STRUCTURAL RELATIVITY IN LANGUAGES*

P. C. Ganeshsundaram
(Assistant Professor of Foreign Languages, Indian Institute of Sctence, Bangalore, India)
Received on June 28, 1975

Abstract

The hierarchical syntactic structures are considered as linear algebraic formulae \dagger Word order being language-specific, the formulae do not consider word order , as a universal deep-structure feature. The deep-structure is considered to be amorphous.

The verb, a primitive concept, is taken as the nucleus for the definition of all other syntactic elements and structures.

The Sentence is considered to be merely a conjunct verb.
The traditional (as well as modern Chomskyan) Subject-Predicate (NP + VP) division of a sentence is considered to be only one of the many alternative ways of 'conjunct verb formation'.

Conjunct verbs could be either lexically conjunct or syntactically conjunct depending upon the transformational context.

The transformation of lexical verbs into conjunct modal auxiliaries under cerfain conditions is discussed.

The relation between logical and linguistic elements and their fusion into pseudolinguistic elements are discussed.

In short, the main subject of discussion is the 'intralinguistic' and 'interlinguistic' relativity in language structures.

[^0]
1. Introduction

It is impossible to give here more than a glimpse of what we have to say on some aspects of language structure.

1.1. Grammar, Grammar and Grammap

Languages like Sanskrit, which have, so to speak, a straight-jacket morphology with a minimum of syntactic suface stiuciure, could be described by not more than a few alternative grammars, all of which would overlap over a large body of rules. They could differ only in minor details.

A language like English, on the other hand, which has a minimum of morphological paradigmatic formal structure but has a more pronounced syntactic structure (with stricter word order), could be described by a number of different alternative grammars that differ largely from one another but could all be equally valid. Illustrations are abundant in published literatue.

Between Sanskrit and English are ranged a whole series of other languages.

1.2. More and More Grammar

There have been grammars that considered the traditional parts of speech as being rigid compartments.

There appeared other grammars which revamped these compartments. Thus more and more grammars of the most widely described languages have been appearing in print.

1.3. No Nore New Grammar

Our purpose in presenting this paper is not to propose any further now grammar but to put forward a new way of looking at syntactic structures.

For this purpose we rest upon three premises:
(1) Any syntactic sentence in a language is at once a number of different semantic sentences.
(2) A language (like English) that has shed its rigid morphological paxadigmatic surface structures is in an active process of very rapid and wideranging evolution at the syntactic-semantic livels.
(3) All structural descriptions are subject to the phenomenon of relativity.

For our present discussion we restrict our attention to the concept of the verb, the verb being the ceatral element (taken as a self-evident entity) in relation to which all other elements (parts of speech, etc.) could be defined.

2.0. The Sentence and Its Structure

All descriptions of syntactic structure try to deal directly with the linear structure of the sentence. The linear structure is language-specific. The undorlying non-language-specific structure is not linear and is what could be called an 'amorphous sentence', which in its turn has an underlying logical 'proposition'.

If we have:
S^{\prime} - the amorphous sentence,
S - the proposition underlying a sentence,

* -- the 'semantic determinant' (that tells us something about the case-role relationships of the components of a sentence, as well as the nature of the sentence: declarative, interrogative, negative, etc.),
V - the verb (a self-evident entity, defined indirectly through logical, semantic or formal pointers or by listing), and

J - the 'argument' (or arguments) of the verb,
then, we define an amorphous sontence as:

$$
\begin{equation*}
S^{\prime} \rightarrow * S \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
S \rightarrow\left({ }^{\prime} V^{\prime} \cdot J\right) \tag{2}
\end{equation*}
$$

where the brackets () stand for the sentence boundary and the quotes ' 'stand for an optional element.

Thus, there would be a sentence with no verb present in it, such as:
Sommer (in German)
or
Leto (in Russian)
meaning:
"It is Summer".

There could also be a sentence with neither verb nor any of its arguments, such as:

Hm.
or
Hm ?
(that is, a statement or a question composed mainly of 'intonation' and no 'morpheme' of any other kind in the language).

2.1. Unorthodox View of the Verb

The verb itself could be of the form:

$$
V \rightarrow\left({ }^{\prime} V_{1}{ }^{\prime}{ }^{\prime} J_{1}{ }^{\prime}\right)
$$

V_{1} and J_{1} being minor sub-sets of V and J.
This would account for "phrasal verbs' (or 'conjunct verbs') acting as a single unit.

3.0. The Components of J

J represents a number of arguments of the verb, each argument representing a component reflecting a particular case role characteristic.

Thus:

$$
J \rightarrow J 1 J 2 J 3 J 4 \ldots
$$

where, for example:

```
J1 may be the 'agent-subject'
J2 - the 'patient-object'
J3 - a 'Iocational adverb' or equivalent,
```

etc., in the active voice. (If the surface level 'voice' is disregarded, then $J 1$ and $J 2$ are still the 'agent' and 'patient'.)

In expanding the inner components of any of these J 's (that is, of J, $J 2, J 3$, etc.), we may ignore the suffixes and apply the general substitution rules given below. However, the suffixes should be taken into account to decide which of a set of alternative substitutions are to be either obligatorily present or absent for a particular case-role J.

These different case-role J 's are obtained in our general rules through the application of recursive formulas.
3.1. Rules for a General Amorphous Syntactic Structure:
(1) $S^{\prime} \rightarrow \quad * S$
(2) $S \rightarrow\left({ }^{\prime} J,{ }^{\prime} V^{\prime}\right)$
(3) $J \rightarrow Z^{\prime} Z^{\prime}$
(4) $Z^{\prime} \rightarrow \quad J$
(5) $Z \quad \rightarrow \quad\left\langle P \times^{\cdot} Q^{\prime}\right\rangle$
(6) $Q \quad \rightarrow \quad P$
(7)
$\rightarrow\left\{\begin{array}{c}\left\langle\Sigma P_{(i)}\right\rangle \\ \langle Z\rangle\end{array}\right\}$
(8) $\left\{\begin{array}{l}(a) \\ (b) \\ (c) \\ (d)\end{array}\right\} P_{(i)}$

$$
\rightarrow\left\{\begin{array}{l}
\langle C\rangle \\
\langle N O\rangle \\
\langle A O\rangle \\
\langle D O\rangle
\end{array}\right\}
$$

(9)
(10)
(12) $\quad N O_{(i)}$
$\rightarrow \quad\left(\Sigma C_{(i)}\right)$
$\rightarrow \quad\left({ }^{(} J_{(i)}{ }^{\prime}{ }^{\mathrm{c}} V_{(i)}{ }^{\prime}\right)$
$C_{(i)}$
$\rightarrow \quad\left\langle\Sigma N O_{(i)}\right\rangle$

T	\rightarrow	$\left\{\left\langle T_{1}\right\rangle,\left\langle T_{2}\right\rangle\right.$,
$N A$	\rightarrow	$\left\{{ }^{*}\langle A O\rangle^{\prime} N\right\}$

(19)
(20)
N
$\rightarrow\left\{\begin{array}{l}\left\langle{ }^{{ }^{6} T^{\prime} N A}\right\rangle \\ \left\langle R_{\mathrm{I}}\right\rangle \\ \left\langle R_{\mathrm{z}}\right\rangle\end{array}\right\}$
13)
)
$\rightarrow \quad\left\{\left\langle N_{1}\right\rangle,\left\langle N_{2}\right\rangle, \ldots\right\}$
)
$A O$
$\rightarrow\left\langle\Sigma A O_{(i)}\right\rangle$
$A O_{(i)}$
$\rightarrow \quad\left\langle\quad\langle D O\rangle{ }^{\prime} A\right\rangle$
DO
$\rightarrow\left\langle\Sigma D O_{(i)}\right\rangle$
$\rightarrow\left\langle D \times^{\prime} Y^{\prime}\right\rangle$
$D O_{(\mathrm{i})}$
$\rightarrow \quad D O_{(i)}$

