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Abstract 
 
A generic nonlinear mathematical model describing the human immunological dynamics is used to design an ef-
fective automatic drug administration scheme. Even though the model describes the effects of various drugs on 
the dynamic system, this work is confined to the drugs that kill the invading pathogen and heal the affected organ. 
From a system theoretic point of view, the drug inputs can be interpreted as control inputs, which can be designed 
based on control theoretic concepts. The controller is designed based on the principle of dynamic inversion and is 
found to be effective in curing the ‘nominal model patient’ by killing the invading microbes and healing the dam-
aged organ. A major advantage of this technique is that it leads to a closed-form state feedback form of control. It 
is also proved from a rigorous mathematical analysis that the internal dynamics of the system remains stable 
when the proposed controller is applied. A robustness study is also carried out for testing the effectiveness of the 
drug administration scheme for parameter uncertainties. It is observed from simulation studies that the technique 
has adequate robustness for many ‘realistic model patients’ having off-nominal parameter values as well. 
 
Keywords: Infectious disease, drug administration, dynamic inversion. 

 
1. Introduction 

The immune system of living organisms exists to defend it from agents with properties of 
genetically alien information (such as bacteria, viruses, proteins, tissue and transformed 
own cells such as tumor cells). For this purpose, there exist three distinct levels of defense 
against the invading microbes. The first is the outer perimeter of defense–the surface 
epithelial layers of the body, including the epidermal cells of the skin and the mucosal cells 
that line the respiratory, gastrointestinal, and genitourinary tracts. Once these have been 
surpassed, the innate immune system provides a tactical response, signaling the presence of 
nonself organisms and activating B cells to produce antibodies that bind to the intruder’s 
antigens, reducing them to nonfunctioning units. They also stimulate the production of 
molecules that either damage the intruder’s plasma membrane directly or help trigger the 
second phase of immune response. The innate immune system protects against many ex-
tracellular bacteria or free viruses that are found in blood plasma, lymph, tissue fluid, or in-
terstitial space between cells. The adaptive immune system produces protective cells that 
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remember specific antigens and produce antibodies customized to the pathogens. The gen-
eration of such defender cells and molecules by the immune system is termed as immune 
response. Any alien substance which is able to induce such a response is a form of antigen. 
It is to be noted that even though the innate and adaptive immune systems operate sepa-
rately, some constituents are shared. An interested reader can refer to [1–3] and the refer-
ences therein for better understanding of the associated complex mechanism.  

 When there is an invasion of pathogens in an organ, the immune system responds through 
the production of plasma cells, which produce antibodies that fight the pathogen. If the con-
centration of the invading pathogen is high, there is considerable damage to the organ and 
the body fails to launch a strong immune response. As a result, the immune system becomes 
weak, leading to a lowered production of plasma cells and antibodies. When this happens, 
the affected organ fails to recover naturally and there is a need for external medication. The 
options available for treatment of an infectious disease (once it has been recognized) focus 
on killing the invading microbes directly, enhancing the efficacy of the immune system (i.e. 
production of plasma cells and antibodies) or providing healing care to the affected organ 
directly [4]. Such drugs generally augment the natural ability of the body to fight the infec-
tion and eventually cure the damaged organ. However, in this work we have assumed only 
the availability of drugs that kill the invading microbes and heal the affected organ. We 
have not considered the drugs that enhance the efficacy of the immune system. This is an 
advantage because (i) the drugs that enhance the production of plasma cells and antibodies 
are not readily available (it is still a topic of pharmaceutical research), (ii) the drugs that we 
have considered are effective enough to achieve our objectives, (iii) elimination of extra 
drugs also leads to the elimination of side effects and (iv) the treatment plan becomes more 
cost effective. 

 Unfortunately, all drugs come with the price of unwanted side effects. Moreover, the re-
sponse of the body to any external drug is not instantaneous. Hence, a carefully monitored 
continuous low dosage is always preferable as compared to high dosage at discrete points in 
time (impulse control), which is currently in practice. However, since it is impossible for a 
doctor to continuously monitor a patient and decide an appropriate quantity of the drug, the 
idea can be realized in practice only if the process is made automatic (monitored and con-
trolled by a computer). This is where control systems theory becomes a valuable tool. Using 
the various advanced control design methods, an appropriate control (drug) requirement 
history can be found out, which is both effective in treating the disease and distributed over 
time, leading to minimal side effects. 

