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Abstract 
 
The classical multivariable Smith predictor is extended to multivariable nonsquare systems with multiple time de-
lays where the number of process inputs is higher than the process outputs. Pairing for input and output variables 
is carried out using the block relative gain technique. Simplified decoupling method is applied to design the de-
couplers. The decoupled processes are modeled as first-order plus time-delay model or second-order plus time-
delay model with positive/negative zero. The controllers are designed individually based on the identified models. 
For the delay-compensated system, decentralized multivariable proportional-integral controllers are designed by 
internal model control method for FOPTD models. To show the improvement, PI controllers for the uncompen-
sated system are also designed by simplified internal model control method. For SOPTD models, a method simi-
lar to Chien et al. [Simple PID controller tuning method for processes with inverse response plus dead time or 
large overshoot response plus dead time, Ind. Eng. Chem. Res., 42, 4461–4477 (2003)] is proposed for controller 
design in the delay compensator. The proposed method is applied to shell standard control problem (3 input and 2 
output), hot oil fractionator (4 input and 2 output) and mixing tank (3 input and 2 output). Simulation studies 
were carried out for both servo and regulatory problems. Robustness studies were carried out for uncertainty in all 
the process model parameters. It is shown that the performance of the multivariable delay-compensated system 
with decentralized PI controllers is significantly better than that of the multivariable control system without any 
delay compensator. 
 
Keywords: Smith predictor, nonsquare systems, decentralized controller, block relative gain. 

1. Introduction 

Time delays occur frequently in process control loops due to distance velocity lags, recycle 
loops, delay in measurements, etc. The principal difficulty with the time-delay systems is in 
the increased phase lag, which limits the possible amount of control action. The complica-
tion involved with the time delays further increases in multivariable systems due to the mul-
tivariable nature, where different time delays are present in different control loops and due 
to interactions. In 1957, Smith [1] first designed a delay compensator for single-input sin-
gle-output (SISO) time-delay processes. The inclusion of dead time compensator removes 
the delay from the characteristic equation thereby allowing increased value for controller 
gain. Alevisakis and Seborg [2, 3] have extended the original Smith delay compensator to 
multi-input multi-output (MIMO) processes with equal time delay. Ogunnaike and Ray [4] 
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have extended it to MIMO processes with multiple time delays. Jerome and Ray [5] have 
proposed a multidelay compensator in which both time delay and interaction compensation 
were achieved within a single design. 

 Wang et al. [6] have proposed a decoupled Smith delay compensator for MIMO proc-
esses with multiple time delays, where they have used frequency domain approach for the 
decoupler design. Later, Wang et al. [7] have designed the decoupling controller for MIMO 
processes with multiple time delays using the IMC framework. Reddy et al. [8] have shown 
that using Davison’s method [9] one can get better control system performance for stable 
and non-minimum phase systems compared to Wang et al. [7] The Davison’s method is 
simple to design, whereas that of Wang et al. [7] is complicated in designing controllers. As 
the original Smith delay compensator is sensitive for model uncertainties, it is recom-
mended [10] to use a first-order filter on the estimated load effects to increase the robust-
ness for SISO processes. The work so far discussed is concerned about the MIMO square 
systems. 

 Processes with equal number of inputs and outputs are known as square systems whereas 
those with unequal numbers are known as nonsquare systems. The systems with more out-
puts than inputs are generally not desirable as all of the outputs cannot be maintained at the 
set point since the system is undermined. Systems with more inputs than outputs are fre-
quently encountered in process industries. Some examples of nonsquare systems with time 
delays are: Shell control problem [11], with three manipulated variables and two controlled 
variables, hot oil fractionator [12] with four manipulated variables and two controlled vari-
ables, and mixing tank problem with three manipulated variables and two controlled vari-
ables [13]. One technique to control such nonsquare systems is by squaring down the 
system and designing the decentralized multivariable controllers, but it results in poor per-
formance because of the information neglected by its structure [9]. 

