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The viscous $ow due to non-torsional oscillations of a disc in a rotating system 
is studied when a uniform magnetic field is applied along the axis of rotation. The 
so!ution in the resonunt case is obtained by using the initial value formulation. The 
solution for the steady motion due to uniform impulsive motion of the disc is discussed. 
The expression for the depth of penetration o f  vorticity is obtained and the effect 
of magnetic field on it is also discussed. 
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Hydromagnetic flows in rotating fluids have considerable applications 
in geophysics and astrophysics wherein ordinary hydrodynamics is usually 
inapplicable, since almost all phenomena of astrophysics occur where there 
are magnctic fields associated with materials of large conductivity and hence 
a strong coupling results betwecn the motion of the matter and the mag- 
netic field. I t  is generally accepted that hydromagnetic flow in the earth's 
liquid core is responsible for the main geomagnetic field and the theory of 
earth's magnetism is based on the dynamics of the core motions. A detailed 
account of these types of geophysical problems is given by Hide [I] and 
Hide and Roberts [2] .  The interaction of the Coriolis force on the plane 
hydromagnetic wavcs is discussed by Lchnert [3]. 

Hide and Roberts [4] have investigated the hydromagnetic flow due 
to an oscillatory disc in the presence of a uniform magnetic field in a rotat- 
ing system and various limiting cases of electrical conductivity are dis- 
cussed. The motion due to torsional oscillations of two infinite discs in 
an infinitely conducting viscous fluid is studied by Bhatnagar [5]. This 
analysis has been extended to include the effects of finite conductivity by 
Devanathan [6 ] .  More recently Thornley [7] has considered non-torsional 
~scillations of a single disc and two parallel discs in a rotating fluid. The 



aim of the present investigation is to understand the effect of a uniform 
axial magnetic field in a motion induced by the non-torsional oscillations 
of a disc in its own plane. It is found that the resonant phenomenon prevail 
if the solutions are assumed to be of periodic nature. In deriving the line&. 
ed magneto-hydrodynamic equations it has been assumed that the electrical 
conductivity of the medium is infinitely large (i.e., magnetic Reynolds number 
is large) and the induced magnetic field is not negligible. Debnath 181 has 
recently studied this problem for a medium of finite conductivity assuming 
that the induced magnetic field is negligibly small. In this case one can 
get periodic solutions satisfying all the physical requirements even for the 
resonant frequency, whereas in our case it is not possible to obtain a general 
periodic solution in the resonant case without an initial value formulation. 
~ h u s  we have obtained the general solution using an initial value formulation. 
~t is interesting to note that the periodic solution in the resonant else can 
be obtained without an intial value formulation by placing one more disc 
and a more general solution is obtained in this case also. 

The hydromagnetic flow set up by the non-torsional oscillations of a 
disc (z = 0) in its own plane bounding a semi-infinite expanse of an incom- 
pressible, viscous and infinitely conducting fluid is considered when the fluid 
and the disc are in solid body rotation with angular velocity SZ about the- 
z-axis in cartesian coordinate system (x, y, 2). The magnetic field H, is 
applied along the axis of rotation and the non-torsional oscillations of the 
disc are taken to be of the form 

where a and b are complex constants, t is the time, w is the frequency of oscil- 
lation of the disc, u and v are the velocity components in the x and y direc- 
tions respectively. 

Taking the physical quantities as functions of z and t only' as in the 
ordinary Stokes' layers, the hydromagnetic equations in the rotating frame 
of reference (assuming no external pressure gradient) reduce to* 
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av 2 = Ho 2; , (2  5)  

where Hx and Hy are the components of the induced magnetic field in  x and 
directions, p is the magnetic permeability, p the density and v the kine- 

matic viscosity. 

Writing 

and rendering the variables dimensionless by the following scheme: 

where L2 = v / Q ,  the equations (2.2) to (2.5) in dimensionless form reduce 
to (after dropping the dashes), 

where a = 4sL3 = &:& is the magnetic interaction parameter. 

The boundary conditions are 

= ae~d  + beid at z = 0 ,  (2.10) 

q+O, h+O as z  + w, (2.1 1.) 

where o = w/D. 