(21)	A	\rightarrow	$\left\{\left\langle A_{1}\right\rangle,\left\langle A_{2}\right\rangle, \ldots\right\}$
(22)	D	\rightarrow	$\left\{\left\langle D_{1}\right\rangle,\left\langle D_{2}\right\rangle, \ldots\right\}$
(23)	R_{1}	\rightarrow	$\left\{\left\langle P R_{1}\right\rangle,\left\langle P R_{2}\right\rangle, \ldots\right\}$
(24)	R_{2}	\rightarrow	$\left\{\left\langle R R_{1}\right\rangle,\left\langle R R_{2}\right\rangle, \ldots\right\}$

(25) $\left\{T_{1}, T_{2}, \ldots\right\} \rightarrow \quad \rightarrow \quad$| LLexical determiners like: a, the, |
| :---: |
| this, my, etc.\} |

(30) $\left\{R R_{1}, R R_{2}, \ldots\right\} \quad \rightarrow \quad\{$ Relative pronouns $\}$
$\left\{\begin{array}{l}(a) \\ (b)\end{array}\right\} V \rightarrow\left\{\begin{array}{l}V C \\ V O\end{array}\right\}$
$\left\{\begin{array}{l}(a) \\ (b)\end{array}\right\} X \rightarrow\left\{\begin{array}{l}V C \\ V O\end{array}\right\}$

$$
\left\{\begin{array}{l}
(a) \tag{33}\\
(b) \\
(c)
\end{array}\right\} V O \quad \rightarrow\left\{\begin{array}{l}
V K \\
V I \\
V T
\end{array}\right\}
$$

$V K$	\rightarrow	$\left\{V K_{1}, V K_{2}, \ldots\right\}$
$V I$	\rightarrow	$\left\{V I_{1}, V I_{2}, \ldots\right\}$
$V T$	\rightarrow	$\left\{V T_{2}, V T_{1}, \ldots\right\}$
$*$	\rightarrow	$+^{\prime},+$

(40)

$$
\left.\left.\begin{array}{l}
+\prime \quad\left\{\begin{array}{l}
\text { The - 'modalities components ' } \\
\text { including psychological and } \\
\text { logical associations and } \\
\text { formal presentation) }
\end{array}\right\}
\end{array}\right\} \begin{array}{l}
\text { (The extended Fillmore 'case- }
\end{array}\right\} \begin{aligned}
& \begin{array}{l}
\text { The } \\
\text { role' components })
\end{array} \tag{39}
\end{aligned}
$$

where, the various brackets stand for what is written within them below:
(S --structures; C -structures or Conjunct verbs).
(P - structures),
\{Allernatives\} and
'Optionals'.

4.0. The Verb and the Sentence:

In our present view, if $V O$ is a simple lexical verb, then $V C$ is a conjunct verb, so that a C-structure or S-structure is merely a complex variety of a conjunct verb. In such a case, there is no such thing as a 'verbless sentence . since the sentence itself is a conjunct verb :

4.1. Structural Reatlivity within a Single Language Systent

The 'semantic determinant'* represents the major set of all possible case-role, tense-aspect and other modal and associative characteristics of 'parts of speech', of intermediate structures and of the entire utterance forming a sentence. Sub-sets of this * are distributed among the different members of a sentence.

For example:

$$
\begin{aligned}
& S^{\prime} \quad \rightarrow \quad * S \\
& \because \div: \quad \because S \quad \rightarrow \quad *(J 1 J 2 J 3 \ldots V) \\
& \rightarrow \quad{ }^{*}\left({ }^{*}{ }_{a} J 1{ }^{*}{ }_{b} J 2{ }_{c}^{*} J 3 \ldots{ }^{*} p\right. \text {) }
\end{aligned}
$$

(These elements ${ }^{*} s,{ }_{a},{ }^{*} b,{ }^{*} c$ and ${ }_{p}$ are chosen pre-linguistically at the psychological and logical levels.)

There could be alternative ways of this distribution of $*$ among the components of S. For example, we may have relations such as:

$$
{ }^{*} J_{m}{ }^{*}{ }_{p} V \not{ }^{*} r J_{m}{ }^{*} t V C
$$

(where, VC is a conjunct verb given by $V C \rightarrow\left(V O J_{2}\right)$.
II

$$
S^{\prime} \quad \rightarrow \quad \text { We talked about him }
$$

An element like ${ }^{*}$ could be indicated as $+M_{n}$ and called a＇marker＇telling us sornething about the case－role characteristics of the P－structure contain－ ing it．

This marker in some languages could be a preposition as in English， a preposition and case ending as in Russian or just case ending as in Sanskrit．

For convenience we shall always attach a + sign to a marker in our discussions．

4．2．Structural Relativity between Languages

Assuming that＇picture＇（Eng．），＇peinture＇（Fr．），＇Kartina’（Russ．） and＇patxam＇（Tamil）are lexically equivalent，we may have equivalent statements in the four languages，such as：

I look at the picture（Eng．）
Je regarde la peinture（Fr．）
Ja smetrju na kartinu（Russ．）and
Naan patxattai paarkkirheen（Tamil）．
（N．B．－The Romanised spelling used here for Tamil has the following peculiarities：t－dental stop．，$t x$－retroflex stop；r－dental trill， $r h$－alveolar trill；short and long vowels：$a / a a$ and $e / e e$ and so on．）

The French，Russian and Tamil sentencos could be analysed respectively as：
（ $(J e\rangle$ regarde 〈la peinture $\rangle)$
（ $\langle J a\rangle$ smetrju $\langle+$ na kartin +u\rangle ）
（（Naan）（Patxatt + ai \rangle paarkkirheen）．
The English structure，however，could be analysed alternatively as： （〈I）look（ + at the picture \rangle ）
which would correspond to Russian，component for component，and： （ $\langle\mathbf{I}\rangle$（look 〈at $)$ ）（the picture \})
which would correspond to French，component for component．When we say＇component＇here we refer to the immediate＇inner＇members of an ＇guter＇structure，starting from the outcrmost brackets，

Thus:

```
regarde (Fr.) &z (look <at )) (Eng.)
```

whereas

```
smetrju (Russ.) # look (Eng.).
```

Further, if we take $* 1 J 1 \rightarrow\langle 1\rangle, * 2 J 2 \rightarrow\langle$ the picture $\rangle, * 3 J 3 \rightarrow$ $(+$ at the picture $\rangle, V 1 \rightarrow$ look, and $\mathrm{V} 2 \rightarrow($ look 〈at $)$), then:

French and English have the common structure:

$$
\left({ }^{*} 1 J 1 * 2 . / 2 *_{a} \nu 2\right) .
$$

Russian and English have the common structure:

$$
\left(*_{1} J_{1} *_{3} J_{3} *_{b} V_{1}\right)
$$

Disregarding for the present the (tense, mood, voice, . . .) characteristics of the verb represented by ${ }^{*} a$ and ${ }^{*} b, *_{1}$ and $*_{2}$ of French and English depend purely on the relative positions of J_{1} and J_{2} on either side of the verb.