 Loh and Chiu [14] have shown that nonsquare systems should be controlled in their origi-
nal state instead of squaring down by adding or deleting the variables. So designing the 
controllers for nonsquare systems gives an improved practical insight. Recently, Sharma 
and Chidambaram [15] have proposed a method to control nonsquare systems using Davi-
son’s method [9] to design centralized controllers. They have extended the design method 
of Davison [9] to nonsquare systems by taking pseudo-inverse to the steady-state process 
gain matrix, and have used Routh–Hurwitz stability criteria to find the range of controller 
tuning parameters. Minimum ISE technique is used to find out the final tuning parameters. 
As the characteristic equation contains time delay term, there is a limit on controller gain 
and thereby limit the possible amount of control action for delay dominant processes. Also 
with centralized controllers, the interaction effects will be severe compared to that of the 
decoupled controllers. 

 To enhance the control system performance, a delay compensation technique should be 
used in these conditions. In the present work, multivariable Smith delay compensator with 
decoupler is applied by simulation to multivariable nonsquare systems with multiple time 
delays. Simulation applications to Shell standard control problem, fractionator problem and 
mixing tank problem are given. 



DECOUPLED SMITH PREDICTOR FOR MULTIVARIABLE NONSQUARE SYSTEMS  237

 

- 

D(s) 
+ 

Gc(s) Gp(s) 

P(s) 

u + 

- 

+ 
+ 

y 

+ 

GF(s) 

yd 

Pm(s) 

+ 
yr 

 
FIG. 1. Decoupled Smith delay compensator for MIMO nonsquare processes with filter. 

2. Methodology 

The control block diagram of Smith delay compensator applied to multivariable nonsquare 
system is shown in Fig. 1, where Gp is the transfer function matrix of the process with m in-
puts and n outputs, Gc is the transfer function matrix of the controller with m outputs and n 
inputs where m > n. GF is the filter transfer function matrix (size: n × n) with first-order fil-
ters for each controlled variable. D is the transfer function matrix of the decoupler of size 
[m × m] in which the diagonal elements are equal to one. The block diagram without any 
delay compensator is shown in Fig. 2. The MIMO transfer function matrix for Gp is consid-
ered as 
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The decoupler matrix for m manipulated variables is considered as 
 
 

Gc(s) Gp(s) 
u 

+ - 

+ + y 
D(s) 

yd 

yr 

 

FIG. 2. MIMO feedback structure without delay compensator. 
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where the diagonal elements D11 = D22 = … = Dmm = 1. Based on the pairing of the output 
variables to the input variables, the remaining decouplers are designed. Correspondingly, 
the controller matrix for the decoupled model (GpD) is considered as 
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The controllers are designed based on decoupled model individually. In Fig. 1, Pm is the de-
coupled process model without time delay, and P is the decoupled process model with time 
delay. 

3. Decoupler design 

For the given MIMO nonsquare process, Gp, block relative gain (BRG) method [13] is used 
for pairing of the controlled variables to the manipulated variables, after which simplified 
decoupling is applied to design the decouplers. The decoupled process (process Gp along 
with the decouplers) is modeled either as FOPTD or SOPTD model with a positive/negative 
zero. If the decoupled process shows a first-order response behavior, then simple process 
reaction curve (PRC) method is used to identify the decoupled process as FOPTD model, 
i.e. in the form of Kpe

–θs/(τs + 1). If the decoupled process shows slightly inverse response 
characteristics, then also the decoupled process is approximated with PRC method to 
FOPTD model. 

 However, when there are large inverse response characteristics in the decoupled process, 
modeling as an FOPTD using PRC method is not adequate. Hence, for these types of proc-
esses, least squares (LS) optimization method is chosen to identify the models as SOPTD 
with positive zero, i.e. in the form of Kp(1 – ps)e–θs/(τ1s + 1)(τ2s + 1). If the decoupled 
process shows a quick response with high overshoot, then the model is identified as 
Kp(1 + ps)e–θs/(τ1s + 1)(τ2s + 1). LS method is simple to use here because the time delay (θ) 
and the process gain (Kp) are known from the original decoupled process. Only the time 
constants (τ1 and τ2) and the model zero (p) values need to be calculated. The initial guess 
for these values can be easily obtained from the original decoupled process response. 

