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Abstract

To get positive Lagrange multipliers associated with each of the objective function, Maeda [Constraint qualifica-
tion in multiobjective optimization problems: Differentiable case, J. Optimization Theory Appl., 80, 483-500
(1994)], gave some special sets and derived some generalized regularity conditions for first-order Karush-Kuhn—
Tucker (KKT)-type necessary conditions of multiobjective optimization problems. Basing on Maeda's set, Bigi
and Castellani [Second order optimality conditions for differentiable multiobjective problems, RAIRO, Op. Res,,
34, 411-426 (2000)], tried to get the same result for second-order optimality conditions but their treatment was
not convincing. In this paper, we have generalized these regularity conditions for second-order optimality condi-
tions under different sets and obtained positive Lagrange multipliers for the objective function.

Keywords: Multiobjective optimization, local vector minimum point, regularity conditions, second-order neces-
sary conditions.

1. Introduction

Investigation of optimality conditions has been one of the most interesting topics in the the-
ory of multiobjective optimization problems. Many authors have derived the first- and sec-
ond-order necessary conditions for vector minimum solution under the same constraint
qualification as used in scalar-valued objective function [1], but none could obtain positive
Lagrange multipliers associated with the vector-valued objective function. So it is possible
that due to some zero multipliers the corresponding components of the vector valued objec-
tive functions have no role in the necessary conditions of multiobjective problem. To avoid
this undesirable situation getting positive Lagrange multipliers, Maeda [2] gave some spe-
cia sets and derived some generalized regularity conditions for the first-order KKT-type
necessary conditions that ensure the existence of positive Lagrange multipliers for first-
order multiobjective optimality conditions. For getting positive Lagrange multipliers, some
authors analyzed these conditions for second-order KKT-type necessary conditions [3-5].
In particular, basing on Maeda's sets, Bigi and Castellani [5] generalized these regularity
conditions for second-order optimality conditions, but their treatment is not convincing.
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In this paper, we have also generalized Maeda-type regularity conditions for second-
order KKT-type necessary conditions, but have generalized these conditions under more
general sets, later called “Proposed sets’. As a result, we have ensured positive Lagrange
multipliers, associated with the objective function and derived second-order KK T-type nec-
essary conditions for both equality and inequality constraints.

Some notations, definitions, and preliminary results are given in Section 2. In Section 3,
we have given the comparison between Maeda's sets and proposed sets, generalization of
Maeda' s regularity conditions and also derived KK T-type necessary conditions for second-
order optimality conditions with an important remark.

2. Preliminaries

In this section, we introduce some notations and definitions, which are used throughout the
paper [6]. Let E, ben-dimensional Euclidean space.

For x,y1 E, we usethefollowing conventions.
xzy, iff xzy, i=1,..,n,
xzy, iff xzy and xty,
x>y, iff x>y i=1,..,n
Now, we consider the following multiobjective optimization problem P:
min f(x), subject to theset X: X T X ={x1 Ejjg(x) £0, h(x) = 0}

Let, f:E,® §, g:E,® E, and h:E, ® E,be twice continuously differentiable vec-
tor-valued functions. Assumethat | (X) ={j:g;(X)=0} forj=1,...,m.

For any twice continuously differentiable function g:E, ® E, and for any vector
y T En, we denote by Ng(X) and N°g(x)(y.y), respectively, the m” n Jacobian matrix
and the m-dimensional vector whose ith component is y"N?g, (X)y .

Now, we shall define the nonempty sets M' and M by
M'o{xT E,|xI X, fi(x) < fi(X)}.i=12 ...,

| .
and M © {x1 E,|x1 X, f(x)<f(X)} :_QlM' = Set of vector minimum point.
i=

For any two vectors x = (xl,x2)T and y =(y;, y2)T in E,, we use the following conven-
tions:

X Siex Y meansthat x <y, holdsor x =y, andx, £y, hold.

X <jex Y meansthat x <y; holdsor x =y, and x, <y, hold.
The subscript lex means lexicographic order.

