igoored, one obtains,

e’ (0) = 414815 x 10-5 esu®em? E5))
when there is no chemical reactions.

One observes that Z,eCuy’ (0) is of the order of 3-3171 x 10~* esu?
mole cm®, while k7' C,’ term equals — 2-8989 x 10 12 ergs mole cor?,
Since (esu?fergs) has dimensions of em, one observes that the contributions
from gradient of electric potential lerms dominaics over contributions from
concentration gradient terms, when H,s terms are ignored. In the presence
of chemical reactions, the value of (2me*/¢) { X [, (h) Z,}* assumes a value

of 4:56859 x 107, while AT 5 AC, (h) term equals 01746 x 10°. The
value of e) (0) in the presence of chemical reactions is computed to equal
e’ (0)* = 1-750349 % 107® esu® cm—2 (42)

The computed values of fluxes of four species using equations (32) and the
above values of e’ (0) both in the presence and absence of chemical reactions is
listed in Table I

TaABLE 11

Computed values of fluxes at x = 0, using equations (32) and the values of
e’ (0) presented in equations (41) and (42)

T = 4 03121 X 102 o o 0- 14335 x 1073

Jg¥ = 3-2917 x 102 1-3676 > 107°
I = —15-4289 x 102 — 6-4433 x 103
S = 1-4686 x 102 0-5728. < 1073+
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Discussion

The main objective of this communication is to provide a review of the
interesting problems of biological membrane transport and a theoretical
basis for the postulates of physiology that permeabilities of ionic and neutral
species are dependent on numerous factors such as electrical potential
gradients, concentration profiles and chemical reactions occurring in the
membrane phase. The influence of chemical reactions on the direction and
magnitude of flux of a non-participating species is analysed on the basis of
equations of continuity and a numerical example of this paper.

The manner in which quantitative computation of fluxes of all species
in question in the presence and in the absence of chemical reactions can be
accomplished is illustrated by the numerical example. Assuming that con-
centration gradients of ion-pair molecules in the membrane phase can be
ignored, the concentration profiles of charged species participating in the
chemical reactions (25) for specified boundary concentrations, rate con-
stants are satisfactorily evaluated by the procedure indicated in the paper.
Having thus a well-specified system, the influence of chemical reaction, con-
centration profiles of these species on the flux of a non-participating species
is presented by the partial frictional coefficient formalism. Critically, the
numerical estimation of ¢ (0) suffers from lack of knowledge of the mag-
nitudes of contributions from H,; terms. In order to compromise with
our current status of knowledge, computed fluxes when ¢’ (0) equals zero
and when H,s terms can be ignored are presented in this paper.

One need not accept the estimated values of partial frictional coefficients
presented in the numerical example. Given the existence of partial frictional
coefficients, and variation of diffusion coefficients with position, the manner
in which a phenomenon like active transport can arise in a biological inhomo-
geneous membrane phase is illustrated by the computed fluxes.
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