3.1. Remarks in decoupler design 

If a nonrealizable part in the decoupler (example, positive time delay) occurs in deriving the 
decouplers, those terms are neglected in the decoupler design, but it will lead to some inter-
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action. To avoid this type of problem, a delay matrix can be introduced to make the decou-
pler matrix realizable. Ogunnaike and Ray [12] have shown that for MIMO square systems, 
the nonrealizable part due to time delay can be neglected by having small time delays in the 
diagonal processes compared to other processes. The same technique can be applied to 
MIMO nonsquare systems also, but incorporating an additional delay matrix delays the 
overall performance of the control system further. Hence, there is a tradeoff for getting the 
no interaction responses and the performance. If the demand is perfect decoupling, then the 
delay matrix should be introduced. Otherwise, the terms leading to nonrealizable parts can 
be neglected (Appendix I). 

4. Controller design 

Based on the decoupled process model, the decentralized controllers are designed individu-
ally. As the design of the controllers in the Smith predictor is based on the model without 
any time delay, the controllers are designed based on the model only without considering 
time delay. For the uncompensated system, the controllers are designed based on the model 
with time delay. For the three types of models identified, the controller design methods are 
explained below. 

4.1. Case (i) 

The identified model is 

 Gm(s) = kme–θs/(τs + 1). (4) 

Here, simplified internal model control (SIMC) method proposed by Skogestad [16] is used 
for the PI controller design. The controller settings for the model with time delay are 
kc = τm/km(τc + θ) and τ1 = min{τm, 4(τc + θ)}, where τc is the tuning parameter. As there 
will be a tradeoff between nominal and robust performances, the tuning parameter has to be 
selected properly. Skogestad [16] has suggested that the tuning parameter τc can be consid-
ered as equal to the model time delay (θ) for good nominal and robust performances. IMC 
method is used of the controller design for the model without time delay for the Smith pre-
dictor. The controller settings are given by kc = τm/kmτs and τ1 = min{τm, 4τs}, where τs is 
the tuning parameter. The tuning parameter is to be selected to ensure  that both nominal as 
well as robust performances are obtained. For this, it is observed that τs can be taken around 
θ/2. 

4.2. Case (ii) 

The model identified is 

 Gm(s) = km(1 – ps)e–θs/(τ1s + 1)(τ2s + 1). (5) 

Here, the design method of Chien et al. [17] is adopted for the controller design of the 

model with time delay. The controller settings are given by kc = τ1/km(2τc1 + θ + p), τI = τ1 

and τD = τ2, where τcl is given as τc1 = 0.1θ + 0.5 4pθ + 0.4pτD + 0.4θτD + 0.04τ 2
D. Chien et 

al. [17] have suggested that the PID controller should be implemented in the form of 
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to avoid the derivative kick. Hence, in the present work, the controllers are implemented in 
the same form. 

 As a simple PI controller gives good performance in the Smith predictor, in the present 
work, only PI controller is used in the Smith predictor. The design procedure of the PID 
controller is adopted from Chien et al. [17] and is briefly explained here. The process 
model considered is eqn (5) without time delay. Let us consider the PI controller as  
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The closed loop characteristic equation becomes 1 + GcGm = 0. By considering τI = τ1, the 
resulting closed loop characteristic equation is given by 

 2 11 2 1 0c m

c m c m

k k p
s s

k k k k

ττ τ   −
+ + =   

   
. 

The equation is set to match a desired critically damped closed loop characteristic equation 
such as 2 2 2 1 0cl cls sτ τ+ + = . By equating the corresponding coefficients the controller gain 
is obtained as 1 1 2( 2 ) ( )c cl m clk / k pτ τ τ τ τ= − , where τcl is the desired closed-loop time con-
stant. τcl has to be selected such that both nominal and robust performances are achieved. τcl 
has to be selected to satisfy the constraint τcl > 2τ2. 

4.3. Case (iii) 

The model identified is 

 1 2( ) (1 ) /( 1)( 1).s
m mG s k ps e s sθ τ τ−= + + +  (6) 

The design procedure is the same as explained in Case (ii), and the resulting controller set-
tings are 1 2 1(2 ) ( )c cl m clk / k pτ τ τ τ τ= −  and τI = τ1. Here the tuning parameter (τcl) has to be 
selected in such a way that it satisfies the constraint τcl < 2τ2. 