 Perelson and his group [5, 6] have presented a system of differential equations governing 
the dynamics of antibodies by using binary strings to model reactions between antibodies 
and antigens. The model also takes into account the fact that the number of state variables is 
a function of time. A generic nonlinear mathematical model describing the human immu-
nological dynamics is presented in [7]. The model describes the coupled evolution of con-
centration of pathogens, plasma cells and antibodies and a numerical value that indicates 
the relative characteristic of a damaged organ. Stengel et al. [4] have augmented this model 
to incorporate the effect of various drug (control) inputs. Further, they have shown a way of 
control design, following the method of optimal control theory [8]. In [4], a nonlinear opti-
mal controller is obtained by solving the associated two-point boundary value problem, us-
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ing the steepest–descent gradient method. The effect of each control, applied separately, is 
also considered. It is observed that even though each control was effective in arresting ex-
plosive growth of the pathogen and preventing organ death, the drug that kills the patho-
gens and the organ health enhancer are the most effective treatments.  

 Even though the methods and results presented in [4] have their own merits, there are 
several drawbacks as well: (i) the steepest descent method (which is relatively an old tech-
nique) only leads to an ‘open loop’ numerical solution for the control variable and hence 
does not have the beneficial properties of a state-feedback controller (like noise suppres-
sion); (ii) the method is numerically intensive and, in general, cannot be applied for online 
applications since one can never be sure of the convergence of the algorithm within the al-
lotted time interval for control update; (iii) the problem needs to be formulated as a ‘finite 
time’ optimal control problem (in order to make use of the steepest descent method). How-
ever, the final time (at which the medication needs to be stopped) depends on the patient’s 
condition and, in general, cannot be predicted a priori (this is an important issue). As the 
authors have themselves pointed out (which is also intuitively obvious), treatment for an in-
sufficient duration of time may not cure the patient completely [4]. On the other hand, fix-
ing a very long treatment time increases both the computational cost and, more importantly, 
unnecessarily sustains the uneasiness of the patient for a longer duration of time. To address 
these shortcomings is the main goal of this paper. Taking the help of an advanced tech-
nique, namely ‘dynamic inversion’, we propose a control design strategy which has the fol-
lowing characteristics: (i) it comes up with a closed-form state-feedback control solution; 
(ii) the approach is computationally non-intensive and implementable in real-time and (iii) 
there is no need to predict the duration of the treatment a priori (the medication can be con-
tinued for arbitrarily long period of time and can be stopped whenever the condition of the 
patient improves). In addition to these, we have also carried out some simulation studies 
about the robustness of the proposed controller with respect to parameter uncertainties. 

 A relatively simpler and popular method of nonlinear control design is the technique of 
dynamic inversion, which is essentially based on the philosophy of feedback linearization 
[9]. In this approach, an appropriate coordinate transformation is carried out so that the sys-
tem dynamics appears in a linear form (in the transformed coordinates). The linear control 
design tools are then used to synthesize the controller. In this paper, we have used this 
technique to design a controller (i.e. medication history) based on input–output lineariza-
tion. We have also proved that the associated internal dynamics (zero dynamics) is stable 
[9]. Note that as in [4], our approach is generic enough to cater to infectious diseases in 
general. This shows that the technique presented is capable enough to treat a wider class of 
problems. For specific diseases, however, the model will have different parameter values. If 
one concentrates on a particular disease, he can implement the control synthesis algorithm 
presented here with those parameter values. For example, for influenza the appropriate pa-
rameter values can be found in [7].  

2. Immunology dynamics and objective of the control design 

2.1. Immunology dynamics 

A generic nonlinear mathematical model describing the human immunology dynamics is 
presented in [7]. The model describes the coupled evolution of concentration of pathogens, 
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plasma cells and antibodies and a numerical value that indicates the relative characteristic 
of a damaged organ. Stengel et al. have augmented this model to incorporate the effect of 
four generic drugs (control inputs), namely, pathogen killer, plasma cell enhancer, antibody 
enhancer and organ healing factor [4]. An interested reader can see the references for more 
details. However, in this work we have assumed only the availability of drugs that kill the 
invading microbes and heal the affected organ. We have not considered drugs that enhance 
the efficacy of the immune system for the reasons pointed out in Section 1. With the effects 
of these drugs, the nonlinear mathematical model for the immunology dynamics can be 
written as 

  
.

