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Abstract 
 
To get positive Lagrange multipliers associated with each of the objective function, Maeda [Constraint qualifica-
tion in multiobjective optimization problems: Differentiable case, J. Optimization Theory Appl., 80, 483–500 
(1994)], gave some special sets and derived some generalized regularity conditions for first-order Karush–Kuhn–
Tucker (KKT)-type necessary conditions of multiobjective optimization problems. Basing on Maeda’s set, Bigi 
and Castellani [Second order optimality conditions for differentiable multiobjective problems, RAIRO, Op. Res., 
34, 411–426 (2000)], tried to get the same result for second-order optimality conditions but their treatment was 
not convincing. In this paper, we have generalized these regularity conditions for second-order optimality condi-
tions under different sets and obtained positive Lagrange multipliers for the objective function. 
 
Keywords: Multiobjective optimization, local vector minimum point, regularity conditions, second-order neces-
sary conditions. 

 
1. Introduction 

Investigation of optimality conditions has been one of the most interesting topics in the the-
ory of multiobjective optimization problems. Many authors have derived the first- and sec-
ond-order necessary conditions for vector minimum solution under the same constraint 
qualification as used in scalar-valued objective function [1], but none could obtain positive 
Lagrange multipliers associated with the vector-valued objective function. So it is possible 
that due to some zero multipliers the corresponding components of the vector valued objec-
tive functions have no role in the necessary conditions of multiobjective problem. To avoid 
this undesirable situation getting positive Lagrange multipliers, Maeda [2] gave some spe-
cial sets and derived some generalized regularity conditions for the first-order KKT-type 
necessary conditions that ensure the existence of positive Lagrange multipliers for first-
order multiobjective optimality conditions. For getting positive Lagrange multipliers, some 
authors analyzed these conditions for second-order KKT-type necessary conditions [3–5]. 
In particular, basing on Maeda’s sets, Bigi and Castellani [5] generalized these regularity 
conditions for second-order optimality conditions, but their treatment is not convincing. 
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 In this paper, we have also generalized Maeda-type regularity conditions for second-
order KKT-type necessary conditions, but have generalized these conditions under more 
general sets, later called “Proposed sets”. As a result, we have ensured positive Lagrange 
multipliers, associated with the objective function and derived second-order KKT-type nec-
essary conditions for both equality and inequality constraints. 

 Some notations, definitions, and preliminary results are given in Section 2. In Section 3, 
we have given the comparison between Maeda’s sets and proposed sets, generalization of 
Maeda’s regularity conditions and also derived KKT-type necessary conditions for second-
order optimality conditions with an important remark.  

2. Preliminaries 

In this section, we introduce some notations and definitions, which are used throughout the 
paper [6]. Let nE  be n-dimensional Euclidean space. 

 For x, y ∈ En, we use the following conventions. 

x õ y, iff xi õ yi, i = 1, …, n, 

x õ y, iff x õ y and x ≠ y, 

x > y, iff xi > yi i = 1, …, n. 

 Now, we consider the following multiobjective optimization problem P: 

 min f(x), subject to the set X: x–  ∈ X = {x ∈ En|g(x) ï 0, h(x) = 0} 

 Let, : n lf E E→ , : n mg E E→  and : n kh E E→ be twice continuously differentiable vec-
tor-valued functions. Assume that ( )( ) { : 0}jI j g= =x x  for j = 1, …, m. 

 For any twice continuously differentiable function : n mE E→g  and for any vector 
y ∈ Em, we denote by ( )∇g x  and ( ) ( )2 , ,∇ g x y y  respectively, the m n×  Jacobian matrix 
and the m-dimensional vector whose ith component is 2 ( )T

ig∇y x y . 

 Now, we shall define the nonempty sets Mi and M by  

 { X,  ( )i
n iM E f≡ ∈ ∈x x x  ï ( )},if x i = 1, 2, …, l 

and 
1

{ X,  ( )  ( )}
l

i
n

i
M E M

=

<≡ ∈ ∈ = ∩x x f x f x  = Set of vector minimum point. 