4.4. Selecting the filter constants in the Smith predictor 

The value of filter time constant is considered as equal to the time delay of the correspond-
ing model if there are small perturbations in the individual process parameters. If the con-
trolled variable is paired with two or more manipulated variables, the filter constant is 
considered as equal to the largest time delay of the corresponding decoupled model. If the 
uncertainties in the process parameters are large, then the filter constant can be taken as 
greater than two times the corresponding time delay. 

5. Robustness of decoupled Smith predictor 

The designed control system should meet the disturbance attenuation, set point tracking, ro-
bust stability and robust performance besides nominal stability. Disturbance attenuation is 
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achieved when the norm of the transfer function matrix from the disturbance (yd) to the out-
put (y) is made small. Similarly, set point tracking is achieved when the norm of the trans-
fer function matrix from the set point (yr) to the error (e) is made small. 

 The multivariable Smith predictor configuration (Fig. 1) is referred to as the nominal 
case if GpD = P. As the process Gp is assumed to be stable and the decoupler D is designed 
to be stable, the control system in Fig. 1 will be stable if and only if the primary controller 
Gc stabilizes Pm. The nominal condition GpD = P can be violated in practice due to the fol-
lowing reasons. Firstly, due to the approximation of the decoupler by model reduction, the 
transfer matrix GpD may not be diagonal, whereas P is implemented as diagonal form. Most 
importantly, in the real world, the model Gp may not represent the actual process exactly. 
For robustness analysis, the actual process is assumed to be any member of a family of pos-
sible processes. 

 Typically, the three types of uncertainties, which are most commonly encountered in 
practice and require to be pertinently coped with during the system operation are additive, 
multiplicative input and multiplicative output uncertainties [18]. Smith predictor system 
with the process additive uncertainties is shown in Fig. 3. The additive uncertainties can be 
regarded as parameter perturbation of the process transfer function matrix and describe the 
actual process family as 

 { ( ): ( ) ( ) ( )},p AG s G s G s sΠ = = + ∆  (7) 

where ∆A(s) is the additive uncertainty and is assumed to be stable. Gp(s) is the nominal 
process transfer function matrix and G(s), the actual process transfer function matrix. 
Hence, the uncertainty matrix is ( ) ( ) ( ).A ps G s G s∆ = −  From Fig. 3, the transfer function 
matrix from the inputs (� ) to the outputs (v) of ∆A(s) is obtained as 
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FIG. 3. Decoupled Smith delay compensator for MIMO nonsquare processes with additive uncertainty (∆A). 
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FIG. 4. (a) Input multiplicative uncertainty; (b) Output multiplicative uncertainty. 
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According to the small gain theorem the closed-loop system is robustly stable if and only if 
[19] 
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where ~ ( )..σ  is the maximum singular value. Similar rule applies when there exists process 
input uncertainty or process output uncertainty. The process input and output uncertainties 
without the Smith predictor structure are shown in Figs 4(a) and (b), respectively. From 
these figures, according to the small gain theorem, the robust stability is satisfied if and 
only if [19] 
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where HI and Ho are the relations from the input ( ) to the output (v) of the uncertainties as 
shown in Fig. 4(a) and (b). Here, ∆I is the input uncertainty and ∆o is the output uncertainty 
and both ∆I and ∆o are considered stable. 

 The maximum and minimum singular values ~[ ( )..σ  and 
~

(..)σ ] of the sensitivity and 
complementary sensitivity functions are also measures of the robustness of any closed-loop 
control system [19, 20]. Quick set point tracking and low-frequency disturbance rejection 
are ensured if the maximum singular values of the sensitivity function are low at low 
frequencies and minimum singular values of the complementary sensitivity function are 
high at low frequencies. In addition, the peak value of the maximum singular values of the 
complementary sensitivity function should be low to get less oscillatory responses for 
model mismatches. 

6. Simulation studies 

For the purpose of simulation three case studies are considered. 

6.1. Case study 1 

The process considered is a Shell control problem [11] with two controlled variables and 
three manipulated variables in which the two controlled variables are composition of the 

(a) (b) 
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top product and that of side stream. The manipulated variables are top draw, side draw and 
the bottoms reflux. As the delay compensator is significant for delay dominant processes, 
here the time delays are considered as five times to the time constants of each transfer func-
tion in the process. The resulting process is given by: 
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The steady-state gains for the process are 

 
4 05 1 77 5 88

( )
5 39 5 72 6 9p

. . .
G s .