( )X f X B U= +  (1a) 

where X = [x1 x2 x3 x4]
T, U = [u1 u2]

T are the state and control vectors, respectively. Func-
tions f (X) and matrix B are defined as  
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Here x1 represents concentration of the pathogen, x2, the concentration of plasma cells 
(which are carriers and producers of antibodies), x3, the concentration of antibodies (which 
kill the pathogen) and x4, the relative characteristic of a damaged organ (or organ health 
factor). Similarly, u1 represents the drug which is a pathogen killer and u2, the drug which 
heals the affected organ. x*2 = 2 represents the steady-state concentration of plasma cells. 
The parameter a21 is a nonlinear function of x4 that describes the immune deficiency caused 
by damage to the organ and is given by  

  4 4
21 4

4

cos( ), 0 1/ 2
( ) .

0, 1/ 2

x x
a x

x
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 (1c) 

The numerical values of other parameters are given in Table I. 

 Note that the model in (1a)–(1c) (with the associated numerical values of the parameters 
in Table I) is a generic one and the numerical values in the model qualitatively describe the  
 

Table I 
Parameter values 

Parameter Value Parameter Value 
 

a11 1 a32 1.5 
a12 1 a33 0.5 
a21 See (1c) a41

 0.5 

a22
 3 a42 1 

a23 1 b1 –1 
a31 1 b4 –1 
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various effects observed in practice in general. The main motivation of this work, however, 
is to apply an advanced nonlinear control design technique (namely, dynamic inversion) for 
automatic treatment of infectious diseases. The model and parameter values considered are 
sufficient enough to demonstrate this. For specific diseases the model will remain the same, 
but will have different parameter values [7]. If one concentrates on a particular disease, he 
can implement the control synthesis algorithm presented here with those parameters.  

 In the model, parameter a11 indicates the exponential growth of the pathogens. The term  
(a12x3x1) designates the number of antigens neutralized by the antibodies x3, where a12 is the 
coefficient related to the probability of neutralization of the germs by the antibodies upon 
an encounter. The term a41x1 represents the degree of damage to the organ by the pathogens 
while the term a42x4 signifies the recuperative capacity of the organ. For more information 
about the physical meanings of the various terms of the model, the reader is referred to 
[4, 7, 10].  
 
2.2. Objective of control design (Medication strategy) 

The objective of this paper is to present a general technique to come up with an appropriate 
treatment strategy (time history of the required drug dosage) by taking the help of advanced 
control systems theory so as to completely kill the invading microbes. At the same time, it 
also makes sure that the affected organ is not fatally damaged at any point of time during 
the treatment. Hence, in system theory language, our control synthesis strategy for design-
ing an appropriate U(t) must make sure that [x1, x4] → 0 as t → ∞ (i.e. as the treatment pro-
gresses). This objective should be met without any undesirable behavior in all the states, 
including the ones for which no specific goal is enforced. Note that meeting the objective as 
t → ∞ is written only to have a mathematically meaningful formulation. In practice (which 
will be clear from Section 4), the objective will be much before t → ∞ (i.e. within a mean-
ingful finite time). However, note that this mathematical formulation allows us to apply the 
drug administration scheme for an arbitrarily long amount of time and more importantly, 
the duration of the drug administration need not be decided a priori. The mathematical de-
tails are discussed in detail in Section 3.  
 
3. Drug dosage scheme (Control design): Mathematical details 

As pointed out earlier, the goal is to come up with an effective controller (drug dosage plan) 
which will meet the goals for the system. Even though we have used the technique of ‘dy-
namic inversion’, which is a fairly established technique [9, 11–13], we still outline the ba-
sic steps that are relevant to our problem. For completeness of the paper, we outline the 
generic theory first, which is followed by the specific discussion related to the particular 
drug dosage design problem. 
 
3.1. General theory of dynamic inversion 

In this paper, we focus on a class of nonlinear systems which are affine in control and are 
represented by 

  
.

