A NOTE ON A RIGID FOUNDATION ON A CROSS ANISOTROPIC HALF-SPACE

M, NAYAK* AND R. J. SRINIVASAN**

(Department of Civil Engineering, Indian Institute of Science, Bangalore 560012) Received on February 10, 1974 and in revised form on November 11, 1974

Key words: Anisotropic, contact pressure, displacement, elastic, rigid foundation, settlement, stress.

ABSTRACT

The stress-displacement problem of a rigid circular foundation on a cross anisotropic half-space is presented. The distribution of the contact pressure and the foundation settlement are obtained. The contact pressure distribution is seen to be independent of the elastic constants.

1. INTRODUCTION

This has been established by several investigators that natural soils, in particular, overconsolidated clays, can be better represented by a transversely isotropic (cross anisotropic) elastic half-space rather than an isotropic one [1]. Michell [2] obtained solution for the case of a point load acting at the surface of a cross anisotropic medium whereas particular cases of cross anisotropy were considered by Wolf [3], Westergaard [4] and Barden [1]. Herein, the stress-displacement problem of a homogeneous cross anisotropic and elastic haf-space under the action of a rigid foundation is presented.

2. MATHEMATICAL FORMULATION

Let a rigid circular foundation of radius R_0 rest on the surface of a cross anisotropic half-space, the origin of the cylindrical coordinates r and zbeing at the centre of the contact surface. Further, it is assumed that the total load on the foundation is P and the equivalent uniformly distributed load at the contact surface is p.

Starting from the expressions of stresses and displacements expressed in terms of stress-function [5], using Hankel transforms [6] and following

Present Address :

^{*} Foundation Engineer, Engineering Consultants, 64 B. B. Ganguli Street, Calcutta 700 012.

^{**} Assistant Professor, Indian Institute of Technology, Madras 600 036.

the same procedure as outlined in Snedon [6], the expressions for stresses and displacements become

$$\sigma_{z} = \int_{0}^{\infty} \eta^{4} \{ (s_{1} (c - ds_{1}^{2}) A \cdot \exp(-s_{1}\eta z) + s_{2} (c - ds_{2}^{2}) \cdot B, \\ \times \exp(-s_{2}\eta z) \} J_{0} (\eta r) d\eta,$$
(1)

$$\sigma_r = - \int_{0}^{\infty} \eta^4 \{ s_1 (1 - a s_1^2) A \cdot \exp(s_1 \eta z + s_2 (1 - a s_2^2) B \}.$$

$$\times \exp\left(-s_2\eta z\right) J_0\left(\eta r\right) d\eta + \frac{1-b}{r} \int_0^\infty \eta^3 \left\{s_1 A \exp\left(-s_1\eta z\right)\right\}$$

$$+ s_{2} \operatorname{B} \exp \left(- s_{2} \eta z \right) J_{1} \left(\eta r \right) d\eta, \qquad (2)$$

$$\sigma_{\mathbf{r}} + \sigma_{\theta} = \int_{0}^{\infty} \eta^{4} \{ s_{1} (2as_{1}^{2} - b - 1) A \cdot \exp(-s_{1}\eta z) + s_{2} (2as_{2}^{2} - b - 1) B \exp(-s_{2}\eta z) \} J_{0} (\eta r) d\eta,$$
(3)

$$\tau_{rz} = \int_{0}^{\infty} \eta^{4} \left\{ (1 - as_{1}^{2}) A \cdot \exp\left(-s_{1}\eta z\right) + (1 - as_{2}^{2}) B \cdot \exp\left(-s_{2}\eta z\right) \right\} J_{1}(\eta r) d\eta,$$
(4)

$$w = \frac{1}{nE} \int_{0}^{\infty} \eta^{3} \left\{ (m_{1} + m_{2}s_{1}^{2}) A \cdot \exp(-s_{1}\eta z) + (m_{1} + m_{2}s_{2}^{2}) B \right\}$$

$$\times \exp(-s_{2}\eta z) J_{0}(\eta r) d\eta, \qquad (5)$$

$$u = -\frac{(1 + \mu_{\gamma\gamma})(1 - b)}{nE} \int_{0}^{\infty} \eta^{3} \left[s_{1}A \cdot \exp\left(-s_{1}\eta z\right) + s_{2}B \right]$$

$$\times \exp\left(-s_{2}\eta z\right] J_{1}(\eta r) d\eta, \qquad (6)$$

where σ_z , σ_r , σ_{θ} are normal stresses along vertical, radial and tangential directions; $\tau_{\tau z}$ is the shear stress along a vertical plane; w and u are vertical and radial displacements; A, B are constants to be evaluated from boundary conditions; $J_n(x)$ is the Bessel function of the first kind of the order n,

$$a = -\frac{\mu_{rz}(1 + \mu_{rr})}{n - \mu_{rz}^2}; \quad b = \frac{\mu_{rz}^2 + n\mu_{rr}^2 - nE\mu_{rz}/G_{rz}}{n - \mu_{rz}^2};$$

$$c = -\frac{\mu_{TZ}}{n} \frac{(1+\mu_{TT}) + nE/G_{TZ}}{n-\mu_{TZ}^2}; \quad d = \frac{1-\mu_{TT}}{n-\mu_{TZ}^2}; \tag{7}$$

I.I.Sc.--4

M. NAYAK AND R. J. SRINIVASAN

$$s_1, s_2 = \sqrt{\frac{(a+c) \pm \sqrt{(a+c)^2 - 4d}}{2d}};$$
 (8)

$$m_1 = -cn - (1 + b) \mu_{rz}; m_2 = dn + 2a\mu_{rz}; \qquad (9)$$

and E, n, G_{rz} , μ_{Tr} and μ_{rz} are clastic constants defined as

$$E =$$
 Young's modulus along any vertical direction;

 μ_{rr} = Poisson's ratio for strain in any horizontal direction due to a horizontal direct stress;

$$\mu_{TZ}$$
 = Poisson's ratio for strain in any vertical direction due to a horizontal direct stress and

 G_{rz} = Shear modulus in a vertical plane.