. . .

 
=  

 
 (12) 

For the 2 × 3 process, the decoupler and the controller matrices are given by 
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where Gc is a matrix of PI controllers. The concept of BRG is applied to eqn (8). The defi-
nition and method of calculating BRG are given in Reeves and Arkun [13]. From BRG, it is 
noted that y1 is paired with u1 and u3 and y2 is paired with u2. The resulting equations for 
the controlled variables are given by: 

 y1 = [G11 + G12D21]v1 + [G13 + G12D23]v3 (15a) 

 y2 = [G22 + G21D12]v2 (15b) 

where the decouplers are given by D11 = D22 = D33 = 1, D12 = –G12/G11, D23 = –G23/G22, 
D21 = –G21/G22 and the remaining decouplers equal zero. The detailed control block dia-
gram with the decouplers without the delay compensator is shown in Fig. 5. The decoupled 
processes are P1 = G11 + G12D21, P3 = G13 + G12D23, P2 = G22 + G21D12. As the nature of the 
decoupled processes is of first order, these are identified as FOPTD models using PRC 
method. The identified models are given by: 

 P1 = 2.383e–250s/(23.25s + 1), P3 = 3.744e–250s/(25.747s + 1), P2 = 3.365e–300s/(59.98s + 1). 

Based on these models, the decentralized controllers are designed independently (Gc11 
based on P1, Gc31 based on P3 and Gc22 based on P2) using the SIMC method [16]. The con-
trollers designed without the compensator are: 
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FIG. 5. MIMO nonsquare control block diagram without delay compensator for case study-1. 

 
 Gc11 : Kc = 9.756/(τc11 + 250), τI = 23.25 (16a) 

 Gc31 : Kc = 6.876/(τc31 + 250), τI = 25.747 (16b) 

 Gc22 : Kc = 17.824/(τc22 + 300), τI = 59.98 (16c) 

where τcij is the tuning parameter. Skogestad [16] has suggested that the tuning parameter 
could be taken as equal to the time delay for good nominal and robust performances. Thus 
the controller matrix is obtained as  
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As explained in Section 4.1, the controllers are designed for the delay-compensated system 
without considering the time delay term. The tuning parameter is selected as half of the 
time delay. Hence, the controllers are obtained as 
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FIG. 6. Comparison of servo responses for perfect model for case study-1; step change in (a) yr1, and (b) yr2. Leg-
end: solid–with delay compensator, dash–without delay compensator. 

With these controllers, the performances are evaluated for delay-compensated system and 
the system without the delay compensator by giving unit step changes in yr1 or yr2. Figure 6 
shows the responses for servo problem for perfect model parameters and Fig. 7 for the 
 

 
FIG. 7. Comparison of regulatory responses for perfect model for case study-1. Legend: solid–with delay compen-
sator, dash–without delay compensator. 
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FIG. 8. Servo responses when there is a perturbation of 50% in Kp, θ and -50% in τ. step changes in (a) yr1, and (b) 
yr2. Legend: solid–with delay compensator, dash–without delay compensator. 

 
regulatory responses. It is observed from the responses that the delay-compensated system 
performs significantly better compared to that of the system without compensator. Let us 
consider that there exist large perturbations in the individual process parameters. To simu-
late the control system with compensator for large uncertainties (± 50%), the filter con-
stants for y1 and y2 are taken as three times the time delay of P1 and P2, respectively. Figure 
8 shows the servo responses for +50% perturbations in each process gain and time delay, 
and –50% perturbation in each process time constant. From the responses it is clear that the 
delay-compensated system performs better. 