Thus we have:

$$
\left(*_{1} J_{1} *_{2} J_{2} V_{2}\right) \rightarrow\left(J_{1} V_{2} J_{2}\right) .
$$

Because of the marker $+a t$ and because of the nominative form I, it is quite possible (at least in poetic formulations) to say in English:
$(\langle+$ At the picture \rangle look $\langle 1\rangle)$
corresponding to:
$(\langle+\mathrm{Na}$ kartin $+u\rangle$ smotrju $\langle\mathrm{ja}\rangle)$
in Russian (disregarding questions of stress).
However, while this freedom of position is more common in Russian, it is highly restricted in English.

In Tamil, on the other hand, the verb usually comes as the last element in a sentence.

This interlinguistic relativity is therefore ever present at the surface level,

However, in this particular example, English, French and Tamil have the same underlying theoretical structure:

$$
\left(*_{1} J *_{2} J \quad V_{2}\right)
$$

The main difference is that $*_{2}$ is represented by ' position' after the verb in English and French, whereas it is represented by the marker $+a i$ in Tamil. 5.0. Structural Transformations

Let us discuss this question of structural transformations by taking an example. Disregarding the 'semantic dcteminant'*, we have:

$$
\begin{aligned}
\mathrm{S} & \rightarrow(J V) \\
& \rightarrow\left(J_{1} J_{2} V\right) .
\end{aligned}
$$

This sentence may be converted into a' virtual noun 'by choosing either J_{1} or J_{2} as the noun-head and what remains as its attribute.

In our present system this could be simply done by converting S into a P-structure, giving :

$$
\langle S\rangle \rightarrow\left\langle\left(J_{1} J_{2} V\right)\right\rangle .
$$

With this step, the virtual noun $\langle S\rangle$ can now be used in a metalanguage sentence saying something about the object language sentence S itself. For example, if:

$$
S \rightarrow(\langle\text { The man }\rangle \text { talked }\langle+ \text { about the house }\rangle)
$$

then:

$$
(\langle S\rangle \text { is }\langle\text { a sentence }\rangle)
$$

would be the metalanguage sentence.
If $\langle S\rangle$ has to be used not as the object itself but as a referent to an extralinguistic object, then another transformation, 'algebraically' taking out the noun-head from the C-structure represented by S, must be carried out.

When this is done, its place in the C-structure is taken ever by a 'dummy ' element and the C-structure itself is converted into a P-structure, giving us:

$$
\left\langle J_{1} \times\left\langle\left(J_{1}^{\prime} J_{2} V\right)\right\rangle\right\rangle
$$

where \times denotes an attributive relationship and J_{1}^{\prime} in some languages is the relative pronoun $\left(R R_{i}\right)$ and in some others a relativising particle in a participial construction. In English and other Western languages:

$$
J_{1}^{\prime} \rightarrow\left(R R_{i}\right)
$$

Or, taking J_{2} as the noun-head, we have:

$$
\left(J_{2} \times\left\langle\left(J_{2}^{\prime} J_{1} V\right)\right\rangle\right\rangle
$$

Examples in English:

$$
\begin{aligned}
S & \rightarrow\left(J_{1} J_{2} V\right) \\
& \rightarrow\left(J_{1} V J_{2}\right) \\
& \rightarrow(\langle\text { The man }\rangle \text { (talked (about }\rangle)\langle\text { the house }\rangle) \\
\langle S\rangle & \rightarrow\left\langle\left(J_{1} V J_{2}\right)\right\rangle \\
& \rightarrow\left\langle J_{1} \times\left\langle\left(J_{1}^{\prime} V J_{2}\right)\right\rangle\right\rangle \\
& \rightarrow\left\langle J_{1} \times\left\langle\left(\left[R R_{i}\right] V J_{2}\right)\right\rangle\right\rangle \\
& \rightarrow\langle\langle\text { The man }\rangle \times\langle(\langle\text { who }\rangle \text { (talked (about)) } \\
& \langle\text { the house }\rangle)\rangle\rangle
\end{aligned}
$$

Or,

$$
\begin{aligned}
\langle S\rangle \rightarrow & \left\langle J_{2} \times\left\langle\left(J_{2}^{\prime} J_{1} V\right)\right\rangle\right\rangle \\
\rightarrow & \left\langle J_{\mathrm{a}} \times\left(\left(\left(R R_{j}\right\rangle J_{1} Y\right)\right\rangle\right\rangle \\
\rightarrow & \langle(\text { The house }\rangle \times\langle(\langle\text { which }\rangle\langle\text { the man }\rangle \text { (talked } \\
& \langle\text { about }\rangle))\rangle\rangle .
\end{aligned}
$$

We however have a choice:

$$
R R_{j} \rightarrow\left\{\begin{array}{c}
\phi \\
\text { which } \\
\text { that }
\end{array}\right\}
$$

With
$R R_{j} \rightarrow \phi$, we get:
$\langle\langle$ The house $\rangle \times\langle(\langle$ the man $\rangle($ talked \langle about $\rangle))\rangle\rangle$.
Now, in the active voice, if we have:

$$
S \rightarrow\left(\langle\text { The man }\rangle\left\{\begin{array}{l}
\text { comes } \\
\text { is coming } \\
\text { came } \\
\text { was coming } \\
\text { will come } \\
\text { will be coming }
\end{array}\right\}\langle+ \text { along the road }\rangle\right)
$$

then all the alternatives in this have the same structure:

$$
S \rightarrow\left(J_{1} \vee J_{2}\right)
$$

where only the * element attached to V will be different for the differen alternatives.

We then have:

$$
\langle S\rangle \rightarrow\left\langle J_{1} \times\left\langle\left(J_{1}^{\prime} V J_{2}\right)\right\rangle\right\rangle
$$

where

$$
J_{7} \rightarrow\left\{\begin{array}{c}
\left\langle R R_{i}\right\rangle \\
\phi
\end{array}\right\} .
$$

If

$$
\begin{aligned}
J_{1}^{\prime} & \rightarrow\left\langle R R_{i}\right\rangle \\
& \rightarrow\langle\text { who }\rangle
\end{aligned}
$$

the verb will still have the same alternative forms. But, if $J_{1}{ }^{\prime} \rightarrow \phi$ then all the alternatives of V will be replaced by $* g^{V}$, giving:

$$
\begin{aligned}
V & \rightarrow{ }_{g} V \\
& \rightarrow V+\text { ing. }
\end{aligned}
$$

So that, we have:

$$
\begin{aligned}
\langle S\rangle & \rightarrow\left\langle J_{1} \times\left\langle\left(V+\operatorname{ing} J_{2}\right)\right\rangle\right\rangle \\
& \rightarrow\langle\text { The man }) \times((\text { coming }\langle+ \text { along the road }\rangle))\rangle .
\end{aligned}
$$

In the passive voice, we have:

$$
\begin{aligned}
S & \left.\rightarrow\left(\langle\text { The house }\rangle\left\{\begin{array}{l}
\text { is } \\
\text { is being } \\
\text { was } \\
\text { was being } \\
\text { will be }
\end{array}\right\}(\text { talked (about }\rangle\right)\langle+ \text { by } \times\rangle\right) \\
& \rightarrow\left(\begin{array}{lll}
J_{1} & \left.V J_{2}\right) .
\end{array}\right.
\end{aligned}
$$