First we seek a periodic oscillatory solution of (2.8) and (2.9) of'thc 
form 

h = hl (z)  eiut + h, (2) eriu'. , (3. 1) 
-- 

*In deriving these equations we have used the fact tbat w - 0, He = 0 in view of the equt. 
tion of continuity and 7 . @= 0. 



These expressions for q and h arc substituted in (2.8) and (2.9) and the 
resulting equations are solved for the functions ql, q,, hl and h, using (2.10) 
and (2.11) and q is obtained as 

= ae-k,zebt + b,-k,ze-rat (3.2) 

u ( 2  4- dli where k ,  = [- -- -;- 
a +  la J '  

whose real parts are greater than zero. It is noticed that k, and k, as func- 
tions of a single variablc a or  a are continuous at  the origin but they fail to 
be so when Lhey are treated as functions of two variables a and a. Also 
the process of taking limits a+O, u->O does not give a unique iim~t, as 
seen below: 

Hence the results lor the case in which a = 0, a = 0 may not be obtainable 
as a particular case from the general results if we approach the origin of the 
(a - a) plane along any arbitrary direction. However the second way of 
taking limits in (3.4) gives a correct solution to the equations and that is 
the only meaningful case to be considered in the neighbourhood of the 
origin in the (a - a) plane. 

The solution (3.2) represents a superposition of two waves whose ampli- 
tudes decay out wid respect to the vertical distance from the disc. It satis- 
fies all the boundary conditions except when a = 2 which corresponds to 
the resonant frequency (i.e., w = 2 4 .  In this case (3.2) reduces to 

= ackoze2it $. be-zit 
(3.5) 

The first term in (3.5) represents a type of Stokes' layer modified by the 
presence of magnetic field. This solution evidently does not satsfy the con- 
dition (2.11) unlass b = 0. Hence there is no periodic soltuion in the 
resonant case for b + 0.  On the other hand if we introduce another disc 
at z = d which is at rest relative to the rotating frame of reference a periodic 
solution satisfying the condition (2.10) and that q-0 on z = dcan be obtained 
and it is given by 
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This again is a superposition of waves and is valid for all c including the 
resonant case and the solution in this case is 

The first term in (3.7) is still a wave and represents a modified Stokes' layer 
in which the effect of magnetic field is felt, while the second term representing 
a plane Couette flow is independent of the magnetic field. 

In the following section we pose an initial value problem to get a sensi- 
ble solution at  the resonant frequency by using Laplace transform technique. 

Case (i). One disc problem: 

We consider the same configuration as in $2 with the conditions (2.10) 
and (2.11) for t > 0 and the following initial conditions 

q = 0, h = 0 a t  t = 0 for all z, (4.1)  

Applying the Laplace transform defined by 

to ( 2  8) and 2 9) and solving for 4 (2, s)  subjected to the transformed boun- 
dary conditions, we get 

b q (2, S )  = (---% + - exp (-- mz), s - ro s + i d )  
(4.3) 

where 

By the inversion formula q (2, t) is given by 

The integral in (4.4) is evaluated by the method of residues. The 
integrand has two simple poles a,t s = f iu crsd bmch  points at $ - 0, 



- 2i, - a. Choosing a contour P a s  shown in figure (I )  and evaluating 
the integral in (4.4) (see Appendix), we get 

(z, 1) = a&" etut f b&z e-2"t 

1 " C G  

- fi [ J  f (x) clx t Sf (x t 21) dxl, (4 5)  
e 

where 

It is cvident that this solution inclades the periodic solution. Incidentally 
the solution at the resonant frequency satisfying all the boundary con- 
ditions can be obtaincd from (4.5) by putting o = 2. For any arbitrary 
a the integrals in (4 .5)  cannot be evaluated in a closed form whereas when 
a = 0, (4.5) reduces to 

The integral in (4.6) can be evaluated exactly and q (z,t)  is given as, 

where erjc(x) is the conplementary error function. Thus thc solution (4 7 )  
in the non-magnetic case coincides wlth the solut~on p e n  by Thornley [71 
It is worthnoting that as t + w, f ( x )  - to  ail* hence we get the perlodlc 
solution (3.2) as the steady solution. 

