
J. Indian Inst. Sci., July–Aug. 2006, 86, 389–396
© Indian Institute of Science.

*Present address: Texas Instruments (India) Pvt Ltd, Bagmane Tech Park, 66/3, Byrasandra, Adjacent to LRDE,
C. V. Raman Nagar P.O., Bangalore 560 093. e-mail: keshava_mgowda@ti.com

Secure password-based authentication in WLAN

M. KESHAVA*
SASKEN Communication Technologies Ltd, Bangalore 560 071.
emails: keshava.gowda@gmail.com; keshava_gowda@rediffmail.com
Mobile: +91-0-9448573494

Received on May 12, 2005; Revised on April 9, 2006 and July 3, 2006

Abstract

The EAP-TLS is a de-facto authentication protocol in 802.11i system. This protocol provides digital certificate-
based mutual authentication. The protocol performs secure password-based client/supplicant authentication in-
stead of certificate-based authentication. This paper illustrates the modifications on EAP-TLS protocol to achieve
secure password-based user/client authentication, achieving the goal of EAP-TTLS without forming a logical
tunnel between a supplicant and authentication server. A comparison between the proposed technology and EAP-
TTLS brings out the performance enhancements possible with this technology. The proposed system supports an
optional mutual password-based authentication during session resumption.

Keywords: EAP, TLS, TTLS, AVP, PRF, MD5, SHA, PMK, MAC, RADIUS.

1. Introduction

The EAP-TLS [1] (extensible authentication protocol-transport layer security) and EAP-
TTLS (EAP-tunneled TLS) [2] are two widely used mutual authentication protocols in
WLAN environment. The EAP-TTLS protocol defines two phases for mutual authentica-
tion. The first phase, i.e. the handshake phase corresponds to the execution of the EAP-TLS
protocol to perform the digital certificate-based server authentication and to create a secure
logical tunnel for password-based user/client authentication. The second phase of the EAP-
TTLS protocol, i.e. the tunnel phase, involves the execution of a pre-configured password-
based authentication protocol. In this context, a secure logical tunnel between a client/suppli-
cant [3] and AS (authentication server) [3] means all messages between them are protected us-
ing TLS [4] keys generated at the end of phase one. Due to this tunnel creation, the EAP-TTLS
protocol hides the password-based user/client authentication messages from intruder.

 This paper discusses the technique of performing password-based authentication during
EAP-TLS handshaking, thus eliminating the need for the tunnel phase (phase 2) of EAP-
TTLS and hence condensing the authentication conversation. The modifications done to the
EAP-TLS are as follows.

(i) A new handshake message named password_sign_request is added to the TLS proto-
col.

M. KESHAVA 390

FIG. 1. EAP-based protocols.

(ii) The finished_label [4, section 7.4.9-finished message] is modified to determine the

password-based signature on verify_data [4] of TLS finished message.
(iii) The sequence of flow of EAP-TLS messages is modified to perform mutual password-

based authentication in case of session resumption.

 The proposed protocol follows EAP-TLS protocol for PMK (pairwise master key) [5]
generation, retry behavior, message fragmentation and reassemble process. In the proposed
system, both AS and client/supplicant system share a common password string for each
user/client. Usually, the AS stores the multiple user_ids/peer_ids and corresponding shared
passwords in a database or on a file system. The AS extracts the shared password depend-
ing on the unique user_id/peer_id received from authenticator. Figure 1 abstracts the EAP
[6] conversation. Note that the client/supplicant system sends the user_id/peer_id in the
EAP response Identity message to the authenticator. The AS receives this user-id from the
authenticator using RADIUS (remote authentication dial in user service) [7] protocol.