 For any two vectors 1 2( , )Tx x=x  and 1 2( , )Ty y=y  in E2, we use the following conven-
tions: 

x ïlex y means that 1 1x y<  holds or 1 1x y=  and x2 ï y2 hold. 

x <lex y means that 1 1x y<  holds or 1 1x y=  and 2 2x y<  hold. 

 The subscript lex means lexicographic order. 

 Due to the conflicting nature of the objectives, an optimal solution that simultaneously 
minimizes all the objectives is usually not obtainable. Thus, for problem P, the solution is 
defined in terms of a local vector minimum point [3]. 
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Definition 2.1. A point X∈x  is said to be a local vector minimum point of P if and only if 
there exists a neighbourhood N of x , such that no X N∈ ∩x  satisfies ( ) ( ) ,− >f x f x 0  that 
is ( ) ( )i if f>x x  for all i. 

 Now we define two kinds of second-order approximation sets to the feasible region.  
 
Definition 2.2. The second-order tangent set to X at X∈x is the set defined by 

2 2 2
2

1
( ; ) {( , ) ,   0 such that ( )}

2n n n n nT X E X t t t tο≡ ∈ ∃ ∈ ∃ → + = + + +n nx y z x x x y z  

where 2( )ntο  is a vector satisfying 
2

2

|| ( ) ||
 0.n

n

t

t

ο
→  

Definition 2.3. The second-order linearizing set to M at M∈x  is the set defined by 

( )
2

2

2

( , ) ( ( ) ,  ( ) ( )( , )) (0,0) , 1,...,

; ( ( ) ,  g ( ) ( )( , )) (0,0) , ( ) 

and ( ( ) , ( ) ( )( , )) (0,0)   1,...,

T T T T
n i i i lex

T T T T
j j j lex

T T T T
p p p

E f f f i l

L M g g j I x

h h h p k

< ∈ ∇ ∇ + ∇ =
  <= ∇ ∇ + ∇ ∈ 
 

∇ ∇ + ∇ = =  

2

2

y z x y x z x y y

x x y x z x y y

x y x z x y y

 

A first-order sufficient conditions for vector minimum point is that the following system 
has no nonzero solution y: 

 ( )  0,T <∇f x y  ( )   0T
I

<∇g x y , ( ) 0T∇ =h x y  (1) 

The Kuhn–Tucker-type condition for optimality is equivalent to the inconsistency of the 
following system: 

 ( )  0T∇ <f x y , ( )   0T
I

<∇g x y , ( ) 0.T∇ =h x y   (2) 

The gap between (1) and (2) is caused by the following directions: 

 ( ) 0,T∇f x y ï ( ) 0T
if∇ =x y  at least one i, ( ) 0T

I∇g x y ï , ( ) 0.T∇ =h x y  (3) 

A direction y that satisfies (3) is called a critical direction. 

 For the sake of simplicity, we use the following notations: 

( , ) ( ( ) ,  ( ) ( )( , ))T T T
i i i iF f f f= ∇ ∇ + ∇2y z x y x z x y y  

j( , ) ( ( ) ,  g ( ) ( )( , ))T T T
j j jG g g= ∇ ∇ + ∇2y z x y x z x y y  

( ) p, ( ( ) ,  ( ) ( )( , ))T T T
p p pH h h h= ∇ ∇ + ∇2y z x y x z x y y  

3. Generalized regularity conditions 

To get positive Lagrange multipliers for each of the objective function, Maeda [2] gave the 
following generalized Guignard regularity conditions (GGRC) for the first-order KKT-type 
necessary conditions under the set Qi; 
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1

( ; ) ( ; )
l

i

i

M cl convT Q
=

Ω ⊆x x∩ , 

where ( , )T X x  is Bouligand tangent cone and ( ; )XΩ x  is a first-order linearizing cone. 

 In this section, we have generalized these conditions for the second-order KKT-type nec-
essary conditions under different sets Mi. 

 Comparison between Maeda’s sets and the proposed sets: 

 Maeda’s sets:  

{ ,   ( ) ( ),   1, 2, ...,   and  }i
n k kQ E X f f k l k i≡ ∈ ∈ = ≠ï  

Proposed sets: 
{ X,  ( ) ( )}i

n i iM E f fx x x xï , 1, 2, ...,i l=  

The relationship between the two types of sets is 

1
, 1, , .

l
i k

k
k i

Q M i ... l
=
≠

= ∩ =  

For generalizing the Maeda’s [2] regularity conditions, we first show that the relationship 
between the tangent sets 2 ( ; )iT M x  and linearzing set 2 ( ; )L M x . 
 