 To show the quantitative improvement of the delay-compensated system over that of un-
compensated system, the performance criteria chosen is integral of square error (ISE). The 
ISE values are measured in each output separately and are added to get the total ISE value 
for a step input in the set point (for example, yr1). The corresponding ISE values are shown 
in Table I for both the methods for servo responses. Also shown are the ISE values when  
 
Table I 
ISE values for case study-1 for perfect parameters 

Step in  ISE for y1 ISE for y2 Sum of ISE 
 

yr1 With delay compensator 309.94 89.51 399.45 
yr2   4.26 × 10–7 388.54 388.54 
yr1 Without compensator (IMC design) 418.36 47.16 465.52 
yr2   5.38 × 10–7 505.77 505.77 
yr1 Without compensator (Z–N design)* 459.97 69.44 529.41 
yr2   4.64 × 10–7 548.45 548.45 

*Zeigler–Nichols method for the design of controllers without compensator. 
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the controllers for uncompensated system are designed based on the Zeigler–Nichols 
method. From the ISE values, it can be observed that the delay-compensated system has 
low ISE values in all the cases. The quantitative improvement obtained is around 50% in all 
the cases. When there are large perturbations in the process parameters, the improvement 
obtained with the delay-compensated system is further better. Vlachos et al. [11] have ap-
plied genetic algorithm optimization method to calculate the decentralized PI controllers 
settings for a two-output and two-input system, but the method is time consuming. In the 
present work, a simple method is proposed for the nonsquare system which gives good con-
trol performance for both the nominal and the model mismatch conditions. 

6.2. Case study 2 

The process considered is a fractionator problem [12] with two controlled variables and 
four manipulated variables. Here, the individual time delays are considered as three times 
that of the original process and the resulting system is given by: 

 Gp = 

81 84 81 81

60 66

4 05 1 77 5 88 1 44

50 1 60 1 50 1 40 1

4 38 4 42 7 2 1 26

33 1 44 1 19 1 32 1

s s s s

s s

. e . e . e . e

s s s s

. e . e . .

s s s s

− − − −

− −

 
 

+ + + + 
 
 

+ + + + 

. (19) 

Here the decoupling matrix is of 4 × 4 and the corresponding controller matrix is of 4 × 2. 
Using the BRG, y1 is paired with u1 and u3 and y2 is paired with u2 and u4. The resulting 
equations for the controlled variables are: 

 y1 = [G11 + G14D41]v1 + [G13 + G14D43]v3 = P1v1 + P3v3 (20a) 

 y2 = [G22 + G21D12]v2 + [G24 + G22D14]v4 = P2v2 + P4v4 (20b) 

where the decouplers are given by D12 = –G12/G11, D14 = –G14/G11, D41 = –G21/G24, D43 = 
–G23/G24. 

 In this case, the decoupled processes (P1, P3, P2 and P4) show large inverse response be-
havior: thus, these processes are modeled as SOPTD using LS method as explained previ-
ously. The models obtained are 
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Based on these models, the controllers are designed as explained in Sections 4.2 and 4.3, 
respectively. The controller parameters obtained for the system without the delay compen-
sator are: 

 Gc11: Kc = –0.05, τI = 31.6426, τD = 31.6426, τcl = 156.6778 (21a) 
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FIG. 9. Comparison servo responses for perfect model for case study-2; step changes in (a) yr1, and (b) yr2. Leg-
end: solid–with delay compensator, dash–without delay compensator. 

 
 Gc31: Kc = –0.1199, τI = 55.045, τD = 19.817, τcl = 57.257; (21b) 

 Gc22: Kc = 0.1761, τI = 44.507, τD = 2.034, τcl = 16.667; (21c) 

 Gc42: Kc = –0.2248, τI = 32.757, τD = 32.757, τcl = 67.713. (21d) 

The controller matrix obtained for the system with compensator is 
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0 00092
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 (22) 

In getting the controllers for the delay-compensated system, the tuning parameters selected 
are as follows: τcl for case (ii) is considered as 2.2τ2 (i.e. for P1, P2, P4) and τcl for case (iii) 
is considered as τ2/2 (i.e. for P3). 

 With these controller settings, closed-loop performance is evaluated by giving unit step 
change either in the set point or in the load. Figure 9 shows the responses for the perfect 
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FIG. 10. Comparison of regulatory responses for perfect model of case study-2. Legend: solid–with delay com-
pensator, dash–without delay compensator. 

 
model for set point changes and Fig. 10 for regulatory problem. The responses show that 
the delay-compensated structure performs significantly better. Figure 11 shows the re-
sponses for +30% perturbation in each process gain, time delay and -30% perturbation in 
each process constant. The filter time constant used for the delay compensator is equal to 
the corresponding largest time delay for each controlled variable. It is observed that the re-
sponses obtained without compensator are completely unstable. 