2. Related work

The EAP-PEAP v2 [8] (EAP-protected EAP, version 2) and EAP-FAST [9] (EAP-flexible
authentication via secure tunneling) protocols also perform the secure password-based cli-
ent authentication using EAP-TLS for tunnel creation. The EAP-PEAP v2 protocol allows
only EAP-based protocols like EAP-MD5 (message digest 5), EAP-MSCHAP (MicroSoft
challenge handshake authentication protocol) inside EAP-TLS tunnel, whereas EAP-TTLS
allows any password-based authentication inside the EAP-TLS tunnel, and is not limited to
EAP-based protocols. The EAP-FAST protocol is the successor of LEAPv2 (light-weighted
EAP protocol, version 2). This protocol provides the flexibility to create a tunnel with a
pre-shared key. This key is also called PAC (protected access credential) key.

SECURE PASSWORD-BASED AUTHENTICATION IN WLAN 391

3. Password_sign_request—A new handshake message to TLS protocol

This paper follows the same presentation language of TLS protocol for describing the for-
mat of password_sign_request message. The inclusion of password_sign_request message
to the handshake message structure of the TLS protocol is shown below.

The password_sign_request message does not contain a body. The handshake type number
of this message notifies the receiver that it has to determine the password-based signature
on verify_data. This verify_data forms the body of final outgoing TLS finished handshake
message. The verify_data with password-based signature authenticates the sender of TLS
finished message. Section 4 describes the verify_data calculation. The implementation of
this paper assigns decimal number 18 as a handshake type number of the password_sign_
request message.

4. Secure password-based signature

In TLS protocol, the server uses the string ‘server finished’ and client uses the string ‘client
finished’ as finished_label. This finished_label is an input to PRF (pseudo-random func-
tion) [4]. The verify_data is an output of PRF. This verify_data contains the hash of MD5
and SHA1 (secure hash algorithm, version 1) digests of TLS handshake messages. By con-
catenating the shared password and finished_label, the server and supplicant can obtain the
verify_data with password-based signature. If the client/supplicant has received the pass-
word_sign_request message then it should use the finished_label {shared_password + ‘cli-
ent finished’} (‘+’ denotes concatenation) to generate verify_data. Server should use the
same finished_label to verify the supplicant’s signature on the received verify_data. In case
of session resumption, if the server receives the password_sign_request handshake message
then it uses the finished_label {shared_password + ‘server finished’}. Client/supplicant
should use the same label to do the password-based authentication of server. Since the TLS
finished message is always protected with negotiated cipher suite [4] and TLS keys, the
verify_data is secure from dictionary attacks and reply attacks. This system assumes that
the shared password is securely loaded (or it could be manually loaded) to both the suppli-
cant and the AS along with the user details. Shared password is never transmitted over the
network during authentication.

5. Creation of new session

While creating a new session, the server sends password_sign_request message before
server hello done message (Fig. 2). As a response to this message, the client/supplicant

M. KESHAVA 392

EAP request (EAP-TLS: start)

EAP request (EAP-TLS)
[Server hello]
[Certificate]

[Certificate request] *
[Server key exchange] *

[password_sign_request] *
[Server hello done]

EAP request (EAP-TLS)
[Alert: decrypt Error]

Or
 [Change cipher spec]

[Finish message]

EAP Success
Or

EAP failure

EAP response (EAP-TLS: client hello)

EAP response (EAP-TLS)
[Client key exchange]

[Certificate] *
[Certificate verify] *
[Change cipher spec]

[Finish message]

EAP response (EAP-TLS)
[No data]

Or
[Alert: decrypt Error]

Supplicant Authentication Server

FIG. 2. New session creation.

E A P req u e st (E A P -T L S : star t)

E A P req u e st (E A P -T L S)
[S erv er h e llo : o ld sessio n id]
[passw ord_ sig n_request] *

 [S e rv er h e llo d o n e]

E A P req u e st (E A P -T L S)
[A le r t: d ecry p t E rro r]

O r
 [C h a n g e c ip h er sp ec]

[F in ish m essag e]

E A P S u cc ess
O r

E A P fa ilu re

E A P resp o n se (E A P -T L S)
[C lien t h e llo : o ld er se ss io n id]

E A P resp o n se (E A P -T L S)
[passw ord_ sig n_request] *

[C h an g e c ip h e r sp ec]
[F in ish m essag e]

