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A second order linear d@erential equation with random coescients is studied. 
here with reference to the distribution of eigenvalues. The raizdom coeficient is 
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a partial differential equation for the joint density function of the eigenvalues i s  
derived. 

Keywords: Random Vibrations, eigenvalues, Browuian motion, I t o  Calculus, diffusion 
equations. 

Eigenvalue problems are of great interest in mathematics, physics 
and engineering. Though much attention has been given in the literature 
to deterministic problems, research on random eigenvalue problems is of 
recent origin. A typical example in this connection is the determination 
of the probability distribution of the eigenvalues of a string with a random 
mass distribution. This problem has been previously attempted by Boyce 
and his associates [I, 2, 31. Two methods, styled ' honest ' and 'dishonest ' 
have been used to arrive at some interesting results for the eigenvalues of 
a random string. Under the ' honest ' methods the classical perturbation 
and the Fredholm integral equation approach have been discussed. The 
integral equation method leads to bounds on the moments of the eigen- 
values. This has also been presented in a recent, book by Bharucha-Reid 
[4]. In the ' dishonest ' approach some convenient, but questionable, 
assumptions regarding the statistical dependence of the solution with. the 
random process appearing in the governing differential equation are 
introduced to obtain some approximate results. 
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In the present work we study the eigenvalue problem associated with 
a linear second order differential equation with a random coefficient. Such 
an equation arises in the study of free vibration of a string with random 
mass distribution. Our method differs in a substantial way from those 
employed in earlier works on the subject [I, 2, 3, 41. We first convert the 
problem to that of studying the zeros of the solution of an initial value 
problem with a random coefficient. Next, when this coefficient is a function 
of the standard Brownian motion we reduce the problem to the deter- 
mination of the solution of a first order Ito stochastic differential equation. 

In the next section the concept of a random eigenvalue is defined via 
two approaches and their equivalence is established. In section 3 the initial 
value approach is discussed. In section 4 we derive a partial differential 
equation leading to the probability distribution of the eigenvalues when the 
random coefficient arises via Brownian motion. The paper ends with 
section 5, where some remarks and further problems arising out of this work 
are presented. 

Let us consider the equation 

+ ha (w) [I + ef (x, W)] y (x, 4 = 0 

with boundary conditions 

y (0, 0) = 0 = y (L, a). 

Here, { f (x, a); 0 < x < L} is a stochastic process deiined on some proba- 
bility space (Q, 5, P) and E > 0 is a fixed number. We are interested in 
finding a stochastic process i) (x, a); 0 < x < L} and a random variable 
h (w) on (Q, 5, P) such that equations (1) and (2) hold for almost all o. 
Herein, we discuss the determination of only h (a). 

Approach I 

Consider the system 

with 
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where A is a parameter. It is well known from the existence theory of 
merential equations that for any reasonable say continuous in x for 
host all w ,  there exist a unique solution to equations (3) and (4). Let 
us denote this by y ( x ,  w, A). Consider now the equation 

y (L, w ,  A) = 0 (5) 

in A$. All solutions of this equation will be called the eigenvalues of equa- 
tions (1) and (2). It is a standard result in Sturm-LiouviUe theory [5] that 
when [I + E f (x,  w)]  is nonnegative for all x and w the solution of equa- 
tion (5) is a countable set of nonnegative real numbers and can be arranged 
in increasing order {An2 ( w ) ;  n = 1, 2 . . .). 
Approach 2 

Let y (x, w,  A) be as in approach 1. For every k e d  X and w consider 
the zeros of the fmction y (x, X a ,  w). It is again a consequence of the 
Sturm-Liouville theory that these are countable and nonnegative and can be 
arranged in increasing order, say { Zn (A2, w ) ;  n = 1, 2 . . -1. Also, it is 
known that for every n, 2, (A2, w )  is non-increasing in A2. Let Ana* (u) 
be the unique solution of the equation 

Z, (An2* (w),  w )  = L (6) 

Then, {An2* ( w )  ; n = 1 , 2  . . .) will be called the eigenvalues of equations 
(1) and (2). 

It turns out that both the above deGtions lead to  the same set of 
eigenvalues. That is, we have the following. 

Lemma 1 

Assume that [I + E f (x, w)] is nonnegative and continuous in x for 
almost all w. Then for every n: h2 (w)  = An2* ( w )  almost surely. 

Proof.-Consider first the case n = 1. The function y [x, w, A? (w)]  

is the solution corresponding to the first eigenvalue and hence has no zeros 
in the open interval (0, L) [5] .  Thus Z, [AI2 (w) ,  W] = L. On the other 
hand AL2* ( w )  is the unique solution of the equation 

2, [A," ( a ) ,  w ]  = L 



NOW, observe for a general 12 we need lo use the fact that the function 
Y [x, w ,  A ,~ (w)]  has exactly (n - I) zeros in the open interval (0, L). 