( ) ( )

( )

X f X G X U

Y h X

= +
=

 (2) 
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where X ∈ ℜn, U ∈ ℜm, Y ∈ ℜp are the state, control and performance output vectors of the 
dynamic system, respectively. Here, we assume that m = p, i.e. we concentrate on ‘square 
systems’ (i.e. systems for which the number of performance outputs are the same as the 
number of control inputs). We also assume that the system is pointwise controllable. The 
objective is to design a controller U so that Y → Y* as t → ∞, where Y*( t) is the com-
manded signal for Y to track. We assume that Y*( t) is bounded, smooth and slowly varying. 

 To achieve the above objective, we first notice that from (2), using the chain rule of 
derivative, the expression for 

.
Y  can be written as  

  
.

( ) ( ) ,Y YY f X G X U= +  (3) 

where fY n [∂h/∂X] f(X) and GY n [∂h/∂X] G(X). We assume that the square matrix Gy is 
never singular �t. Next, defining E n (Y – Y*) the controller is synthesized such that the fol-
lowing stable linear error dynamics is satisfied 

  
.

0,E K E+ =  (4) 

where K is chosen to be a positive-definite gain matrix. A relatively easier way is to choose 
it as a diagonal matrix with positive elements in the diagonal. For better physical interpreta-
tion, one can choose K = diag(1/τ1 … 1/τm), where τi(i  = 1 … m) represents ‘time constant’ 
of the i th error channel. Next, using the definition of E and substituting the expression for 

.

Y  
from (3) in (4) and carrying out the necessary algebra, we get the solution for the control 
variable as 

  
.1[ ( )] { ( ) ( *) *}

Y YU G X f X K Y Y Y−= − + − − . (5) 

Before proceeding further, we wish to mention a few salient points with respect to this 
technique. First, note that it leads to a closed-form solution for the controller, and hence it 
can be implemented online without any computational difficulties. Moreover, as long as (5) 
is satisfied, E → 0 ‘asymptotically’ (rather exponentially). In other words, asymptotic 
tracking is achieved. However, there are a few important issues with respect to the dynamic 
inversion technique as well, which are outlined below: 

(i) The assumption m = p (the same number of controls as outputs) need not hold good. In 
that case, m < p, no perfect tracking is possible [14]. However, if m > p, additional ob-
jectives are usually introduced in the problem objective to obtain a solution for the 
controller. 

(ii) GY being nonsingular, t is somewhat a restrictive constraint. If this is violated at small 
intervals of time, for those durations, the pointwise controllability assumption is not 
valid. If that happens, usually some approximation (like not updating the controller) is 
introduced. However, this leads to some performance degradation, which is intuitively 
obvious. 

(iii) Another important issue is the question of ‘internal dynamics’ (also known as ‘zero 
dynamics’). This is essentially the dynamics of the untracked states. This concept is 
linked to ‘relative degree’ P of the problem, which is defined as the total number of 
derivatives taken in (3) (a first-order error dynamics in each output error channel is not 
always possible). Unless P = n, one explicitly need to answer the question of internal 
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stability [15]. Unless the internal dynamics is stable, the synthesized controller is of no 
practical use. 

 Note that even though the first two difficulties do not arise in our problem, the third one 
is a concern since in our problem P = 2 and n = 4. Hence, we have explicitly analyzed the 
question of internal stability and proved that it is stable. 
 
3.2. Problem specific equations 

With regard to the problem of treatment of infectious diseases, we select the performance 
output as Y = [x1 x4]

T and from (3), we write the output dynamics as 

 
. 11 12 3 1 11

41 1 42 4 4 2

( ) 0
.

0

a a x x ub
Y
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−     
= +     −     

 (6) 

Note that in our case m = p = 2, fY(X) = [a11 – a12x3)x1 (a41x1 – a42x4)]
T and GY(X) = 

diag(b1 b4). Note that GY(X) is a diagonal matrix with nonzero constants in its diagonal. 
Therefore, its inverse always exists �t. Since the goal is to make sure Y = [x1 x4]

T o 0, 
Y* = 0 for our problem.  