E A P resp o n se (E A P -T L S)
[N o d ata]

O r
[A le r t: d ecry p t E rro r]

Supp lican t A u then tica tion Se rver

FIG. 3. Session resumption.
Note: In Figs 2 and 3, optional messages are shown with * symbol and an additional handshake message
password_sign_request in shown in bold.

should use a new finished_label, as described in Section 4 to generate verify_data of the
finish handshake message. The AS/server decrypts the finished message and verifies the
password-based signature on the verify_data of the TLS finish handshake message. If the
verification fails then it sends EAP-TLS alert message ‘decrypt error’ to supplicant; other-
wise, change cipher spec and finished messages are sent to the supplicant. The client/
supplicant decrypts and verifies the received TLS finished message as described in TLS
protocol. If the verification fails, then it sends EAP-TLS alert message ‘decrypt error’ to
server; otherwise, an acknowledgment EAP-TLS packet will be sent to AS. Finally, as a re-
sponse, AS sends either EAP-success or EAP-failure packet to authenticator, which for-
wards the received EAP packet to supplicant.

SECURE PASSWORD-BASED AUTHENTICATION IN WLAN 393

6. Session resumption

While resuming an older session, the server can send the password_sign_request message
after the server hello message (Fig. 3). When the client/supplicant receives this password_
sign_request message, it should use the new finished_label, as defined in Section 4, to gen-
erate the verify_data of finish handshake message. The client/supplicant can also send this
message after receiving the server hello done message. When the server receives this mes-
sage then it should use the new finished_label, as defined in Section 4, to calculate the ver-
ify_data of the finish handshake message. If the client or server fails to verify TLS finished
message then it should send the EAP-TLS alert message ‘decrypt error’ to sender. In EAP-
TLS protocol, while resuming an older session, the AS/server transfers change cipher spec
and TLS finish message along with server hello message. It does not transmit the server
hello done message. But, in the proposed protocol, to provide an optional password-based
mutual authentication during session resumption, the AS/server transfers the sever hello
done message following an optional password_sign_request message. The AS/server then
sends the change cipher spec and finish message after successful verification of finish mes-
sage sent by the supplicant/client. The client sends an EAP-acknowledgement packet if it
successfully verifies the TLS finished message.

7. Implementation and experimental results

This system can be implemented by modifying the code of the following software modules.

(a) SSL and TLS implementations of OpenSSL, version: 0.9.7c
(b) X-supplicant, version: 1.2.2
(c) Free RADIUS server, version: 1.0.5

These are free software modules available for the Linux operating system. The OpenSSL
package maintains a finite state machine for parsing and processing TLS messages. The im-
plementation of this system handles the password_sign_request message by adding an addi-
tional state to the finite state machines of TLS client and TLS server. The test environment
consists of two PCs. A wireless NIC (network interface card) is attached to one PC which
acts as wireless client/supplicant and it executes X-supplicant software module. Another PC
executes the RADIUS server which has the implementation of modified EAP–TLS server.
The RADIUS server is attached to Cisco Aironet 1130 AG Access Point via conventional
100 mbps ethernet. In the X-supplicant and RADIUS server, the maximum EAP–TLS
packet size is chosen as a default 1024 bytes. In this test setup, the sender (either server or
client) transmits only one certificate. This certificate contains 1024 bit RSA public key and
MD5 signature. For measuring EAP–TTLS performance, the EAP-MD5 protocol is used as
a tunneled password-based user/client authentication protocol and the size of the password
is 16 bytes. The modified EAP–TLS protocol also uses a 16-byte password string. The ci-
pher suite, selected between AS and client/supplicant, affects the performance of EAP–
TLS, EAP–TTLS and Modified EAP–TLS protocol, i.e. the implementation of this paper.
Table I shows the performance numbers of these authentication protocols. These are meas-
ured at the X-supplicant. The time stamps are recorded when the client/supplicant sends the
client hello message and when it receives the EAP-success message. The difference be-
tween these time stamps is measured as time taken by an EAP-based protocol.