Now,

$$
\langle S\rangle \rightarrow\left\{J_{1} \times\left\langle\left(J_{1}^{\prime} V J_{2}\right)\right\rangle\right\rangle
$$

where

$$
J^{\prime} \rightarrow\left\{\begin{array}{c}
\left\langle R R_{j}\right\rangle \\
\langle\phi\rangle
\end{array}\right\} \text { and }\left(R R_{j}\right\rangle \rightarrow\left\{\begin{array}{c}
\langle\text { which }\rangle \\
\langle\text { that })
\end{array}\right\}
$$

With

$$
J_{1}^{\prime} \rightarrow\left\langle R R_{j}\right\rangle,
$$

the verb will be unaltered.
But if

$$
\begin{aligned}
J_{1}^{\prime} & \rightarrow \phi_{,} \text {then: } \\
V & \rightarrow{ }_{g} V \\
& \rightarrow V+\text { ing. }
\end{aligned}
$$

where V stands for:

$$
\begin{aligned}
V & \rightarrow V C \text { and } \\
V C & \rightarrow \text { be (talked }\langle\text { about }\rangle)
\end{aligned}
$$

So that:

$$
\begin{gathered}
\langle S\rangle \rightarrow\langle\langle\text { The house }\rangle \times\langle(\text { being (talked }\langle\text { about }\rangle) \\
\langle+ \text { by } X\rangle)\rangle\rangle .
\end{gathered}
$$

The passive auxiliary in the + ing form can further be elided, and we get:
$\langle S\rangle \rightarrow\langle\langle$ The house $\rangle \times\langle(($ talked \langle about $\rangle)\langle+$ by $X\rangle)\rangle\rangle$.
The reference to the agent $(+$ by $X)$ could also be elided, giving:
$\langle S\rangle \rightarrow(\langle$ The house $) \times((($ talked \langle about $)))\rangle)$.
Now, if:
() wholly occupies another 〈 〉
or
() wholly occupies another (),
then

$$
\begin{aligned}
& \langle\langle\quad\rangle\rangle\langle\rangle \\
& (()) \rightarrow(\quad) .
\end{aligned}
$$

For further simplicity in our notation，we may omit the mark \times of attributive relationship and also omit the（）breckets enclosing a＇pure＇ noun phrase，giving：
$\langle S\rangle \rightarrow\langle$ The house $\langle($ talked \langle about $\rangle)\rangle\rangle$

5．1．The Verb Structure：

Verbs as units in a syntactic structure（disregarding modifications caused by＊）could be classified into several groups：
（1）Simple verb．－The verb may be simple，that is，consisting only of a lexical verb（with no partucle attached），such as saw or goes as ir：
（（ I$\rangle \operatorname{saw}\langle\operatorname{him}\rangle$ ）
（ (He) goes $)$ ．
（2）Coniminct verb－The verb may be＇conjunct＇and may further be subdivided into：
（a）Simple conjunct．－A structure like（ talked（about 〉），when it takes part in transformations（including interlinguistic translations）as a single entity，is simple conjunct，as in：
（ $\langle I\rangle$（talked（about \rangle ）（him \rangle ）．
This could of course be alternatively looked upon as：
（ $\langle 1\rangle$ talked 〈 \dagger about him 〉），
in which case talked is a simple verb．
（b）Complex conjunct：A conjunct verb may be complex，as the structure： （（gave〈it〉）〈up〉）
in
$(\langle I\rangle(($ gave $\langle\mathrm{it}))\langle\mathrm{up}\rangle))$.
However，we have：
（（I）（gave（up＞）〈smoking ））
where（gave（up ））is simple conjunct．
We also have：
（ $(1\rangle$（gave（up $\rangle)$（the whole matter ））
as well as:
$(\langle I\rangle(($ gave \langle the whole matter $\rangle)\langle$ up $\rangle))$.
This suggests that there is an intermediate structure such as:
$(\langle I\rangle($ gave $\langle u p\rangle)\langle$ smoking $\rangle))$
and
$(\langle I\rangle(($ gave $\langle u p\rangle)\langle$ the whoie mattor $\rangle))$.
The structure (smoking), further, could be a nominalised version of a verbform (smoking), giving us:
((smoking) $)$.
Thus, if $J_{1} \rightarrow\langle D\rangle$, i.e., an adverb or adverbial particle attached to the verb, then:

$$
J_{2} \rightarrow\left\{\begin{array}{c}
\langle C\rangle \\
\langle N O\rangle
\end{array}\right\}
$$

where $C \rightarrow(V J)$, and, if $\langle N O\rangle$ is a noun phrase, which may be long, we have:

$$
V C \rightarrow\left(\left(V J_{1}\right) J_{2}\right)
$$

Or

$$
J_{2} \rightarrow\left\{\left\langle R_{1}\right\rangle\right\},
$$

where $\langle N O\rangle$ is a noun phrase, which may not be too long, giving:

$$
V C \rightarrow\left(\left(V J_{2}\right) J_{1}\right)
$$

Thus, only if, say, $J_{2} \rightarrow\langle N O\rangle$ and $J_{1} \rightarrow\langle D\rangle$, where $\langle N O\rangle$ is not too long, we would have:

$$
\left(\left(V J_{1}\right) J_{2}\right) \rightleftarrows\left(\left(V J_{2}\right) J_{1}\right)
$$

Further, $\left(\left(V J_{2}\right) J_{1}\right)$ is always complex conjunct, whereas in the case of ($\left(V J_{1}\right) J_{2}$) the following reduction is possible:

$$
\left(\left(V J_{1}\right) J_{2}\right) \rightleftharpoons\left(V J_{1}\right) J_{2}
$$

giving us a simple conjunct verb on the right hand side.

5.2. The Subject-Predicate Structure

From our present point of view, the traditional Western grammars and the consequent Chomskyan $N P+V P$ division of a sentence into a subject and a predicate is only a special case of conjunct verb formation:

If, in Chomskyan grammar,

$$
S \rightarrow N P+V P
$$

in our view:

$$
\begin{aligned}
S & \rightarrow(J V) \\
& \rightarrow\left(J_{1} J_{2} J_{3} \ldots V\right) \\
& \rightarrow\left(J_{1}\left(J_{2} J_{3} \ldots V\right)\right)
\end{aligned}
$$

which grouping is only one of the several alternative possibilities. In this special case we have the correspondences:

Chomskyan $N P \rightarrow J_{1}$
Chomskyan $V P \rightarrow\left(J_{2} J_{3} \ldots V\right)$.
It is theoretically possible, however, to think of alternative groupings, such as:

$$
S \rightarrow\left(\left(J_{1} J_{2} V\right) J_{3} J_{4}\right)
$$

or

$$
S \rightarrow\left(\left(J_{1} V\right) J_{2} J_{3} J_{4}\right)
$$

or

$$
S \rightarrow\left(J_{1} J_{2}\left(V J_{3} J_{4}\right)\right) .
$$

Thus it is possible to group the elements as shown below in Tamil, English, etc.:

English:

$$
\begin{gathered}
(\langle I\rangle \text { did }\langle\text { that work }\rangle) \\
(\langle I\rangle(\text { did }\langle\text { that work }\rangle)) \\
((\langle I\rangle \text { did })\langle\text { that work }\rangle) .
\end{gathered}
$$

The last of these may be the emphatic statement auswering the question: "who did that work?".

Tamil:
(\langle Naan $\rangle\langle$ anta veelay + ai \rangle ceyteen $)$
$(\langle$ Naan $\rangle(\langle$ anta veelay + ai \rangle ceyteen $))$
$((\langle$ Naan \rangle ceyteen) 〈anta veelay + ai $\rangle)$.