Case (ii). Two disc problem: 

Inhoducing one more disc at z= d as a rigid boundary in the Same 
w&&uration of case (i), the solution using Laplacc transforms satisfying 
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the additional boundary condition that q = 0 on z = d is 

Eventhough rn as a function of s has branch points at  s = 0, s = - 2i and 
at s = - a, they are regular points of the integrand. The only si~igulanties 
of the integrand are the simple poles located at 

s = f in, fn+ &-- , n = 1 ,  2, 3 . .  . . 

where 5% = 1 {- (2i + n2w2d2) & [(2i - +  n27r2/d2)2 - 4nZiTBa/&']1/2). (4 gj 
The integral in (4 .8)  is evaluated again by thc method of residues and the 
solution is obtained as 

m 

+ 4n2 n sin (nnr/d [eenn+' (&+ + a) (- -5- - + -c 
E n t - f a  fn++io)  

Each term in the infinite series represcnts propagation of damping waves 
along the positive and negative directions of z-axis and the solution as  a 
whole represents a type of Stokes' layer. It can be easily seen that real 
parts of &,* are negative and hence as t+ w we get the oscillatory solution 
(3.6). The solution (4.10) is valid for all values of u including the resonant 
frequency. For a = 0 the present results in all cases reduce to the results 
of Thomley 171. 

5 .  UNIFORM MOTION OF THE DISC 

We now discuss the flow induced by the uniform motion of the disc 
(which corresponds to u - 0 )  in both the cases (i) and (ii). 

Case (i): When o = 0 the uniform velocity of the disc 2 = 0 is given 
by 

q C a + b = c ,  (5 . I )  



c being a complex constant, and the solution is 

When a = 0, (non-magnetic case) the integral in (5.2) can be evaluated 
closely and q is given as 

The steady solution corresponding to this case is q .= c which does not 
satjsfy either the equations or the boundary conditions. But if we let a +O 
first and then o-+O we get Thornley's results for which steady solution is 

= ce-*hZ. Such non-unique limits in the solutions arise as a consequence 
of the observation made earlier (52), namely, that the simultaneous approach 
of u and a to zero along any arbitrary direction does not give a unique 
limit for k, and k,. 

Case (ii): Similar situations arise in this case also. The steady solu- 
tion for u = 0 (with a .f 0) is 

q = c (1 - z/d) (5.4) 

which satisfies the boundary conditions but not the equations where as the 
steady motion corresponding to a = O in the non-magnetic problem is 

sinh [@ (d - z)] 4 = -- -- 
sinh (z/Z 6) 

This solution satisfies the equations and the boundary conditions and hence 
should be taken as the correct solution. Hence we arrive at the conclusion 
that the different processes of taking limits would give different results when 
discontinuous functions are involved. 

The solution (3.2) is a superposition of two waves with same frequency 
o propagating in the opposite directions with different velocities and ampli- 
tudes. The amplitudes and wavelengths of these waves are / a / exp [--k,, z], 

I b 1 exp [-k, z] and 2n 2y respectively. Here suffix r and i denote real 
kn ' k*, 
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and imaginary parts respectively. A simple computation shows that the 
thickness of penetration of vorticity, which is the maximum of the wave- 
lengths of these waves, is given by 

2 ; /2  7il/2 3 a2 do = - 
[u (u - 2) (a + .\/gT+-a') ]f for o > 2 

From this expression one can see that in the case u <  2 the depth of pene- 
tration do is increased due to the presence of magnatic field. In  the case 

>2, do is decreased from that of the non-magnetic case for a <  u. 
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APPENDIX 

The integral in (4.4) is evaluated by choosing the contour as given in 
Fig. 1 with branch cuts denoted by the thick lines. 

By the Cauchy's residue theorem, we have 

= Sum of the residues at s = f. ia 

It can be easily seen that the integral along the bigger circle of radius R and 
along the smaller circles of radius c tend to zero as R +cc and e -t 0 res- 
pectively. By choosing the values of s properly on the branch cuts we get 
in the l i t  as R +m and 6-0, 

and 

The integrals along GH and MN cancel each other and the integral along 
EF tends to the required integral in (4.4) as R 3  M. From (A. I), (A.2) 
and (A.3) the result (4.5) follows. 
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Fro. 1. Contour r. 
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