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APBSTRACT
The stress-displacement problem of a rigid circular foundation on a cross
anisotropic half-space is presented. The distribution of the contact pressure and
the foundation settlement are obtained. The contact pressure distribution is seen
to be independent of the elastic constants.

1. INTRODUCTION

This has been established by several investigators that natural soils,
in particular, overconsolidated clays, can be better represented by a trans-
versely isotropic (cross anisotropic) elastic half-space rather than an iso-
tropic one [1]. Michell [2] obtained solution for the case of a point load
acting at the surface of a cross anisotropic medium whereas particular
cases of cross anisotropy were considered by Wolf [3], Westergaard [4] and
Barden [1]. Herein, the stress-displacement problem of a homogeneous
cross anisotropic and elastic haf-space under the action of a rigid foundation
is presented.

2. MATHEMATICAL FORMULATION

Let a rigid circular foundation of radius R, rest on the surface of a cross
anisotropic half-space, the origin of the cylindrical coordinates r and z
being at the centre of the contact surface. Further, it is assumed that the
total load on the foundation is P and the equivalent uniformly distributed
load at the contact surface is p.

] Starting from the expressions of stresses and displacements expressed
in terms of stress-function [5], using Hankel transforms [6] and following
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the same procedure as outlined m Snedon [6), the expressions for stresses
and displacements become
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where oy, op, 04 are normal stresses along vertical, radial and tangential
directions ; rz is the shear stress along a vertical plane; w and v are vertical
and radial displacements; 4, B are constants to be evaluated from boundary
conditions ; Jq (x) is the Bessel function of the first kind of the order »,
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T 4d
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and E, 7, Grz, pyr and pyp are clastic constants defined as
E == Young’s modllus along any vertical direction;
nE = Young’s modulus along any horizontal direction ;

urr = Poisson’s ratio for sirain in any horizontal direction due to a
horizontal direct stress;

urz = Poisson’s ratio for strain in any vertical direction due to a
horizontal direct stress and

Gz = Shear modulus in a vertical plane.

Boundary conditions:

The case of a rigid foundation leads to the following mixed boundary
conditions :

(Tradeeo =0, 7 >0; Wz = W, 0<< r< Ry and
(0)z=s == 0, r > Ry, (10)
where W is the foundation settlement,
3. SoLuTiON

The above mixed boundary conditions lead to the following dual inte-
gral equations

T x1 A(x)Jy (xR) dx = WR#nEC,, 0< R< 1;

?A(x)]o(xR) dx  =0,R>1 {1
where

x=1Ry, R=rRy A=A 12
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The solution of the above dual relations (eq. (13)) is [7]

24/25 e . ,

A(x) = J{T X {'\/ — xS (x) {' Ry*WniC, V}]aly_z
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Using the condition of static equilibrium and after due simplifications,

eq. (14) gives

A() = —P RA(l — as,®) v/d

(5 — 5 (ac = d) S0 * as)

Contract pressure distribution :

The distribution of contact stress is obtained from eq. (1). As a first
step, z is set t, zero, then B is expressed in terms of A4 (x) via the first boundary
condition and finally A (x) is substituted from eq. (I5). This gives

(OZ)Z=0 = 2,\/1 Rz i (16)

-Equation (16) shows that the distribution of contact stress under a rigid
foundation on an anisotropic half-space is independent of the elastic constants
and is same as that for an isotropic half-space [8].

Surface settlement:

The expression for surface settlement obtained same in the way as the
contact stress is

W= ",fPRo Vd (sy + 55) [ - ,% ,urzj . amn

The expression for W at the centre of a uniformly loaded area can be shown
to be

w= PR a(s + s [1 - 17%1?‘71) e . (s

Comparing egs. (17) and (18) it may be seen that as in the case of an
isotropic half-space, the surface settlement of a rigid foundation is «/4 times
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the surface settlement at the centre of a perfectly flexible foundation [8],
For an isotropic material we have

E
7= 1, ppy = frz = s Gy = 3 (‘]7;‘, ’L) » (19)
which gives

2R, (1 —pd
W= 25220 D
a well-known result [8]

4. CONCLUDING REMARKS

The distribution of contact stress beneath a rigid circular foundation is
independent of the elastic constants and is same as that corresponding to
an isotropic medium. As for isotropic medium the setitlement of a rigid
foundation on a cross amisotropic medium is /4 times the settlement at the
centre of a perfectly flexible foundation.
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