5.3. Conjunct Verb Formation and Particular Transformations

Even within a single language a particular transformation is associated with a particular conjunct verb formation. For example:

$$
\begin{aligned}
S & \rightarrow\left(J_{1} V J_{2}\right) \\
& \rightarrow(\langle\text { The man }\rangle \text { did (that job }\rangle)
\end{aligned}
$$

If

$$
\left(J_{1} V J_{2}\right) \rightarrow\left(J_{1}\left(V J_{2}\right)\right) \rightarrow\left(J_{1} V C_{1}\right)
$$

then

$$
S \rightarrow(\langle\text { The man }\rangle(\text { did }\langle\text { that job }\rangle))
$$

where

$$
\left.V C_{3} \rightarrow(\text { did (that job })\right)
$$

Now

$$
\begin{aligned}
\langle S\rangle & \rightarrow\left\langle J_{1} \times\left\langle\left(J_{1}^{\prime} V C_{1}\right)\right\rangle\right\rangle \\
& \rightarrow\langle(\text { the man }\rangle \times\langle((\text { who }\rangle(\text { did }\langle\text { that job }\rangle))\rangle\rangle .
\end{aligned}
$$

Or we may have:

$$
\left(J_{1} V J_{2}\right) \rightarrow\left(\left(J_{1} V\right) J_{2}\right) \rightarrow\left(V C_{2} J_{2}\right)
$$

so that:

$$
\begin{aligned}
S & \rightarrow\left(V C_{2} J_{2}\right) \\
& \rightarrow((\langle\text { The man }\rangle \text { did })\langle\text { that job }\rangle)
\end{aligned}
$$

where

$$
V C_{2} \rightarrow(\langle\text { Thle man }\rangle \text { did })
$$

Now,

$$
\begin{aligned}
\langle S\rangle & \rightarrow\left\langle J_{2} \times\left\langle\left(J_{2}^{\prime} V C_{2}\right)\right\rangle\right\rangle \\
& \rightarrow\langle\langle\text { That job }\rangle \times\langle(\langle\text { which }\rangle(\langle\text { the man }\rangle \text { did }))\rangle\rangle .
\end{aligned}
$$

In English, the form of $\{S\}$, as given in the examples above, is unaffected wherever we use it in another sentence:

$$
\begin{aligned}
& S_{1} \rightarrow(\langle S\rangle \text { is }\langle\text { inferesting }\rangle) . \\
& S_{2} \rightarrow(\langle I\rangle \text { like }\langle S\rangle) .
\end{aligned}
$$

However, the position of $(S$) before or after the verb indicates that (S) is not the same in S_{1} and S_{2}, that is, the * component associated with each is different. So that, if

$$
\begin{aligned}
& S_{1} \rightarrow\left({ }^{*}\langle S\rangle \text { is }\langle\text { interesting }\rangle\right) \\
& S_{2} \rightarrow\left(\langle\mathrm{I}\rangle \text { like }{ }_{2}\langle S\rangle\right) .
\end{aligned}
$$

Accordingly, we would have in Russian:

$$
\begin{gathered}
S_{1} \rightarrow(\langle\langle E t+\text { a rabot }+a\rangle\langle(\langle\text { kotor }+ \text { aju }\rangle \text { delaet } \\
\langle\text { chelovek }\rangle)\rangle\rangle(\phi) \text { (interesn }+ \text { aja }\rangle)
\end{gathered}
$$

with perhaps a conjunct verb formation such as:

$$
((\phi)\langle\text { interesn }+ \text { aja }\rangle)
$$

giving us by a transformation: ((interesn +a$\rangle)$.
In a similar manner (if we could use 'Ja ljublju' instead of 'mne nravitsja' corresponding to 'I like' in English), we would have:

$$
\begin{aligned}
& S_{2} \rightarrow(\langle\mathbf{J a}\rangle \text { ljublju (}\langle\text { et }+\mathbf{u} \text { rabot }+u\rangle\langle(\langle\text { kotor }+u j u\rangle \\
& \text { delaet (chelovek >) }\rangle \text { 〉). }
\end{aligned}
$$

Many other types of interlinguistic transformations are to be met with in translation. For example:

$$
\begin{aligned}
S & \rightarrow(\langle\text { Leto }\rangle) \\
& \rightarrow((\phi)\langle\text { leto }\rangle) \\
& \rightarrow((\langle\mathrm{It}\rangle \text { is })\langle\text { Summer }\rangle) \\
& \rightarrow((\langle\mathrm{It}\rangle \text { is }\langle\text { Summer }\rangle)
\end{aligned}
$$

or

$$
\begin{aligned}
& \rightarrow(\langle\text { Leto }\rangle(\phi)) \\
& \rightarrow(\langle\text { Summer }\rangle(\text { is })) \\
& \rightarrow((\langle\text { It }\rangle \text { is }) \text { (Summer }\rangle) \\
& \rightarrow(\langle\text { It }\rangle \text { is }\langle\text { Summer }\rangle) .
\end{aligned}
$$

6.0. Logical Relations in Linguistic Structure

The main logical relations that we could consider are:
A, V and NOT
(We have indicated the logical and linguistic elements of negation as 'NOT ' and 'not' in the present discussion).

If we have:

$$
S \rightarrow(V J)
$$

then

$$
\begin{aligned}
\text { NOT } S & \rightarrow \operatorname{NOT}(V J) \\
& \rightarrow((\operatorname{NOTV} J)
\end{aligned}
$$

Or

$$
\rightarrow(V(\operatorname{NOT} f)) .
$$

If

$$
S_{1} \rightarrow\left(V_{1} J_{1}\right)
$$

and

$$
S_{2} \rightarrow\left(V_{2} J_{2}\right)
$$

then we may have :

$$
\begin{aligned}
S & \rightarrow\left(S_{1} \wedge S_{2}\right) \\
& \rightarrow\left(\left(V_{1} J_{1}\right) \wedge\left(V_{2} J_{2}\right)\right) \\
& \rightarrow\left(\left(V_{1} J_{1}\right)=\text { and }=\left(V_{2} J_{2}\right)\right)
\end{aligned}
$$

If

$$
V_{1} \equiv V_{2} \equiv V
$$

then

$$
S \rightarrow\left(V\left\langle J_{1}=\text { and }=J_{2}\right\rangle\right)
$$

Or，if

$$
J_{1} \equiv J_{2} \equiv J,
$$

then

$$
S \rightarrow\left(\left(\left(V_{1}\right)=\text { and }=\left(V_{2}\right)\right) J\right)
$$

Words like and，or，not，etc．，though clothed in linguistic garb，are indica－ tive of purely logical（and psychological）relations．

They can be used to transform any structure or any two（or more） structures of the same form or status in a sentence into one structure having the same status．

Thus：

$$
\begin{aligned}
\langle A\rangle \wedge\langle B\rangle & \rightarrow\langle\langle A\rangle=\text { and }=\langle B\rangle\rangle \\
S_{1} \wedge S_{2} & \rightarrow\left(S_{1}=\text { and }=S_{2}\right) \\
& \rightarrow\left(\left(V_{1} J_{1}\right)=\text { and }=\left(V_{2} J_{2}\right)\right) \\
\text { NOT }\langle A\rangle & \rightarrow\langle\operatorname{NOT} A\rangle \\
& \rightarrow\langle\operatorname{not} A\rangle .
\end{aligned}
$$

