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ABSTRACT

Following the approximate method given by Berger, the author has made an
attempt to study mainly the amplitude frequency characteristic of a thin anisotropic
right-angled triangular plate of constant thickness freely vibrating transversely and
non-linearly on an elastic foundation. Applying Galerkin procedure a non-fincar
second order differential equation for the unknown time function is obtained and
it is solved in terms of Jacobian elliptic functions. Relative period of linear and non-
linear oscillations also are graphically represented against relative amplitude to com-
pare the general nature of variation with the result obtained by Iwinski and Ismail
based on Von Kdrmdn equation.
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1. INTRODUCTION

An approximate method for investigating the large deflection of initially
flat isotropic plates has been proposed by Berger [!]. Essentially this
method is based on the neglect of the second invariant of the middle surface
strains in the expression corresponding to the total potential energy of the
system. An application of this technique to the case of orthotropic plates
has been offered by Iwinski and Nowinski [2], and further boundary value
problems associated with circular and rectangular plates have been investi-
gated by Nowinski [3]. Large deflections of circular and rectangular plates
resting on elastic foundations have been investigated very elegantly by
Sinha, S. N. [4] following the techngiue offered by Berger. Nash and
Modeer [5] found the large amplitude free vibrations of rectangular and
circular plates applying this approximation of Berger. Nowinski and
Ismail [6} investigated the large amplitude free vibrations of an orthotropic
triangular plate, without elastic foundation, based on von Karman equation,
and graphically exhibited the result, ’
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In this paper a dypamic field equation, governing Ilarge transverse
deflections having rectangular co-ordinates, is established by adopting
Berger’s approximated method, and the solution is subsequently obtained
by applying Galerkin procedure.

The governing equation arrived at in this paper does not explicitly
contain any mass term except the average density of the material of the
plate. Thus the equation may be considered independent of the mass of
either the plate or the elastic foundation.

The present author’s endeavour is mainly to study the amplitude fre-
quency relation of non-linear free transverse oscillations of an orthotropic
right-angled triangular plate placed on an elastic foundation. The ratio
of the linear and non-linear periods is also plotted against relative ampli-
tude to make a qualitative comparison with the results obtaned by
Nowinski and Ismail [6].

In a variety of situations, motions may be generated which lead to
vibrations with large amplitudes. These are of importance in elements
such as plates whose deformational xesponse is significantly sensitive in
the direction of smaller dimension.

Problems, Equations, Boundary Conditions and Graphical Representations
of Results Obtained with Physical Explunations.

2. FREE LARGE AMPLITUDE TRANSVERSE VIBRATIONS

The right-angled elastic plate (Fig. 1) is of constant thickness #and has
sides of length @ and 4. Let x, y be the rectangular co-ordinates, the origin
being at the vertex of the right-angle and the axes are along the sides. The
plate is made of rectilinearly orthotropic material with axes parallel to the
axes of co-ordinates. The transverse deflections are assumed to be of the
order of the magnitude of the plate thickness. The elastic character of
any layer may not be isotropic but only symmetrical with respect to the
normal.

By adding the potential energy of the foundation reaction to the energy
expression containing the strain energy due to bending and stretching of the
middle surface of the plate and neglecting the second invariant of the
middle surface strain e,, we get
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where the first invariant of the middle surface strain is defined by
du YR YLLANEN Y22.4%
o=k 5a(5) +255) @

and where,

h = plate thickness,
D, Dy = flexural rigidity along the x and y axes, respectively,

Dyy = Qg, where G = Modulus of elasticity in shear,

D, = E" K312, E" = Young’s modulus in y-direction,
W = deflection normal to the middle surface,

u, v = displacements along x and y axes,

Ky = modulus of the foundation,
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FiG. 1. Geometry of the Elastic Plate.
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The kinetic energy of the plate is given by
}’/l Yy - o '

Te="5 f f(u + v+ W) dxdy 3)
where p = average density of the plate, and the dots represent the derivatives
with respect to time.