Due to the conflicting nature of the objectives, an optimal solution that simultaneously
minimizes all the objectives is usually not obtainable. Thus, for problem P, the solution is
defined in terms of alocal vector minimum point [3].
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Definition 2.1. A point X1 X issaid to be alocal vector minimum point of P if and only if
there exists a neighbourhood N of X, such that no xT X C N satisfies f(X)- f(x) >0, that
is f,(X) > f;(x) forali.

Now we define two kinds of second-order approximation sets to the feasible region.
Definition 2.2. The second-order tangent set to X at X1 X isthe set defined by
T?(X;X) °{(y,2)T Ep$x,1 X, $1, ® +0suchthat x,, :7+tny+%t§z+o(t§)}
2
It g o

n

Definition 2.3. The second-order linearizing set to M at X1 M isthe set defined by

where o(t?) isavector satisfying

,' 2T Epn| (N (R)"y, Nf ()72 +R2f, (X)(y,y))' =, (0,0)7, i=L...,|iJ

Zlex
|

L2(M;x) = l (Ng;®)"y, Ng; (x)" z+N?g; (X)(y,y))' < (0,0)", jT 1(X) y

“lex J
|

'Ifand (Nh,(®)"y,Nh, (®)" z+R%h, (X)(y.y)" =(0,0" p=1....k b

A first-order sufficient conditions for vector minimum point is that the following system
has no nonzero solution y:

NfF(®)'ys0, Ng (®'y<0, Nh(x)'y=0 (1)

The Kuhn-Tucker-type condition for optimality is equivalent to the inconsistency of the
following system:

Nf(x)'y< 0, Ng,(0'y<0, Nh(x)'y=0. 2
The gap between (1) and (2) is caused by the following directions:
Nf(x)"y <0, Nf, (X)"y =0 at least onei, Ng, (X)"y <0, Nh(x)"y =0. (3)
A direction y that satisfies (3) is called a critical direction.
For the sake of simplicity, we use the following notations:

F(y,2) =(Nf,(0)"y, K ()" z+R2 £, (x)(y.y))"
G;(v.2) = (Ng;(x)"y, Ng;(®)" z+K?g; (X)(y.y))"
H, (v.2) = (Rh, )"y, Rhy(®)"z+R%h, (X)(y,y))"

3. Generalized regularity conditions

To get positive Lagrange multipliers for each of the objective function, Maeda [2] gave the
following generalized Guignard regularity conditions (GGRC) for the first-order KKT-type
necessary conditions under the set Q';
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WM X) | hcl convT (Q';X) ,

i=1
where T(X,X) isBouligand tangent cone and W X;X) is afirst-order linearizing cone.

In this section, we have generalized these conditions for the second-order KKT-type nec-
essary conditions under different sets M'.

Comparison between Maeda’ s sets and the proposed sets:
Maeda’ s sets:
Qo{1l En| TX, f()f (), k=12,...,1 and k1 i}

Proposed sets: '
MY {x E,[x X, f()<fi(xX)},i=12..,1

The relationship between the two types of setsis

i_I k F—
Q' =GM  i=1..l

ki

For generalizing the Maeda's [2] regularity conditions, we first show that the relationship
between the tangent sets T2(M':X) and linearzing set L?(M:X).

Lemma 3.1: We assumethat X is afeasible solution to problem P then we have
I ) 3
'Q_ZTZ(M';Y)I L%(M;X).

Proof: Let(y, 2) beany elementln T2(M';X) then there exist X, 1 M! and t, ® +0 such
that x, —x+tny+1t z+o(t?).