6．1．Logical and Linguistic Elements in Fusion：

Certain logical relations like \wedge and certain linguistic elements（adver． bials like：〈however 》，（nevertheless 》，（on－the－other－hand〉，etc．）could be fused into a logical－linguistic element like but．

$$
\begin{aligned}
& S_{1} \rightarrow(\langle\text { She }\rangle \text { is }\langle\langle\text { bright }\rangle=\text { and }=\langle\text { beautiful }\rangle\rangle) \\
& S_{2} \rightarrow(\langle\mathrm{He}\rangle \text { is }\langle\langle\text { intelligent }\rangle=\text { but }=\langle\text { lazy }\rangle\rangle) \\
& \rightarrow(\langle\mathrm{He}\rangle \text { is }\langle\text { (intelligent }\rangle=\text { and }-\langle\text { nevertheless }\rangle- \\
&\quad=\langle\text { lazy }\rangle\rangle)
\end{aligned}
$$

If now we have：

$$
S_{1} \rightarrow(\langle\mathrm{It}\rangle \text { is }\langle\text { NOT } A\rangle)
$$

and

$$
S_{2} \rightarrow(\langle\mathrm{It}\rangle \text { is }\langle B\rangle)
$$

then

$$
\begin{aligned}
S & \rightarrow\left(S_{1}=\text { and }=S_{2}\right) \\
& \rightarrow((\langle\text { It }\rangle \text { is }\langle\operatorname{NOT} A\rangle)=\text { and }=(\langle\text { It }\rangle \text { is }\langle B\rangle))
\end{aligned}
$$

Algebraically taking out the common factor (\langle it \rangle is), we get:

$$
S \rightarrow((\langle\mathrm{It}\rangle \text { is })\langle\langle\operatorname{NOT} A\rangle=\text { and }=\langle B\rangle)
$$

which lingurstically reduces to:

$$
S \rightarrow(\langle\mathrm{It}\rangle \text { is }\langle+\operatorname{not}\langle A\rangle=\mathrm{but}=\langle B\rangle\rangle)
$$

Or, again :
If

$$
S_{1} \rightarrow \text { NOT } S_{1}^{\prime} \text { and if } S_{1}^{\prime} \rightarrow(\langle\mathrm{It}\rangle \text { is }\langle A\rangle),
$$

then :

$$
\begin{aligned}
S_{1} & \rightarrow(\langle\mathrm{It}\rangle \text { is } \operatorname{not}\langle A\rangle) \\
S_{2} & \rightarrow(\langle\mathrm{It}\rangle \text { is }\langle B\rangle) \\
S & \rightarrow\left(S_{\mathrm{I}}=\operatorname{and}=S_{2}\right) \\
& \rightarrow((\langle\mathrm{It}\rangle \text { is } \operatorname{not}\langle A\rangle)=\text { and }=(\langle\mathrm{It}\rangle \text { is }\langle B\rangle)) \\
& \rightarrow\left(\operatorname{NOT} S_{1}^{\prime}=\text { and }=S_{2}\right) \\
& \rightarrow\left(+\operatorname{Not} S_{1}^{\prime}=\text { but }=S_{2}\right)
\end{aligned}
$$

Assuming $+\operatorname{Not} S_{1}{ }^{\prime} \rightarrow \operatorname{NOT} S_{1}{ }^{\prime}$, we get, by substituting S_{1} for NOT $S_{1}{ }^{\prime}$:

$$
\begin{aligned}
S & \rightarrow\left(S_{1}=\text { but }=S_{2}\right) \\
& \rightarrow((\langle\text { It }\rangle \text { is not }\langle A\rangle)=\text { but }=(\langle\text { it }\rangle \text { is }\langle B\rangle)) \\
& \rightarrow((\langle\text { It }\rangle \text { is })\langle+\operatorname{not}\langle A\rangle=\text { but }=\langle B\rangle))
\end{aligned}
$$

Let now:

$$
\begin{aligned}
& S_{1} \rightarrow(\langle\mathrm{It}\rangle \text { is }\langle\operatorname{NOT} A\rangle) \\
& S_{2} \rightarrow(\langle\mathrm{It}\rangle \text { is }\langle\operatorname{NOT} B\rangle)
\end{aligned}
$$

then :

$$
\begin{aligned}
S & \rightarrow\left(S_{1}=\text { and }=S_{2}\right) \\
& \rightarrow((\langle\mathrm{It}\rangle \text { is }\langle\operatorname{NOT} A\rangle)=\text { and }=(\langle\text { it }\rangle \text { is }\langle\text { NOT } B\rangle)) \\
& \rightarrow((\langle\mathrm{It}\rangle \text { is })\langle\langle\operatorname{NOT} A\rangle=\text { and }=\langle\operatorname{NOT} B\rangle\rangle) \\
& \rightarrow(((\mathrm{It}) \text { is })\langle+ \text { neither }\langle A\rangle=\text { nor }=\langle B\rangle\rangle)
\end{aligned}
$$

which is a logical and linguistic relation connecting two negative elements， represented by the pair of linguistic markers + neither $\ldots=$ nor $=$ ．

7．0．Common Factors in Several Sentences

Case 1：

$$
\begin{aligned}
& \left.S_{1} \rightarrow\left(\left\langle\text { They }_{1}\right\rangle \mathrm{go}_{1} \text { (home }\right\rangle\right) \\
& \left.S_{2} \rightarrow(\langle\mathrm{He}\rangle \text { goes (home }\rangle\right) \\
& S \rightarrow\left(S_{1}=\text { and }=S_{2}\right) \\
& \rightarrow\left(\left(\left\langle\text { They }_{1}\right\rangle \text { go }_{1}\langle\text { home }\rangle\right)=\text { and }=\text { (} \text { he }\right\rangle \text { goes } \\
& \text { (home }>\text {)) } \\
& \left.\left.\left.\rightarrow \quad\left(\left(\left\langle\text { They }_{1}\right\rangle \mathrm{go}_{1}\right)=\text { and }=\text { (}\langle\text { he }\rangle \text { goes }\right)\right) \text { (home }\right\rangle\right) \\
& \rightarrow\left(\left(\left\langle\left\langle\text { They }_{1}\right\rangle=\text { and }=\text { (he }\right\rangle\right\rangle((\text { go })=\text { and }=(\text { goes }))\right) \\
& \text { (home)) } \\
& \left.\rightarrow\left(\left(\left\langle\text { They }_{2}\right\rangle \mathrm{go}_{2}\right) \text { (home }\right\rangle\right) \\
& \rightarrow \text { (〈They) go 〈home〉) }
\end{aligned}
$$

Case 2：

$$
\begin{aligned}
S_{1} & \rightarrow(\langle I\rangle \text { went }\langle+ \text { to the shop }\rangle) \\
S_{2} & \rightarrow(\langle I\rangle \text { bought }\langle\text { some cakes }\rangle) \\
S & \rightarrow\left(S_{1}=\text { and }=S_{2}\right) \\
& \rightarrow((\langle I\rangle \text { went }\langle+ \text { to the shop }\rangle)=\text { and }=(\langle\text { I }\rangle \text { bought } \\
& \rightarrow(\langle\text { some cakes }\rangle)) \\
& (\langle\text { I }\rangle((\text { went }\langle+ \text { to the shop }\rangle)=\text { and }=\langle\text { bought } \\
& (\text { some cakes }\rangle)))
\end{aligned}
$$

This has the pattern of derivation：

$$
\begin{aligned}
S & \rightarrow\left(S_{1} \wedge S_{2}\right) \\
& \rightarrow\left(\left(V_{1} J_{1}\right) \wedge\left(V_{2} J_{2}\right)\right)
\end{aligned}
$$

If J_{1} expands into $J_{11} J_{12}$ and J_{2} into $J_{21} J_{22}$ ，then

$$
S \rightarrow\left(\left(\begin{array}{ll}
V_{1} & J_{11} \\
J_{12}
\end{array}\right) \wedge\left(\begin{array}{ll}
V_{2} & J_{21} J_{22}
\end{array}\right)\right) .
$$

If

$$
J_{11} \equiv J_{21} \equiv J
$$

then

$$
S \rightarrow\left(J\left(\left(V_{1} J_{12}\right) \wedge\left(V_{2} J_{22}\right)\right)\right)
$$

In English the logical relation \wedge connecting S_{1} and S_{2} as well as any J_{k} and any J_{l} is $=$ and $=$. The forms of V_{1} and V_{2} when two sentences are compounded by and remain unchanged.