It is now possible to form the Lagrangian function

L=T-V @

and according to Hamilton's principle

5[ Ldt =0 (3

and if we set

A==} Lar )
ta

then
84 = 0. o)
Thus we have,
A= [ Tdt — [ Vdt. (8
Applying Euler’s differential equations of variational poblems and
neglecting inertia effect in the plane of the plate, we obtain,

WW | 2(Dy 2Dy OW DyWW K
et D ST A

oxt ax2opr U Dy
12c (W W 12 a2
- F(Sﬂ kg ) O+ s L/ ©
where
-2 PH

I T w0
and

a=c-f0 a

¢ = normalised constant of integration.
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For clamped edges, according to Nowinski and Ismail {6], the condi-
tions imposed on the boundaries are

W =0 and W, , = 0 for any time 2, 12
n == normal to the contour.

The boundary conditions given by equation (12) may be satisfied by
the configurations of the forms, [4” being a constant],
&

w0 =4[ x(1-E=)+sin ¥ G0 a3
v(x,)/,t)r—%l[y(l—gﬂ%)-‘rsinzzy]H(t) (14)
wesnn=xy(1-~1)F0 as)

We have also,
u=0 at x=10 1

v=10 at =0 ]
Xy (16)
bu+av=0 at 71+13:1'

Equations (13), (14) and (15), when put in equation (9), gives
=GO =H@O =5 an

Substituting for », v and W, respectively from equations (13), (14) and
(15).in equation (9) and remembering equation (17), we get, after inte-
gration over the whole area of the plate, the following relation for the
constant c,

a® b 21 4
=11.9.5'——LL18_ C 6P Fatk) (18

Now applying Galerkin procedure to equation (9) and putting the

Zalue of ¢ obtained in equation (18), we get the equation for the time func-
ion as

Foa [ (et atm titys ) T

+irwess 25 a+y B[ =0, (9)
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which may be written in a simpler form

i D Dz s .
Pt (o FrD )F+(a, ) Fe=0 0)
where
4 |
77 p ‘
ap == 4R+ 9P m? 4 ot k) J
B 13 b? 2 a2
e F) |
S i .
m= /P | @1
k= /Dy \
\ Dx
and l
. 13.11.7
B2 = —i )
Let us now introduce the representation
FO)=Ap () 22)

whetre v (1) is a new time function. We thus normalise the initial conditions
as follows

v =1 and v(0)=0. (23)
Equation (20) may now be carried into the form

u+[ 'u+[ ]m:o (24

wheare f::ézi is a representative of the non-dimensional amplitude of

the fundamental mode of vibration.
Equation (24) is of the form

Vv F Sud = 25)

L1 Sc.—2
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where
v=[o 3+ o] 0
and
5= [ (222 ] @7

Equation (25) represents a symmetric case. In such a case, only odd

powers may occur in the law of force. The inertial force v is developed
by virtue of acceleration or deceleration, according as the plate moves to-
wards or away from the position of equilibrium. The middle term
represents a linear elastive restorative force. The last term, which is propor-
tional to the cube of the displacement, introduces non-linearity in this
restorative force.

A solution to the non-linear differential equation (25) may be represented
in terms of the cosine-type Jacobian elliptic function:—

v () = cn (w*t, k¥) (28)
where
o=y +3 ’ 29
and
k%= R (30)
XC)

where again,

w* = fundamental frequency of non-linear free vibration,
vy = fundamental frequency of linear free vibration,
K* = modulus of the elliptic function.

Here «* and K* are positive constants and cn is Jacobi’s elliptic function.

Substituting for y and 8 from equations (26) and (27) respectively,
we get, from equation (29),

1
Ayt LT 3~ Xip 3D
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This amplitude-frequency relation is displayed in Fig. 2, along with
that of an isotropic plate vibrating under similar conditions like the ortho-
tropic plate under investigation. The values taken for numerical calculations

are those depicted in Table I given by Nowinski and Ismail [6].