Lemma 3.1: We assume that x  is a feasible solution to problem P then we have 

2 2

1
( ; ) ( ; )

l
i

i
T M L M

=
∩ ⊆x x . 

Proof:  Let (y, z) be any element in 2 ( ; )iT M x  then there exist iM∈nx  and 0nt → +  such 
that 2 21

2
( )n n nt t tο= + + +nx x y z . 

 By the Taylor expansion, 

2 2 21
2

( ) ( ) ( ) ( ( ) ( )( , )) ( )T T
i n i n i n i i nf f t f t f f tο− = ∇ + ∇ + ∇ +x x x y x z x y y , i = 1, 2, … , l 

 2 2 21
2

( ) ( ) ( ) ( ( ) ( )( , )) ( )T T
I n I n I n I I nt t tο− = ∇ + ∇ + ∇ +g x g x g x y g x z g x y y  

 2 2 21
2

( ) ( ) ( ) ( ( ) ( )( , )) ( )T T
n n n nt t tο− = ∇ + ∇ + ∇ +h x h x h x y h x z h x y y . 

Then for all n we have, 

  21
( ) ( )

2i n i n n if f t t f
 = + + 
 

x x y z xï , i = 1,2, …, l (4) 

[Since { | ,   ( ) ( )}i
n i iM E X f f≡ ∈ ∈x x x xï , i = 1, 2, …, l] 

 21
( ) 0 ( )

2I n I n n It t
 = + + = 
 

g x g x y z g xï  (5) 
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and 21
( ) 0 ( ).

2n n nt t
 = + + = = 
 

h x h x y z h x  (6) 

Now, from (4), we have 

  2 2 21
2

( ) ( ( ) ( )( , )) ( ) 0T T
n i n i i nt f t f f tο∇ + ∇ + ∇ +x y x z x y y ï , i = 1, 2, …, l (7) 

Now, if ( ) 0T
if∇ =x y , i = 1, 2, …, l then, from (7), we have 

( )
2

2 2
2

2 ( )1
( ( ) ( , )) 0

2
T n

n i i
n

t
t f f

t

ο  ∇ + ∇ + 
  

x z x y y ï  

as ,n → ∞  we have 

2
2 2

2

2 ( )
lim ( ( ) ( )( , )) ( ( ) ( )( , )) 0.T Tn

i i i i
n

n

t
f f f f

t

ο
→∞

  ∇ + ∇ + = ∇ + ∇ 
  

x z x y y x z x y y ï  

Also, from (7), we have 

( )
2

2 2
2

2 ( )1 2
( ( ) ( )( , )) 0.

2
T T n

n i i i
n n

t
t f f f

t t

ο  ∇ + ∇ + ∇ + 
  

x y x z x y y ï  

Now, if ( ) 0T
if∇ <x y , i = 1, 2, …, l and as n → ∞  we have 

2( ( ) ( )( , )) 0,T
i if f∇ + ∇x z x y y ï  

i.e. ( ( ) ,  ( ) ( )( , )) (0,0) ,T T T T
i i i lexf f f∇ ∇ + ∇2x y x z x y y ï  i = 1, 2, …, l 

Similarly, ( ( ) ,  g ( ) ( )( , )) (0,0) , ( ),T T T T
j j j lexg g j I∇ ∇ + ∇ ∈2x y x z x y y xï  

and 2 T( ( ) , ( ) ( )( , )) (0,0)  1, ..., ,T T T
p p ph h h p k∇ ∇ + ∇ = =x y x z x y y  

which implies that 2( ) ( ; )iL M∈y,z x 2 2( ; ) ( ; )i iT M L M⇒ ⊆x x , i∀ . 