 Next, choosing K = diag(1/W1 1/W2), substituting the required expressions in (5) and carry-
ing out the necessary algebra, we get the solution for the control variable as 

  

1
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However, as pointed out earlier, since the relative degree for our problem P = 2, whereas 
the number of states n = 4, it is essential to prove the stability of internal dynamics. It is 
well known that for this purpose it is sufficient to show that the zero dynamics is stable 
[9, 15]. In our problem, the zero dynamics is essentially the homogeneous dynamics of the 
state variable x2 and x3 after Y = [x1 x4]

T o 0, which is given by  

  2 23 2 23 *
2

3 31 32 3

. 0

. 0

x a x a
x

x a a x

−       = +       −       
. (8) 

Note that (8) is of the form 2
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Since x*2 is a constant, it is a well-known fact from linear system theory [16] that this dy-
namics is stable if and only if the eigenvalues of Az are in the left-half of the complex plane. 
However, since Az is a triangular matrix it is obvious that its eigenvalues are its diagonal 
elements, which are –a23 = –1 and –a32 = –1.5 (Table I). Hence, we conclude that the inter-
nal dynamics is stable. From this analysis, it is also clear that the internal dynamics remains 
stable even if there is an uncertainty of parameter values, as long as the signs of the 
parameters a23 and a32 are preserved (i.e. they are positive). 
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4. Numerical results 

4.1 Treatment strategy for patients 

For our numerical study, we selected the initial condition based on the analysis carried out 
in [4], which in summary is as follows. For a given set of parameter values, the homoge-
nous system responds in four possible ways depending on the initial condition. These are 
represented by the subclinical, clinical, chronic and lethal cases. External treatment be-
comes necessary for chronic and lethal cases only as in the subclinical and clinical cases the 
body’s immune system is sufficiently capable to cure the disease. As in [4], we have se-
lected the lethal case for our numerical experiments. Hence, we selected the initial condi-
tion as x(0) = [3 2(a31/a32)x*2 0]T, where a31 and a32 are parameters of the system dynamics 
(Table I) and x*2 = 2 is the steady-state concentration of the plasma cells. It is important to 
note that the technique presented in this paper does not depend on the selection of initial 
condition (it works for any initial condition). However, we have presented the results with 
the selection of this initial condition for better physical meaning of the results. An inter-
ested reader can see the reference for more justification of this selection. 

 The control design parameters were chosen as 1 0.5
d

τ =  and 2 1.5
d

τ = . Numerical inte-
gration of the differential equations was carried out using a fourth-order Runge–Kutta 
method [17] with constant step size ∆t = 1/60. Even though the controller can be imple-
mented for arbitrarily long duration of time (unlike the one in [4], where the control appli-
cation cannot be extended beyond the duration that is decided a priori), the treatment 
duration was fixed at tf = 10, which is sufficient to demonstrate the results. 

 It can be seen from Fig. 1 that the goal of [y1, y2] = [x1, x4] → 0 as t → ∞ is met without 
any problem. In fact, the concentration of pathogen (x1) decreases asymptotically to zero, 
which is expected from a dynamic inversion controller. Moreover, the organ remains 
healthy (the value representing the organ health (x4) is close to zero) throughout the dura-
tion of the treatment. This is an advantage as compared to the results presented in [4]. In 
their numerical results the organ travels through a bad transient period (despite being 
healthy initially), even though it eventually recovers and becomes healthy again.  

 We have shown analytically in Section 3 that the internal dynamics for this problem is 
stable. This is clearly observed in the simulation plots as well in Fig. 1. The plots for the 
concentrations of the plasma cells (x2) and antibodies (x3) are clearly bounded. Moreover, 
as expected, they tend towards their respective steady-state values with time. 

 The associated drug dosages needed (control histories) are shown in Fig. 2. It can be ob-
served that their magnitudes decay smoothly towards zero. In comparison with the results in 
[4], initially our medication histories are fractionally higher. But the medication is required 
only for two time units after which it is practically zero. However in [4], the minimum 
treatment duration required is about four time units (otherwise the treatment is ineffective). 
Shorter duration for medication is a definite advantage of our approach, since the uneasi-
ness of the patient is not prolonged for a longer period than necessary. The reason for the 
shorter duration of medication requirement can be attributed to two reasons. As pointed out, 
initially our medication histories are a bit higher. However, more important, since in our 
case the healthy organ always remains healthy (i.e. it does not travel through a bad transi-
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FIG. 1. State trajectories of the patient under treatment. 

 
tion period), there is a higher rate of production of plasma cells and its concentration re-
mains higher (see (1a)–(1c)). This leads to a larger concentration of antibodies that fight 
with the invading pathogens. Hence the disease gets cured earlier. This intuition is sup-
ported by the plots of the histories of the concentration of plasma cells and antibodies in 
Fig. 3, which are higher in our case (as compared to [4]) during transition.  