It will be noted that whereas approach 1 is natural and intuitive it is 
approach 2 that will prove useful. This is primarily because of the identity 

P { w :  A n Z ( w ) < t ) = P { w :  A n z * ( ~ ) < t ) = P { w :  Z n ( t , w ) < L } .  

The last function in this equation is in terms of the n-th zero of the stochastic 
process { y  (x, w,  t ) ;  x 2 01. 

Now, let us make the so called Prufer substitution [5] 

y (x, U ,  A) = R sin 4 
y' (x, w,  A) = R cos + (9 

Here R and 4 are functions of x, w  and A. In .terms of R and 4 equations 
(3) and (4) become 

and 

4 ( 0 ) = 0 ;  R ( 0 ) = 1 .  

From the nondecreasing nature of + as a function of x it is obvious that the 
n-th zero of y (x, w,  A) is the same as the root of the equation + (x)  = nn. 
That is Z ,  (A, w) is the random variable satisfying the equation 

Thus, the study of { Z ,  (A, o); n = 1, 2 . . .)reduces to the study of the 
process 4 (x, o, A). Further, since 4 (x) is nondecreasing it follows that 

p { z n  (A w)  < t )  = P{+ ( Z n  (A, w), w, A)} < 4 (t ,  w ,  A) 

= P  {nw < 4 (t ,  w,  A)}. (11) 

Hence, in order fo find the marginal distribution of h2 ( w )  it sufices fo finfind 
the margfnal distribution of 4 (t, w, A) for every fixed t and A, . 
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Equation (8) may be recast as 

Now, if it is assumed that f (x, w)  = a (w (x, w)) where {w (x, w); O <  .v)- 
is the standard Brownian motion, then we may think of 4 (x, w, A) as the 
unique nonanticipating solution, in the Ito sense 161 of tlre integral equation 
(12). Thcn it follows the vector process {4 (x, w, A), w (x, w), r > 0) is 
Markov. It may be noted here that in order to validate the results of the 
Sturm-Eionville theory involed in the previous sections, a (u. (w ,  x)) should 
be such that (1 $- E a (W (x. w))] is nonnegative for all x > 0 with probability 
one. 

Let p (x, 4, w) denote the joint density of {4 (x, w,  A), w (x, o)} given 
that 6 (0, W ,  A) = 0 - w (0, a). If If($, W) is any twice continuously 
differentiable function of 4 and w ,  then we see by Ito's formula [6] that 
y (x,  w )  = H (4 (x, w, A), w (x, o)) is a stochastic integral and its dscrential 
is given by 

where 

Now, by taking expectations we get 

EH (4 (x, a, 9, w (x, w) )  

+ 3 H02 (+ (4 w @))I du. 

This leads to a coiiclusion that the so called infinitesimal generator of the 
above vector process is the differential operator 
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on the class of twice continuously differentiable functions. In particular, 
the density function p (x, 9, w, A) satisfies the partial differential equation, 
generally called the backward equation ; 

with the initial condition 

p (O,$, w) = 6,814~. 

This equation, hopefully, could be solved by standard numerical procedures. 
This, we feel, is a significant reduction in the solution of the random eigen. 
value problem posed at the beginning in as much as thnt the exact marginal 
distribution of the rmdom eigenvalues are determined completely ,from the 
solution of the above partial d~fferentiai equation. 

It may be further noted here that the argunlent iu equation (11) could 
be generalized to yield the jolnt dlstribut~on of the eigenvalues in terms 
of the joint distribution of 

This density can be found in terms of the transition probability of the vector 
Markov process {$ (tl w,  A), w (t, o)). In turn, the transition probability 
density p (t, A, wl, 4,, w3, which 1s the conditional density of {$ (t ,  a), 
w (f, w)) given 4 (0, w )  = $1 and w (0, w )  = w,, satisfies equation (16) 
with the initial condition 

It has been demonstrated that many of the results of the deterministic 
Sturm-Liouville theory could be used beneficially in the stochastic case. 
J ~ I  case the coefficient comes from a Brownian motion, the transition probabi- 
lity can be exploited to great advantage in studying the statistical proper- 
ties of the eigenvalues. For example, we note that 

In the deterministic case it is known that A, grows linearly with n. The 
above fornula may help in showing the same for EX,. 
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Numerical methods may have to be employed in solving equation (16), 
since closed form solutions are extremcly co~nplicated, if at all available, 
for such partial difkrential cquatiol~s. It should be of interest to study 
the solution,' at least for some special cases like a = wZ. 
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