6.3. Case study 3 

The process considered is a mixing tank problem with two controlled variables and three 
manipulated variables [13] in which the two controlled variables are height of liquid in the 
tank and the exit concentration. The manipulated variables are the flow rates of the three 
input streams. Time delays are added intentionally to show the improvement of the delay 
compensator. The resulting process is given in eqn (20). 
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 (23) 
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FIG. 11. Servo responses when there is a perturbation of +30% in Kp, θ and –30% in τ for case study-2; step 
changes in (a) y1, and (b) y2. Legend: solid–with delay compensator, dash–without delay compensator. 

 
Using BRG, y1 is paired with u1 and u2 and y2 is paired with u3. The resulting equations for 
the controlled variables are 

 y1 = [G21 + G23D31]v1 + [G22 + G23D32]v2; (24a) 

 y2 = [G23 + G21D13]v3, (24b) 

where the decouplers are given by D13 = –G13/G11, D31 = –G21/G23, D32 = –G22/G23. The de-
coupled processes are P1 = G21 + G23D31, P2 = G22 + G23D32, P3 = G23 + G21D13. Here, P1 
and P3 show first-order and P2 the second-order behavior. Thus P1 and P3 are modeled as 
FOPTD and P2 as SOPTD with negative zero. The identified models are P1 = 1.6e–100s/ 
(20 + 1), P2 = 1.588(1 + 134.012s)e–102s/(27.412s + 1)2, P3 = 2e–50s/(10s + 1). 

 Based on these models the decentralized controllers are designed independently. For the 
design of controllers based on P1 and P3, SIMC method [16] is used. However, for the de-
sign of controllers for P2, Chien et al. [17] method is used. For the design of controller 
based on P2 without time delay, the proposed method is used as explained in case (ii) in 
Section 4. The controllers obtained for the system without any delay compensator are: 

 Gc11: Kc = 0.0625, τI = 20; (25a) 

 Gc21: Kc = 0.0701, τI = 27.412, τD = 27.4125, τF = 134.012, τcl = 72.125; (25b) 

 Gc32: Kc = 0.005, τI = 10. (25c) 

The controller matrix for the system with delay compensator is obtained as 
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FIG. 12. Comparison of servo responses for perfect model of case study-3; step changes in (a) y1, and (b) y2. Leg-
end: solid–with delay compensator, dash–without delay compensator. 
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With these controllers, the performances are evaluated for delay-compensated system and 
the system without the delay compensator by giving unit step change in yr1 or yr2. Figure 12 
shows the responses for servo problem and Fig. 13 for the regulatory responses for perfect 
model parameters. From the responses, it is observed that the delay-compensated system 
performs significantly better compared to that of the system without the compensator. 

6.4. Simulation for robustness studies 

The maximum and minimum singular values of the sensitivity and complementary sensitivity 
functions are plotted for mixing tank example for the system with delay and without delay 
compensation. Figures 14(a) and (b) show, respectively, the maximum and minimum singular 
values of the sensitivity function and of the complementary sensitivity functions. The maxi-
mum singular values of the sensitivity function are low at low frequencies and minimum 
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FIG. 13. Comparison of regulatory responses for perfect model of case study-3. Legend: solid–with delay com-
pensator, dash–without delay compensator. 

 

  
FIG. 14. Maximum and minimum singular values of (a) sensitivity functions, and (b) complementary sensitivity 
functions. Legend: solid-upper—maximum, solid-lower–minimum for the system with delay compensator; and  
dash-upper—maximum, dash-lower –minimum singular values for the system without delay compensator. 
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singular values of the complementary sensitivity function are high at low frequencies for 
the delay-compensated system, when compared with that of the uncompensated system 
which ensures quick set point tracking and low-frequency disturbance rejection. Also, from 
Fig. 14(b), it can be observed that the peak value of the maximum singular values of the 
complementary sensitivity function for the delay-compensated system is less compared to 
that of the uncompensated system, which shows that less oscillatory responses for model 
mismatches will result for the delay-compensated system compared to that of the uncom-
pensated system. 