In Tamil, on the other hand,

$$
\left\langle J_{k} \wedge J_{\mathrm{L}}\right\rangle \rightarrow\left\langle J_{k}=\mathrm{um}=J_{\mathrm{L}}+\mathrm{um}\right\rangle
$$

But when \wedge connects S_{1} and S_{2}, \wedge is represented by ϕ.
The * component attached to V_{1} and V_{2}, behaves in the following way :
V_{2} being the last verb met with in the compounded sentence, * V_{2} remains unchanged. However, since V_{1} is a non-final verb in the compounded sentence, it follows the rule:

$$
V_{1} \rightarrow\left\{*^{*}\right\} V_{1}
$$

where ${ }^{*} V_{1}$ is a past adverbial participle, whereas * would indicate the same tense for both V_{1} and V_{2}.

We would then have:

$$
\begin{aligned}
S_{1} & \rightarrow(\langle\text { Naan }\rangle\langle\text { katxai }+ \text { ku }\rangle \text { pooneen }) \\
S_{2} & \rightarrow(\langle\text { Naan }\rangle\langle\text { keek }\rangle \text { vaangkineen }) \\
S & \rightarrow\left(\left(V_{1} J_{1}\right) \wedge\left(V_{2} J_{2}\right)\right) \\
& \rightarrow\left(J\left(\left(V_{1} J_{12}\right) \wedge\left(V_{2} J_{22}\right)\right)\right) \\
& \rightarrow\left\{\begin{array}{l}
\left(J\left(\left(V_{1} J_{12}\right)\left(V_{2} J_{22}\right)\right)\right) \\
\left(J\left(\left(^{*} V_{1} J_{12}\right)\left(V_{2} J_{22}\right)\right)\right)
\end{array}\right\}
\end{aligned}
$$

Since V_{2} and V_{2} normally are the last elements in S_{1} and S_{2} in Tami] we have:

$$
\begin{array}{ll}
\left(V_{1} J_{12}\right) & \rightarrow\left(J_{12} V_{1}\right) \\
\left(* V_{1} J_{12}\right) & \rightarrow\left(J_{12} * V_{1}\right) \\
\left(V_{2} J_{22}\right) & \rightarrow\left(J_{22} V_{2}\right)
\end{array}
$$

giving finally:

$$
S \rightarrow\left\{\begin{array}{c}
(\langle\text { Naan })((\langle\text { katxai }+ \text { ku }\rangle \text { pooneen })(\langle\text { keek }\rangle \\
\text { vaaugkineen }))) \\
(\langle\text { Naan }\rangle(\langle(\text { katxai }+ \text { ku }\rangle \text { pooy })(\langle\text { keek }\rangle \\
\text { vaangkineen }))) .
\end{array}\right\}
$$

Further, the entire structure containing ${ }^{*} V_{1}$, namely (${ }^{\prime} V_{1} J_{12}$) could be considered in Tamil as an adverbial element modifying ($V_{2} J_{22}$) containing the finite verb V_{2}. In that case we get:

$$
S \rightarrow\left(J J_{\boldsymbol{x}} V C_{y}\right)
$$

where

$$
J_{x} \rightarrow\left\langle\left(J_{12}^{* \prime} V_{1}\right)\right) \text { and } V C_{y} \rightarrow\left(J_{22} V_{2}\right)
$$

giving:

$$
\begin{aligned}
S \rightarrow & \left(J\left(\left(J_{12}^{* \prime} V_{1}\right)\right\rangle\left(J_{22} V_{2}\right)\right) \\
\rightarrow & (\langle\text { Naan }\rangle\langle((\text { katxai } \times \text { ku }\rangle \text { pooy })\rangle \\
& (\langle\text { keek }\rangle \text { vaangkineen })) .
\end{aligned}
$$

$V C_{y}$ behaves as a conjunct verb in the total structure.
In this example we have seen once again the interlinguistic relativity between English and Tamil for the same logical relations.

Case 3:

$$
\begin{aligned}
& S_{1}\rightarrow(\langle\mathrm{He}\rangle \text { wanted }\langle+ \text { to (work })\rangle) \\
& S_{2} \rightarrow(\langle\mathrm{He}) \text { could not work) } \\
& S \rightarrow\left(S_{1}=\text { and }=S_{2}\right) \\
& \rightarrow((\langle\mathrm{He}\rangle \text { wanted }\langle+ \text { to (work })\rangle) \\
&=\text { and }=(\langle\text { he }\rangle \text { could not work })) .
\end{aligned}
$$

Since

$$
\left\langle V_{1}\left\langle+ \text { to }\left(V_{2}\right)\right\rangle\right) \neq\left(V C_{1} V_{9}\right)
$$

where

$$
\begin{aligned}
& V C_{1} \rightarrow \\
&\left(V_{1}\langle\text { to }\rangle\right), \text { we get: } \\
& S \rightarrow((\langle\mathrm{He}\rangle \text { (wanted }\langle\text { to }\rangle) \text { work })=\text { and }= \\
&(\langle\text { he }\rangle \text { could not work })) .
\end{aligned}
$$

Taking out the common factors (he) and (work), we get:

$$
S \rightarrow \underset{(\text { could not })) \text { work })}{(\langle\mathrm{He}\rangle(((\text { wanted }\langle\text { to }))}=\text { and }=
$$

where

$$
((\quad)) \rightarrow()
$$

Noting that:

$$
\left(V_{1}=\text { and }=V_{2}\right) \rightarrow\left(V_{1}=\text { bat }=\text { not } V_{2}\right)
$$

where

$$
\begin{aligned}
& V_{2} \rightarrow \text { NOT } V_{2}^{\prime}, \text { we have }: \\
& \left.S^{\rightarrow} \rightarrow(\langle\mathrm{He}\rangle(\text { (wanted }\langle\text { to }\rangle)=\text { but }=(\text { could not })) \text { work }\right)
\end{aligned}
$$

In conventional English this algebraic structure is further modified and the main verb (work) goes with the first auxiliary and gets omitted after the second, giving us:

$$
\begin{aligned}
S & \rightarrow((\mathrm{He}\rangle(((\text { wanted }\langle\text { to })))(\text { work }))=\text { but }= \\
& \rightarrow \text { ((could not })(\text { (...))) }) \\
& \rightarrow \text { wanted to work but could not. }
\end{aligned}
$$

Here we have made use of the relation:

$$
((((V)))) \approx=(V) \leftrightarrows V
$$

V where is a single surface form like work.
This phenomenon is also a general one, not peculiar to English alone.

