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Following the approxima~e method given h,~, Berxer, the author har made an 
attempl to sfudv mainly the a??plitu(!~ ,frequency c-hrrracferistii, of  a t11i;i anisotropic 
rizhf-an$Ied triangular plate o f  consfnnt ih i<knes~  ,fieel? vibruting tra~isrer.reIv orid 
non-linear!,. on rill elastic foundation. A~~p/yi;l(,. Culerkin procedure u !!on-/incar 
second order differential eqniit;nn for thr ~inknoisn t i i w  function is  nhtaiwed and 
i t  i.s solved in terms of Jacobian ellipric funrrions. Relurive period of linear and non- 
linear osciNations also ore grphicul!y represented iipainst relatikw arnplitudc to com- 
pare the generul nature of  vilrintion with the reszili obtairzrd l ~ v  In'inslri and Ismail 
based on Yon Kdnndrz eqiiotion. 

Kcy wocds: Amplitude frequency, non-linear vibrations, Elastic foundation 

An approximate method for investigating the large deflection of initially 
flat isotropic plates has been proposed by Berger [I]. Essentially this 
method is based on the neglect of the second invariant of the middle surface 
itrains in the expression corresponding to the total potential energy of the 
system. An application of this technique to the case of orthotropic plates 
has been offered by Iwinski and Nowinski [2], and further boundary value 
problems associated with circular and rectangular plates have been investi- 
gated by Nowinski [31. Large deflections of circular and rectangular plates 
resting on elastic foundations have been investigated very elegantly by 
Sinha, S. N. [4] following the technqiue offered by Berger. Nash and 
Modeer [5]  found the large amplitude free vibrations of rectangular and 
circular plates applying this approximation of Berger. Nowinski and 
Ismail [6] investigated the large ampliiude free vibrations of an orthotropic 
triangular plate, without elastic foundation, based 011 von Kaman equation, 
and graphically exhibited the xesult, 
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In this paper a dynamic field equation, governing large transverse 
d&ctions having rectangular co-ordinates, is established by adopting 
Berger's approximated method, and the solution is subsequently obtained 
by applying Galerkin procedure. 

The governing equation arrived at  in this paper does not explicitly 
contain any mass term except the average density of the material of the 
plate. Thus the equation may bc considered independent of the mass of 
either the plate or the elastic foundation. 

The present author's endeavour is mainly to study the amplitude frc- 
quency relation of non-hear free transverse oscillations of an orthotropic 
right-angled triangular plate placed on an elastic foundation. The ratio 
of the linear and non-linear periods is also plotted against relative an~pli- 
tude to make a qualitative con~parison with the results obtaned by 
Nowinski and Ismail [6] .  

In a variety of siluations, motions may be generatcd which lead to 
vibrations with large amplitudes. These are of importance in elements 
such as plates whose deformational response is significantly sensitive in 
the direction of smaller dimension. 

Problems, Equations, Boundary Conditions and Graphical Representations 
of Results Obtained with Physical Explanations. 

2. FREE LARGE AMPLITUDE TRANSVERSE VIERATIONS 

The right-angled elastic plate (Fig. 1) is of constant thickness hand bas 
sides of length a and b. Let x, y be the rectangular co-ordinates, the origin 
being at the vertex of the right-zngle and the axes are along the sides. The 
plate is made of rectilinearly orthotropic material with axes parallel to the 
axes of co-ordinates. The transverse deflections are assumed to be of the 
order of the magnitude of the plate thickness. The elastic character of 
any layer may not be isotropic but only symmetrical with respect to the 
normal. 

By adding the potential energy of the foundation reaction to the energy 
expression containing the strain energy due to bending and stretching of the 
middle surface of the plate and neglecting the second invariant of the 
middle surface strain e,, we get, 



where the first invariant of the middle surface strain is defined by 

and where, 

h = plate thickness, 
D ~ ,  Dy = flexural rigidity along the x and y axes, respectively, 

D,, = g, where G = Modulus of elasticity in shear, 

Dl = E" h3/12, E = Young's modulus in y-direction, 

W = deflection normal to the middle surface, 

u, v = displacements along x and y axes, 

Kl = modulus of the foundation, 

FIG. 1. Geomtry of the Elastic Plate. 



The kinetic energy of the platc is given I7p 

where p = average dmsiiy of the plate, m d  the clots represent the derivatnes 
~ ~ t h  respcct to t m c .  

and according to Hamilton's principlr 

and if we set 

then 

6A = 0. 

Thus wc have, 

A - J Tdt - J P'dt 

Applying Euler's difiereniial cqimtions of variational poblems and 
neglecting inertia effect in the plane of t h e  plate, we obtain, 

where 

and 

el = c . f ( t )  

c = normalised constant of integrat~on. 