Boundary conditions:

The case of a rigid foundation leads to the following mixed boundary conditions :

$$\begin{aligned} (\tau_{72})_{\mathbf{z}=0} &= 0, \ r > 0; \quad (w)_{\mathbf{z}=0} = W, \ 0 < r < R_0 \text{ and} \\ (\sigma_z)_{\mathbf{z}=0} &= 0, \ r > R_0, \end{aligned}$$
(10)

where W is the foundation settlement.

3. SOLUTION

The above mixed boundary conditions lead to the following dual integral equations

$$\int_{0}^{\infty} A(x) J_{0}(xR) dx = WR_{0}^{4} nEC_{1}, \ 0 < R < 1;$$

$$\int_{0}^{\infty} A(x) J_{0}(xR) dx = 0, R > 1$$
(11)

where

$$x = \eta R_0, \quad R = r/R_0, \quad x^4 A = A(x)$$
 (12)

and

$$C_1 = \frac{1 - as_2^2}{(m_1 + m_2 s_1^2) (1 - as_2^2) - (m_1 + m_2 s_2^2) (1 - as_1^2)} .$$
(13)

162

Rigid Foundation on Cross Anisotropic Half-Space

The solution of the above dual relations (eq. (13)) is [7]

$$A(x) = \frac{2\sqrt{2x}}{\pi} \left\{ \sqrt{-x} J_{-1/2}(x) \int_{0}^{1} R_{0}^{4} Wn EC_{1} \frac{\gamma dy}{\sqrt{1-y^{2}}} + \int_{0}^{1} \frac{y}{\sqrt{1-y^{2}}} \left[\int_{0}^{1} R_{0}^{4} Wn EC_{1}(xt)^{3/2} J_{1/2}(xt) dt \right] dy \right\}$$
(14)

Using the condition of static equilibrium and after due simplifications, eq. (14) gives

$$A(x) = -P \frac{R_0^4 (1 - as_2^2) \sqrt{d}}{2(s_1 - s_2)(ac - d)} \sin x.$$
 (15)

Contract pressure distribution:

The distribution of contact stress is obtained from eq. (1). As a first step, z is set t_0 zero, then B is expressed in terms of A(x) via the first boundary condition and finally A(x) is substituted from eq. (15). This gives

$$(o_2)_{Z=0} = -\frac{p}{2\sqrt{1-R^2}} \,. \tag{16}$$

Equation (16) shows that the distribution of contact stress under a rigid foundation on an anisotropic half-space is independent of the elastic constants and is same as that for an isotropic half-space [8].

Surface settlement:

The expression for surface settlement obtained same in the way as the contact stress is

$$W = \frac{\pi}{4} \frac{PR_0}{E} \sqrt{d} \left(s_1 + s_2 \right) \left[1 - \frac{a(1-b)}{n(ac-d)} \mu_{rz} \right].$$
(17)

The expression for W at the centre of a uniformly loaded area can be shown to be

$$W = \frac{PR_0}{E} \sqrt{d} \left(s_1 + s_2 \right) \left[1 - \frac{a(1-b)}{n(ac-d)} u_{rz} \right].$$
(18)

Comparing eqs. (17) and (18) it may be seen that as in the case of an isotropic half-space, the surface settlement of a rigid foundation is $\pi/4$ times

163

•

the surface settlement at the centre of a perfectly flexible foundation [8]. For an isotropic material we have

$$n = 1, \mu_{rr} = \mu_{rZ} = \mu, \ G_{rZ} = \frac{E}{2(1+\mu)},$$
 (19)

which gives

$$W = \frac{2pR_0(1-\mu^2)}{E}\frac{\pi}{4},$$

a well-known result [8]

4. CONCLUDING REMARKS

The distribution of contact stress beneath a rigid circular foundation is independent of the elastic constants and is same as that corresponding to an isotropic medium. As for isotropic medium the settlement of a rigid foundation on a cross anisotropic medium is $\pi/4$ times the settlement at the centre of a perfectly flexible foundation.

REFERENCES

[1]	Barden, L.	••	Stresses and displacements in a cross anisotropic soil. Géotechnique, 1963, 13, 198-210.
[2]	Michell, J. H.		The stress in an aerotropic elastic solid with an infinite plane boundary. Proceedings of London Mathematical Society, 1900, 32, 247-258.
[3]	Wolf, K.		Ausbreitung der Kraft in der Halbebne und im Halbruum bei anisotropem Material. ZAMM, 1935, 15, 249-254.
[4]	Westergaard, H. M.		A Problem of Elasticity suggested by a Problem in Soil Machines: Soft Material Reinforced by Numerous Strong Horizontal Sheets, Macmillan, New York, 1938.
[5]	Løkhnitskii, S. G.		Theory of Elasticity of an Anisotropic Elastic Body, Holden Day, Sanfrancisco, 1963, pp. 347-354, 377-383.
[6]	Sneddon, I. N.	••	Fourier Transforms, McGraw-Hill, New York, 1951, pp. 48-70, 450-510.
[7]	Sneddon, I. N.		Mixed Boundary Value Problem in Potential Theory, John Wiley, New York, 1966, pp. 80-133.
[8]	Timoshenko, S. and Goodier, J. N.		Theory of Elasticity, McGraw-Hill and Kögakusha, Tokyo, 1951, pp. 343-398.