For isotropy, equation (31) takes the form

_w*p @' kyp
A= T T e @)
where
, 2 2 Enh?
w' = 4 (10t ) g )
, 13 BN ¢3)
“ = roess 7 (p) (U
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Fi1c. 2. Amplitude frequency response curve.
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" The period T* of cn (w*, k*) is given by
4K 4K 4K

T* =
T Ayt 8 {@1 i + ky + Dx e 52]* (34)

where K is the complete elliptic integral of the first kind.

Equation (34) corroborates the familiar phenomenon of a decrease of
the non-linear time-period with increasing amplitide.

The linear time period is given by

2
T‘[a D KT G5
1 oh T Dy

TaBLE I

E,, E, Gy, v, and v, are Young’s modulus, shear modulus and Poisson’s
ratios respectively

Ey £, Gia " vy k2 m2 pi= Eﬁ —
Gpa

1 x 105 0-05 x 10% 0:05 x 105 0-2 0-01 0-05 0-108 1
1x10° 1 x 108 G 0-3 0-3 1 1 2

so that the ratio becomes
T * 2K|m
[ 1 ay Dy?
+ (a’l Dxa + ki)

B3 gzj* (36)

which in absence of a foundation (X; = 0), reduces to
T* 2K/

T o? * 37
[ 5we]
The equation, corresponding to our equation (37), as obtained by
quinski and Ismail, is given below
‘ ™ 2K/
T ay By * (38)
[1+2pme]

where D, corresponds to our D,, and y, has a value different from ours.
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The ratios obtained from equations (37) and (38) have been calculated
from the values of the following Table I given by Nowinski and Ismail [6]
and have been found to tally with their results within the limits of numerical
calculations (Fig. 3). Thus Berger’s approximate method, as applied to
dynamic cases, are seen to be in good agreement with the results obtained
from von Karman equations generalised to dynamic problems. For practical
purposes, therefore, Berger’s method may be used without any noticeable
loss in accuracy. Further, the advantage of this method is the case with
which it can be employed.
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Fr. 3. Relative veriod vs relative amplitude
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We obtain again from equation (36), the ratio for isotropy as

Vi 2K/'rr
T =

[1 + G Dt + P ] (9

It may be seen from equations (21, 33) that a3 < @', ay< oy’ and
ay < ay, So that

(E, iso < (—7) ortho. 40)

It may further be noted from equations (34) and (35) that only in the
limiting case of harmonic motions the ratio (T#/T) is unity, otherwise (7*/T)
< 1. Figure 3 displays the known general trend of this relative period in
relation to the relative amplitude, In this Fig. 3, the numerical results

obtained by the author have been compared with those of Nowinski and
Ismail.

ACKNOWLEDGEMENT

The author wishes to thank Dr. B. Danerjee, Department of Mathe-
matics, for his guidance in the preparation of this paper. The author also
acknowledges his indebtedness to Dr. M. C. Bhattacharya, Principal,
Jalpaiguri Government Engineering College, Jalpaiguri, West Bengal,
India, for his encouragement in pursuing the work.

REFERENCES

[i] Berger, H. M. .. Journal of Applied Mechanics, 1955, 22, 465-472.
2] Iwinski,T. and Nowinski, . Archiwum Mechaniki Stosowaef, 1957, 9, 593-603.

[3] Wowmski, J. .« MRC Technical Summary Report, No. 34 Mathematica
Research Centre, U.S. Army, The University of Wis-
consin, 17, 1958,
{41 Sinha, S.N. Journal of the Engineering Mechanical Division, 1963, 89,
No. EM 1, Part I

[5]1 Nash, A. William and Engincering Progress at the University of Florida, Technical
Modeer, James, R. Paper No. 193, 14, No. 10.
{61 Nowinski, J., 1960, and

Journal of the Francklin Institute, 1965, 280, No. 5.
Tsmail, I A.