For clamped edges, according to Nowinski and Ismail [6] ,  the con&- 
tions imposed on the boundaries are 

W = O and W, . = O  for any time t, (12) 

n - normal to the contour. 

The boundary conditions given by equation (12) may be satisfied by 
the configurations of the forms, [A' being a constant], 

We have also, 
u=O at x = O  

v = O  at = O  

Equations (13), (14) and (15), when put in equation (9), gives 

FE(t)= G ( t )  = H ( t )  = f ( t )  (17) 

Substituting for u, v and W, respectively from equations (13), (14) and 
(15) in equation (9) and remembering equation (17), we get, after inte- 
gration over the whole area of the plate, the following relation for the 
constant c, 

Now applying Galerkin procedure to equation (9) and putting the 
value of c obtained in equation (18), we get the equation for the time func- 
tion as 
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which ]nay be written in n sirnplcr form 

i + (.; . ~3 = 0 , 
P (20) 

where 

a 
7 - h  

1, - 4P3 (1 - v 2  1n2 + 14 k2)  
13 

D* 

,, = 1 %  
c.' u* 

and 

- 13 11.7 8 -  - - -  
a4 

Let us now mtroduce the representation 

F ( t )  = A,v ( t )  

wherc v ( t )  is a new time function. We thus normalise the initial conditions 
as follows 

v (0) = 1 and v (0) = 0. (23) 

Equation (20) may now be carried into the form 

(24) 

where 4 = 4 is a representative of the non-dimensional amplitude of h 
the fundamental mode of vibration. 

Equation (24) is of the form 

v 4- yv + SvS = 0 

1. I.  Sc.-2 
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where 

and 

Equation (25) represents a symmetric case. In such a case, only odd 

powers may occur in the law of force. The inertial force v is developed 
by virtue of acceleration or deceleration, according as the plate moves to- 
wards or away from the position of equilibrium. The middle term 
represents a linear elastive restorative force. The last term, which is propor- 
tional to the cube of the displacement, introduces non-linearity in this 
restorative force. 

A solution to the non-linear differential equation (25) may be represented 
in terms of the cosine-type Jacobian elliptic function:- 

v ( t )  = cn (w*t ,  k*) (28) 

and 

where again, 

w* -= fundamental frequency of non-linear free vibration, 
z/y =fundamental frequency of linear free vibration, 
K* = modulus of the elliptic function. 

Here w* and K* are positive constants and cn is Jacobi's elliptic function. 

Substituting for y and 6 from equations (26) and (27) respectively, 
we get, from equation (29), 
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This amplitude-frequency relation is displayed in Fig. 2, along with 
that of an isotropic plate vibrating under similar conditions like the ortho- 
tropic plate under investigation. The values taken for numerical calclntatiorns 
are those depicted in Table 1 given by Nowinski and Ismail [6]. 

For isotropy, equation (31) takes the form 
* 2  ' 1 ~ I P  A,% = EL!! - 41_1 . - 

a; D a2' h az'L)e (32) 
where 

Eh 
a,' = 48' [I + 7' - 12~i, -7) + 7.1 

13 (331 

and v = Poisson's ratio. 



The period T* of cn (a*,, k*) is given by 

where K is the complete elliptic integral of the first kind. 

Equation (34) corroborates the familiar phenomenon of a decrease of 
the non-linear time-period with increasing amplitide. 

The linear time period is given by 

TABLE I 
El, EL, GI,, V, and V ,  are Young's modulus, shear modulus and Poisson's 

ratios respectively 

E; Ez 4 a  Y2 1‘2 ma =& - G a  "' 

which in absence of a foundation (XI = 0), reduces to 

The equation, corresponding to our equation (37), as obtained by 
Nowinski and Ismail, is given below 

where Dl corresponds to our D,, and y, has a value different from ours. 
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The ratios obtained from equations (31) and (38) have been cakulared 
fronl the values of the followhg Table I given by Nowinski and Isrnaii [6] 
and have been found to tally with their resuits within the !hits of numerical 

(Fig. 3). Thus Berger's approximate method, as applied to 
dynamic cases, are seen to be in good agreement with the resulis obrained 
from yon Karman equations generalised to dynamic problems. For practical 
purposes, therefore, Berger's method may be used without any noticeable 
loss in accuracy. Further, the advantage of Ihis method is the case with 
which it can be employed. 



We obtain again from equation (36), the ratio for isotropy as 

It may be seen from equations (21, 33) that a,< a,', a,< a,' and 
a, < a,, so that 

(7) iso < (7) ortho. 

It may further be noted from equations (34) and (35) that only in the 
limiting case of harmonic motions the ratio (T1/T) is unity, otherwise (T*/T) 
< 1. Figure 3 displays the known general trend of this relative period in 
relation to the relative amplitude. In this Kg. 3, the numerical results 
obtained by the author have been compared with those of Nowinski and 
Ismail. 
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