 Since 2 ( ; )iL M x  is closed convex set and i is arbitrary, we have 

2 2 2

1 1
( ; ) ( ; ) ( ; ).

l l
i i

i i
T M L M L M

= =
∩ ⊆ ∩ =x x x  

For closeness of 2 ( ; )iL M x  we can also write 

2 2

1
( ; ) ( ; )

l
i

i
cl convT M L M

=
∩ ⊆x x  

where 2 ( ; )icl convT M x  denotes the closure of convex hull of 2 ( ; )iT M x . 
 
Remark: 3.1. In general, the converse inclusion in lemma 3.1 does not hold. So to obtain 
the necessary conditions for a feasible point to problem P be a local vector minimum point, 
it is reasonable to assume that  
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 2 2

1

( ; ) ( ; )
l

i

i

L M T M
=

⊆x x∩  (8) 

and 2 2

1

( ; ) ( ; )
l

i

i

L M cl convT M
=

⊆x x∩ . (9) 

Conditions (8) and (9) are considered, respectively, as a generalized Abadie second-order 
regularity condition (GASORC) and generalized Guignard second-order regularity condi-
tion (GGSORC). 

 For checking optimality along the corresponding curves, we achieve the impossibility of 
a family of nonhomogeneous system as necessary optimality conditions. These systems de-
pend upon a descent direction for f at the considered optimal point X∈x  and involve only 
the components of f, for which this direction is stationary at x ; therefore, given any direc-
tion ,nE∈y  let i( ) { {1,..., }:  ( ) 0}TP i l f= ∈ ∇ =y x y . 

 Now, we are in a position to state the primal form of our second-order necessary condi-
tions. 
 
Theorem 3.1. Let x  be a local vector minimum point to Problem P, and assume that the 
second-order (GASORC) holds at .X∈x  Then, the following system has no solution (y, z): 

 ( ) 0i lexF y, z ï  ,i∀  (10) 

 ( ) 0i lexF <y, z  at least one i where ( )i P∈ y  (11) 

 ( ) 0j lexG y,z ï  ( )j I∀ ∈ x , (12) 

 ( , ) 0.pH =y z  p∀  (13) 

where ( ) { {1,..., }: ( ) 0}.T
iP i l f= ∈ ∇ =y x y  

 
Proof: Let (y, z) be the solution of (10)–(13). Then, 2( , ) ( ; ).L M∈y z x  

 By the assumption of GASORC we have, 2( , ) ( ; ).iT M∈y z x  Then, there exist i
n M∈x  

and 0nt → +  such that 2 21
2

( ).n n n nt t o t= + + +x x y z  

 By the Taylor expansion, 

2 2 21
2

( ) ( ) ( ) ( ( ) ( )( , )) ( ).T T
i n i n i n i i nf f t f t f f tο− = ∇ + ∇ + ∇ +x x x y x z x y y  

Then for all n we have 

 21
2

( ) ( ) ( )i n i n n if f t t f= + +x x y z xï , .i∀  (14) 

From (14), we have 

2 2 21
2

( ) ( ( ) ( )( , )) ( ) 0T T
n i n i i nt f t f f tο∇ + ∇ + ∇ +x y x z x y y ï , i∀ . 

If ( ),i P∈ y  then 2( ) ( )( , ) 0.T
i if f∇ + ∇x z x y y ï  (15) 
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Hence, 2
lex( , ) ( ; ) ( , ) 0i

iT M F∈ ⇒y z x y z ï , ( ).i P∀ ∈ y  

 Since T2 is closed and isotone and 
1

,
l

i

i
M X

=
∩ ⊆  we can write 

2 2

1
( ; ) ( ; ).

l
i

i
T M T X

=
∩ ⊆x x 2( , ) ( ; ).T X⇒ ∈y z x  

Then, there exist p X∈x  and 0pt → +  such that 2 21
2

( ).p p p pt t o t= + + +x x y z  

 Since x  be a local vector minimum point to problem P, there is no point ,p X∈x  where 
( ) ( )p <f x f x . 

i.e. 2 2 21
2

( ( ) ( ( ) ( )( , )) ( ))T T
p i p i i pt f t f f tο∇ + ∇ + ∇ + <x y x z x y y 0 , i = 1, 2, …, l. 