8.0. Transformation of Certain Lexical Verbs into Conjunct Modal

 AuxiliariesWe have used a general relation in Case 3 of the preceding section, which could be stated in general terms as:

$$
V_{i} J_{i} \nRightarrow V C_{j} V_{j}
$$

where

$$
J_{i} \rightarrow\left\langle+M_{i} C_{i}\right\rangle
$$

and $V C_{j}$ is a modal auxiliary that may be either simple or conjunct.
In English, if we take

$$
M_{i} \rightarrow t o
$$

then

$$
\begin{aligned}
V_{i} J_{i} & \rightarrow V_{i}\left\langle+ \text { to } C_{i}\right\rangle \\
& \rightarrow V_{i}\left\langle+ \text { to }\left(V_{j}\right)\right\rangle
\end{aligned}
$$

So that we get by substitutions:

$$
\begin{aligned}
& V_{i} J_{i} \rightarrow \text { want }\langle+ \text { to }(\text { go })\rangle \\
& V C_{j} V_{j} \rightarrow(\text { want }\langle\text { to }\rangle) \text { go }
\end{aligned}
$$

giving us:

$$
V_{i} J_{i} \leftrightarrows V C_{j} V_{j}
$$

That is:

$$
(\langle I\rangle \text { want }\langle+t \circ(\mathrm{go})\rangle) \leftrightarrows(\langle I\rangle(\text { want }\langle\text { to }\rangle) \text { go }) \quad \ldots(\mathrm{A})
$$

In Tamil,

$$
M_{i} \rightarrow \phi
$$

and the word order gives:

$$
\begin{aligned}
& V_{i} J_{i} \rightarrow J_{i} V_{i} \\
& V C_{j} V_{j} \rightarrow V_{j} V C_{j}
\end{aligned}
$$

leading to:

$$
\begin{aligned}
J_{i} V_{i} & \rightarrow\left\langle C_{i}\right\rangle V_{i} \\
& \rightarrow\left\langle\left(V_{j}\right)\right\rangle V_{i}
\end{aligned}
$$

where V_{j} is in a non-finite form in Tamil.
$J_{i} V_{i} \rightarrow$ (pooka) $) \quad$ veenxtxum
$V_{j} V C_{j} \rightarrow$ pooka veenxtxum
giving us:

$$
J_{i} V_{i} \leftrightarrows V_{j} V C_{j}
$$

or

$$
\left(J_{1}\left(J_{i} V_{i}\right)\right) \leftrightarrows\left(J_{1}\left(V_{j} V C_{j}\right)\right)
$$

forming a sentence with some other element J_{1}, such as:
$(\langle$ Enakku $\rangle(\langle($ pooka $)\rangle$ veenxtxum $)) \Longrightarrow$ ((Enakku) (pooka veenxtxum))

In the left hand side of（A）and（B）want，veenxtxum are lexical verbs． In the right hand side of (A) and (B)（want \langle to \rangle ），veenxtxum are modal auxiliaries．

We could also state another general relation：
A simple verb is a conjunct verb of the form：

$$
\left(\left(\left(V\left\langle M_{1}\right\rangle\right)\left\langle M_{2}\right\rangle\right)\langle\ldots\rangle\right)
$$

where $M_{1}, M_{2}, \ldots M_{n}$ are ϕ ，or where $M_{1}, M_{2}, \ldots M_{n}$ are part of av accom－ panying J outside of the verb．

The left hand side of（A）and（B）has a structure similar to： （ $\langle\mathrm{I}\rangle$ want 〈bread 〉）
or
（〈Enakku 〉 \｛rotxtxi〉 veenxtxum）
in both the languages，where the verbs have noun objects．

8．1．Lexically Conjunct vs．Syntactically Conjunct Verbs

The preceding discussion on conjunct verb formation during the course of transformations is a syntactic phenomenon．Thus：

$$
\begin{aligned}
& ((\langle\mathrm{I}\rangle \text { go }\langle\text { home }\rangle)=\text { and }=(\langle\mathrm{I}\rangle \text { take }\langle\text { rest }\rangle)) \Rightarrow \\
& (\langle\mathrm{I}\rangle((\text { go }\langle\text { home }\rangle)=\text { and }=(\text { take }\langle\text { rest }\rangle)))
\end{aligned}
$$

On the left hand side of this relation we have go and take treated as simple verbs．On the right hand side we have（go 〈home＞）and（take （rest \rangle ）treated as syntactical conjunct structures．

It depends on how we define a verb like go or take to decide whether： （go（home＞）and（take 〈rest \rangle ）
are also lexically conjunct．
If we note the productive nature of the verb take in such constructions as：

```
(take {coffee >)
(take < snuff>)
(take <rest>)
(take <notice>)
(take (care>)
```

etc．，we may treat take as a simple verb．But if these are considered idio－ matic（either umilingually or in an interlinguistic context）．then they are lexically conjunct．

For example，in the interlinguistic context of English and Tamil，they are all lexically conjunct verbs：

English

```
(take <coffee >) # (<kaappi\rangle caappitxu)
(take <snuff\rangle) > (\langlepotxi> pootxu)
(take <rest\rangle) > (<ilxaippu)aarhu)
(take <notice \rangle) }\rightleftarrows\mathrm{ (< kavanam > celuttu)
(take <care\rangle) # ({jaakkirataiyaaka ) iru)
```

where there is no unique equivalent for take in Tamil．
There are，of course，cases of unilingual conjunct verbs in English such as（take 〈off \rangle ），（take 〈after〉），etc．，which at all times could be con－ sidered as lexical conjunct verbs．

9．0．General

Since our work is mainly concerned with more than one language at a time in the context of interlinguistic translation（mechanical or otherwise）， our treatment of any individual language would be very wide of the uni－ lingual description of the same language．

Even apart from this，our general view is that the description of any given language could vary within wide limits．There could be transforma－ tional relations between one limiting system of description and another． Somewhere between two extreme limiting descriptions of a language lies an optimum system that matches with an optimum description of another language．

If we have structures a and b in language A and structures c and d in language B ，then it is possible that a and d are limiting cases that do not match between A and B ．But structures b and c could．

In such a case we may have ：
Unilingual transformation in A ；

$$
a \rightarrow b
$$

Structural Relativity in Languages

Transformation from A to B :

$$
b \rightarrow c
$$

and
Unilingual transformation in B;

$$
c \rightarrow d .
$$

It is possible that a and d are traditional or any other normally accepted canonical structures, while b and c are not.

Compare, for example, the same physical situation described in different languages in different ways:

I shake my head (English)
I shake myself the head (German)
and
I shake myself by the head (Russian).
We do not hesitate to go over to an intermediate non-canonical description, if it has practical advantages.

References

[1] Ganeshsundaram, P. C. .. A Practical Theory of Syntax for Translation, I.R.A.L., 1975.
[2] Ganeshsundaram, P. C. .. A Practical Theory of Lingusstc Structure for Tronslation, Mysore University Special Lectures Series-Monograph (in Press).
[3] Ganesbsundaram, P. C. . Interlinguistic Relatrvity and Translation (Computer-aided Translation with Pre- and Post-Editing)-paper presented at the Vth All-India Conference of Linguists, Delhi 1974.

[^0]: - Submitted to the IV International Congress of Applied Linguistics, Stuttgart, Augus t 1975.
 \dagger The author's apologies to linguists all over the world for his departure from canonical forms of treatment. He is ptepared to be severely castigated by all his colleagues for this violation of the accepted symbolisms, terminology and theoretical bases and for his unconventional psychological attitude towards language structure.