By the Taylor expansion,
fi(xn) - i (X) =t )Ty + 32N, ()T 2+ N2 5, (R)(y,y)) +o(t?)  i=1,2, ..., |
9 (%n)- 91 () =t.Ng, )Ty +1t7( g, ()" 2 +N%g, (R)(y.y)) +o(t7)
h(x,) - h(%) =t,Nh(x)"y + 32 (Rh(x)" 2+ R*h(X)(y,y)) +o(t?)
Then for all n we have,
f.(x, )—f,gx+ty+ tz <f(x), i=12 ..,1 (4)

[Since Mo {xT E,|xT X, f ()< f(X)}.i=1,2 ..,1]

g, (Xp) =9, 8X+t”y+ t Z <0=g,(x) (5
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and h(x,) = hgx+t y+;t z_—O h (X). (6)
Now, from (4), we have

t.NE )Ty + 5t (NF ()T 2+ N2 £, (R)(y,y) +o(t5) £0,i= 1,2, ..., | (7)
Now, if Nf,(X)Ty=0,i=1,2, ..., then, from (7), we have

20(t )P

n

2 ZI(Nf ()7 2+ K21, (%) (v.y)) +

as n® ¥, we have

20(t )P

ﬂ

|Im}(Nf ()" 2+ N2 (), y) + = (Nf; ()" 2+ N? £ (X)(y,y)) £ 0.

Also, from (7), we have

Z,Iftsz( )"y + (R, (%) 2+ K2 £, (R)(y, y))+2°(t )

n n
Now, if Nf.(X)'y<0,i=1,2,...,landas n® ¥ we have
(Nf, (%) z+R2£, (R)(y,y)) <O,
ie (Nf, %)y, Nf, (%) z+R2f, (R)(Y,Y)) £0(0,0)7, i=1,2,...,1
smilaly,  (Ng;(®)"y, Ng; ®)" 2+K°g; Ay.Y) 50,07, iT 1(%),
and (Nh, (®)"y,Nh, (%)7 z+R%h, (X)(y.y)" =(0,0)" p=1,... k,
whichimpliesthat (y,z)1 L2(M';X) b T2(M';x)1 L2(M';X), " i
Since L2(M";X) isclosed convex set and i is arbitrary, we have
| _ [ _
ingZ(M';Y)I' i(:;1|_2(|v|';7):|_2(|v|;7).
For closeness of L?(M';X) we can also write
i(I:;lcl convT2(M';x) I L2(M;X)
where ¢l convT?(M';X) denotes the closure of convex hull of T2(M';X) .
Remark: 3.1. In general, the converse inclusion in lemma 3.1 does not hold. So to obtain

the necessary conditions for a feasible point to problem P be alocal vector minimum point,
it is reasonable to assume that
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L2(M;x%) | hTZ(Mi;X) (8)
i=1

I .
and L*(M;x) 1 (el cowT?(M'; %) (9)
i=1
Conditions (8) and (9) are considered, respectively, as a generalized Abadie second-order
regularity condition (GASORC) and generalized Guignard second-order regularity condi-
tion (GGSORC).

For checking optimality along the corresponding curves, we achieve the impossibility of
a family of nonhomogeneous system as necessary optimality conditions. These systems de-
pend upon a descent direction for f at the considered optimal point X1 X and involve only
the components of f, for which this direction is stationary at X; therefore, given any direc-
tion yT E,, let P(y)={il {L...,1}: Rf,(X)'y =0} .

Now, we are in a position to state the primal form of our second-order necessary condi-
tions.

Theorem 3.1. Let X be aloca vector minimum point to Problem P, and assume that the
second-order (GASORC) holdsat X1 X. Then, the following system has no solution (y, 2):

F(,2) 50 "1, (10

F(Y,2) < O at least onei where il P(y) (11)
Gy, S0 "l I(X), (12
Hy(y,2)=0. "p (13)

where P(y) ={il {1..,1}:Nf.(x)" y =0}.

Proof: Let (y, ) be the solution of (10)—(13). Then, (y,2)1 L*(M;X).

By the assumption of GASORC we have, (y,z)1 T?(M';X). Then, there exist x,1 M'
and t, ® +0 suchthat x, =X +t,y +1tZz+o(t?).

By the Taylor expansion,
fi(%a) - £ (%) =t,NER)Ty + 582 (N, (%) 2+ K2 £ (R)(y, ) +o (t7).
Then for al n we have
fi(x)) = fiR+ty +302) < fi(x), ", (14)
From (14), we have

t.Nf, ()T y + 162 (Nf; ()" 2+ N2 £, (X)(y,y)) +0(t2) <0, "i .