 Robustness studies were also carried out for additive uncertainties as discussed in Section 
5. For the mixing tank problem, a perturbation of +20% in delay is considered in all the 
nominal process transfer functions (Gp) and hence the additive uncertainty is obtained as 

( ) ( ) ( )A ps G s G s∆ = − . Here G(s) is the perturbed model. ~ [ ( )]AH sσ  from eqn (8) and 
~1 [ ( )]A/ sσ ∆  are plotted and are shown in Fig. 15. From the figure it can be observed that 

the designed controller satisfies the constraint in eqn (9). 

7. Conclusions 

Smith delay compensator is extended to multivariable nonsquare systems with multiple 
time delays. Using BRG, the output variables are paired with input variables. The decou-
plers along with the processes are modeled as FOPTD or SOPTD with positive/negative 
zero. Based on these decoupled models, controllers are designed independently. If there are 
large perturbations in the process parameters of the delay compensator, the filter constant 
can be increased to obtain robust responses. Of the three simulation examples studied, the 
control system with the delay compensator performs better. Robustness studies carried out 
by using the maximum and minimum singular values of the sensitivity and complementary 
sensitivity functions show that the delay-compensated system is more robust than the un-
compensated system. 
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Appendix A 
 
The tradeoff between perfect decoupling and closed-loop performance is explained here by 
considering example-1. The process transfer function matrix is given in eqn (11). For this 
process, after pairing the output and input variables, the decouplers are obtained as D12 =  
–(G12/G11), D23 = –(G23/G22) and D21 = –(G21/G22). Upon substituting the corresponding 
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processes, D23 and D21 result in positive time delay terms that are not realizable. Hence to 
make the decouplers realizable, according to Ogunnaike and Ray [12], a delay matrix is 
multiplied to the original process transfer function matrix as 
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 (A1) 

so that the resulting process transfer function matrix becomes 
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. (A2) 

Thus, based on new ( )pG s all the decouplers including D23 and D21 can be obtained in realiz-
able form. But, the addition of the delay matrix to the original process results in the closed-
loop performance delayed further, which is not desirable in the practical industry. Hence, if 
the time delay required for the addition is very small compared to the original delay then 
the delay matrix can be added at the cost of delayed performance. However, if the delay 
matrix required is large as in this example, it is not recommended to use the additional de-
lay matrix because of the problems encountered by time delays in the practical industries. 

 
Appendix B 

The SIMC method proposed by Skogestad [16] is based on the original IMC method in 
which he modified the choice of choosing the IMC filter constant as equal to the time delay. 
Also, the integral time is modified for better disturbance attenuation. The final tuning rela-
tions for a FOPTD model are as follows. 

Process model (Gm) = 
1

ske

s

θ

τ

−

+
, 

Kc = 
1

ck

τ
τ θ+

, min( 4( ))i c,τ τ τ θ= +  in which τc is the tuning parameter which according to 

Skogestad [16] can be considered as equal to time delay (θ) 
 

Abbreviations 

BRG Block relative gain array 
FOPTD First-order plus time delay 
ISE Integral of square error 
IMC Internal model control 
LS Least square  
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MIMO Multi input multi output 
SISO  Single input single output 
SIMC Simplified internal model control 
SOPTD Second-order plus time delay 
PRC Process reaction curve 
 
Nomenclature 

Gc Transfer function matrix of controller  
P Transfer function matrix of decoupled process with time delay 
Pm Transfer function matrix of decoupled process model without time delay 
Gp  Transfer function matrix of process with time delay 
Kc Proportional gain of the controller 
yr1 Set point for output variable 1 
yr2 Set point for output variable 2 
ui Manipulated variables where i = 1, 2, 3, 4, … 
yi Controlled variables where i = 1, 2, … 
 
Greek letters 

τ1 Time constant of the decoupled process model 
τ2 Time constant of the process decoupled process model 
τcl Tuning parameter 
τc Tuning parameter in the controller design for SIMC method for uncompensated system 
τs Tuning parameter in the controller design for IMC method for compensated system 
τI Integral time constant of the controller 
τD Derivative time constant of the controller 
τF Filter time constant 
∆A Additive uncertainty 
∆I Input multiplicative uncertainty 
∆o Output multiplicative uncertainty 
 