Now, if ( )i P∈ y  and as p → ∞  then, we have, 

 2( ( ) ( )( , )) ,T
i if f∇ + ∇ <x z x y y 0  ( ).i P∀ ∈ y  (16) 

It means that if x  is a local vector minimum point, then we do not get (16), which is a con-
tradiction with (11). So the system has no solution. 

 In order to obtain KKT-type necessary conditions, we need the following nonhomogene-
ous form of the Tuckers theorem of the alternative [6]. 
 
Lemma 3.2: Let A, B and C be m n× , p n×  and q n×  real matrices and 1 ,mb E∈  2 pb E∈  
and 3 qb E∈ be real vectors. Then either 

+ ≤

+

+ =

1

2

3

Ax b 0

Bx b 0

Cx b 0

ï  has a solution .nE∈x  

or 

+ + =

+ +

>

T T T
1 2 3

T T T
1 1 2 2 3 3

1 2

A y B y C y 0

b y b y b y 0

y 0, y 0

õ

õ

 has a solution y1, y2, and y3, 

but never both. 

 The proof is identical with [3,6]. 
 
Remark 3.1: To get the positive Lagrange multipliers 0,iw >  ( )i P∈ y  in [5], Bigi and 
Castellani gave the lemma 2.1. Using this lemma, they tried to prove their theorem 5.5 for 
getting wi positive, but it is not possible, because the lemma provides semi-positive w, i.e. 
(w ≥ 0, w ≠ 0). In a recent paper [3], they establish theorem 3.2 by using SMFRC condi-
tions. They restrict w by ||w|| = 1, but ||w|| = 1 does not necessarily imply that all the com-
ponents of w are not equal to zero. 

 Applying Lemma 3.2 and Theorem 3.1, we have deduced the following KKT-type neces-
sary conditions, which ensure the existence of positive Lagrange multipliers of the objec-
tive functions. Here, we consider those components of f, for which the direction nE∈y  is 
stationary at x ; i.e. i( ) { {1,..., }:  ( ) 0}.TP i l f= ∈ ∇ =y x y  
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 Theorem 3.2: Let x  satisfy the assumptions made in Theorem 3.1. Then, for each criti-
cal direction y, there exist multipliers ,lE∈w  mE∈u  and kE∈v  such that  

1 1 1

( ) ( ) ( ) 0
l m k

i i j j p p
i j p

w f u g v h
= = =

∇ + ∇ + ∇ =∑ ∑ ∑x x x  

2 2 2

1 1 1

( ) ( ) ( ) ( , ) 0
l m k

i i j j p p
i j p

w f u g v h
= = =

 
∇ + ∇ + ∇  

 
∑ ∑ ∑x x x y y õ  

wi > 0 ( )i P∈ y , 0iw =  for all ( ),i P∉ y  0ju õ ( ),j I∈ y  0ju =  for all ( )j I∉ y  

i( ) { {1,..., }:  ( ) 0}TP i l f= ∈ ∇ =y x y , ( ) { {1,..., } : ( ) 0,  g ( ) 0}T
j jI j m g= ∈ = ∇ =y x x y  

Proof: Let y be a critical direction. Then, the system 

2
( ) ( )( ) ( )( , ) 0T

P y P y∇ + ∇ ≤f x z f x y y  

2
( ) ( )( ) ( )( , ) 0T

I y I y∇ + ∇g x z g x y y  ï  

2( ) ( )( , ) 0T∇ + ∇ =h x z h x y y  

has no solution z. 

 By lemma 3.2, there exist multipliers lE∈w , mE∈u  and kE∈v  such that, 

1 1 1

( ) ( ) ( ) 0
l m k

i i j j p p
i j p

w f u g v h
= = =

∇ + ∇ + ∇ =∑ ∑ ∑x x x  

2 2 2

1 1 1

( ) ( ) ( ) ( , ) 0
l m k

i i j j p p
i j p

w f u g v h
= = =

 
∇ + ∇ + ∇  

 
∑ ∑ ∑x x x y y õ  

wi > 0 ( )i P∈ y , 0iw =  for all ( )i P∉ y , 0ju õ ( )j I∈ y , 0ju =  for all ( ).j I∉ y   

 This completes the proof. 

 Since GASORC ⇒ GGSORC, theorems 3.1 and 3.2 hold for GGSORC also. 
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