 At this point, we wish to mention that even though we have obtained encouraging simula-
tion results, it is seldom the case that realistic model patients will have the same nominal 
parameters as used in the model. Rather, in most of the cases the parameter values will not 
match exactly as their corresponding nominal values. Hence, we wanted to carry out some 
robustness simulation study (with respect to parameter uncertainties) and experiment with 
the same off-nominal parameter values in the system. We perturbed all the parameter values 
in the model and selected numerical values of the parameters randomly within ± 20% of 
their nominal values. However, it is important to note that in the control design we still kept 
the nominal parameter values. Note that in addition to parameter uncertainty, we have per-
turbed the initial conditions as well and selected random values for them as follows: 
x1(0) ∈ [3, 3.6] and x4(0) ∈ [0, 0.2]. Note that deviations in these values are within (0–20)% 
of their corresponding nominal values; the reason for selecting one-sided deviation was 
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FIG. 2. Drug dosage needed for the patient. 

 
mainly to test the algorithm for patients having worse conditions as compared to an ideal 
case, in the sense that the organ is already infected and, in addition, it is under more severe 
pathogen attack. The random value for x3(0) was automatically selected from the appropri-
ate parameter values as (a31/a32)x*2. However we have retained the initial value for x2(0) as 
its steady-state value x*2 = 2, assuming that the steady-state value of the plasma cell concen- 
 

 

FIG. 3. State trajectories of patients having off-nominal parameter values. 
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FIG. 4. Drug dosage needed for patients having off-nominal parameter values. 

 

tration remains the same. It is interesting to observe that the resulting drug dosage (control-
ler) still works well. As representative results, we have presented the state trajectories of 
three such cases in Fig. 3 and the associated control (drug dosage) history in Fig. 4. From 
these figures it is obvious that the objective of curing the patient is successfully achieved 
for realistic model patients (i.e. patients having off-nominal parameter values) as well. 

 Note that the plot in Figs 3 and 4 we have plotted the results for only three random cases 
for better clarity. However, the trend was observed in a large number of such simulations. 
In fact, we have run the program 10,000 times and observed that the proposed approach for 
the automatic drug delivery scheme (with nominal parameter values in the controller for-
mula) failed to cure the patient only 4 times. In other words, from these 10,000 simulation 
runs, the probability of failure is only 0.04%, which is very low. Hence it is clear that the 
proposed control synthesis technique (drug administration plan) is sufficiently robust to pa-
rametric uncertainties, and hence, it can be used as a viable tool in practice for treating real-
istic model patients. 
 
5. Conclusions 

Using a generic nonlinear mathematical model describing the human immunological dy-
namics and taking the help of advanced nonlinear control synthesis techniques of dynamic 
inversion, an effective and robust automatic drug administration strategy is presented in this 
paper. Note that the state-feedback control solution obtained is in ‘closed form’, which is a 
major advantage. The proposed drug administration method successfully kills the invading 
microbes and heals the damaged organ of patients. From a large number of simulation stud-
ies with random parameter and initial condition values the probability of failure was found 
to be very low, which indicates that the proposed drug administration plan is sufficiently 
robust to be used as a viable tool in practice for actual patients. In addition to meeting this 
objective, relevant mathematical analysis has been carried out to prove that the internal dy-
namics (i.e. the dynamics of the concentrations of plasma cells and antibodies) is stable, 
which is supported from the numerical results as well.  

 Possible improvements of the paper include (i) using a state observer/filter (since all 
states are not measurable) and (ii) incorporating a robust/adaptive control synthesis algo-
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rithm to systematically address the issues of parametric uncertainty and external noise input 
(like a situation of continued pathogen attack). 
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