If iT P(y), then Nf, ()" z+N2f, (X)(y,y) < 0. (15)
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Hence, (v,2)1 T2(M';X)P F (y,2) < 0, " i1 P(y).

L
Since T i's closed and isotone and _(;1M' I X, wecanwrite
2

_é:lTZ(Mi;Y)I' T2(X;X). P (y,2)T T?(X;X).

Then, there exist x,1 X and t, ® +0 suchthat x, =X+t y +1t3z+o(t2).

Since X be alocal vector minimum point to problem P, there is no point xpT X, where
f(xp) <f(X).
ie (tpNf (®) Ty + 23 (Rf; (R) " 2+ N2 (X)(y,y)) +0(t3)) <0,i=1,2, ..., .
Now, if il P(y) andas p® ¥ then, we have,

(N ()" 2+ R, (x)(y,y) <0, il P(y). (16)

It means that if X isalocal vector minimum point, then we do not get (16), which is a con-
tradiction with (11). So the system has no solution.

In order to obtain KKT-type necessary conditions, we need the following nonhomogene-
ous form of the Tuckers theorem of the alternative [6].

Lemma3.2: LetA,BardCbe m' n, p' n and q° n real matricesand b1 E,, b1 E,
and by | E,bereal vectors. Then either

Ax+b, £0

Bx+b, <0 ) hasasolution xI E,.

Cx+b;=0

ATy, +B'y, +CTy; =0
or bly; +bjy, +blys = 0} hasasolutionys, y, andys,
yl >01 y2 g 0

but never both.
The proof isidentical with [3,6].

Remark 3.1: To get the positive Lagrange multipliers w >0, il P(y) in [5], Bigi and
Castellani gave the lemma 2.1. Using this lemma, they tried to prove their theorem 5.5 for
getting w; positive, but it is not possible, because the lemma provides semi-positive w, i.e.
(w3 0,w? 0). In arecent paper [3], they establish theorem 3.2 by using SMFRC condi-
tions. They restrict w by |jw|| =1, but ||w|| = 1 does not necessarily imply that all the com-
ponents of w are not equal to zero.

Applying Lemma 3.2 and Theorem 3.1, we have deduced the following KK T-type neces-
sary conditions, which ensure the existence of positive Lagrange multipliers of the objec-
tive functions. Here, we consider those components of f, for which the direction yT E, is
stationary at X;i.e. P(y)={iT {1...,1}: Nf.(x)"y =0}.
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Theorem 3.2: Let X satisfy the assumptions made in Theorem 3.1. Then, for each criti-
cal direction y, there exist multipliers wi E, ul E,, and vi E, such that

aWNf (x)+au Ng (x)+av Nh p(X)=0
i=1 =1

awN fL(x)+ A u, g, (x)+av Nh (X)—(y y)20
=1 j=1

w, >0 il P(y), w =0 foral il P(y), u; 20 ji I(y), u; =0 foral ji I(y)
P(y) ={iT {L...}: N (x)Ty=0, 1()={jT {L...m:9;(x)=0, Ng;(®)"y =0}
Proof: Let y be acritical direction. Then, the system

Nfpeyy (X)T 2+R% 5, (X)(y, ¥) £0
Ng, ) ()" z+N?g, XY, ¥)=0

Nh(x)" z+N*h(x)(y, y) =0
has no solution z.

By lemma 3.2, there exist multipliers W 1 E . uT E, and vi E, such that,

aWNf (x)+au Ng (x)+av Nh p(X)=0
i=1 =1

OB W, (0 + & u K%, (%) + & v,°h (X)—(y y)20
i=1 j=1 p=1

w>0il P(y), w=0foral il P(y), u; 20 jI I(y),uj:0forall iTy).

This completes the proof.
Since GASORCP GGSORC, theorems 3.1 and 3.2 hold for GGSORC also.
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