M. KESHAVA 394

Table I
Performance numbers of EAP–TLS, EAP–TTLS and modified EAP–TLS

Selected cipher suite Authentication Time (seconds)
 protocol New session Session
 creation resumption

A TLS_RSA_WITH_RC4_128_SHA EAP–TLS 0.05881 0.02351
 EAP–TTLS 0.06685 0.02397
 Modified EAP–TLS 0.04794 0.02705

B TLS_RSA_WITH_DES_CBC_SHA EAP–TLS 0.06041 0.02357
 EAP–TTLS 0.06806 0.02418
 Modified EAP–TLS 0.04817 0.02715

C TLS_RSA_WITH_RC4_MD5 EAP–TLS 0.05879 0.02348
 EAP-TTLS 0.06680 0.02379
 Modified EAP–TLS 0.04787 0.02701

D TLS_RSA_WITH_3DES_EDE_CBC_SHA EAP–TLS 0.06147 0.02388
 EAP–TTLS 0.07105 0.02492
 Modified EAP–TLS 0.04710 0.02742

 In EAP–TTLS, while creating a new session, all EAP–MD5 messages are prefixed with
an AVP (attribute value pair) [2] header. This message containing EAP–MD5 packet is ex-
changed as an encrypted TLS message. The MAC (message authentication code) [4] is cal-
culated on each TLS message. Every TLS message, concatenated with its MAC, is
encrypted using TLS keys. This lowers the performance of the EAP–TTLS protocol when
compared to both the EAP–TLS protocol and the proposed protocol, i.e. modified EAP–
TLS. Figure 4(a) shows the performance difference between these protocols while creating
a new session. Note that the modified EAP–TLS protocol is very fast when compared to
EAP–TTLS and EAP–TLS, as there is no client certificate transmission as in EAP–TLS
protocol and there are no tunneled EAP–MD5 messages as in EAP–TTLS. While resuming
an older session, both EAP–TLS and EAP–TTLS protocols skip the authentication, whereas
the modified EAP–TLS protocol achieves password-based mutual authentication with an
additional password_sign_request message. This causes a small hit on the performance of
the modified EAP-TLS protocol (Fig. 4(b)).

FIG. 4. Performance differences between EAP–TLS, EAP–TTLS and modified EAP–TLS while (a) creating new
session and (b) during session resumption. � EAP–TLS; � EAP–TTLS; Modified EAP–TLS.

(a) (b)

SECURE PASSWORD-BASED AUTHENTICATION IN WLAN 395

FIG. 5. Performance variations of (a) EAP–TTLS and modified EAP–TLS, and (b) modified EAP–TLS protocols
with respect to the size of the password. Selected cipher suite is TLS_RSA_WITH_RC4_128_SHA.

 Increasing the size of the password reduces the performance of EAP–TTLS and the
modified EAP–TLS protocol. For the analysis of EAP–TTLS performance, the test setup
uses EAP–MD5 which in turn uses the MD5 algorithm to calculate the digest for the chal-
lenge sent by the server. The modified EAP–TLS protocol uses the PRF to determine ver-
ify_data of the TLS finish message. Since the PRF internally uses both MD5 and SHA1
algorithms, the effect of increasing the size of the password is slightly more on the modi-
fied EAP–TLS protocol than on EAP–TTLS. But the overall performance of the proposed
system is still much higher than the performance of EAP–TTLS protocol because the AVP
layer is removed. The gradual reduction in the performance of these two protocols with in-
creasing password size is shown in Fig. 5(a). While resuming an older session, only the
modified EAP–TLS protocol suffers from performance thrashing as the password size in-
creases. This behavior is depicted in Fig. 5(b).

8. Conclusion

The proposed system extends the EAP–TLS protocol with an additional handshake mes-
sage, password_sign_request. According to Challenge-Response authentication model, the
MD5 and SHA1 digests of the handshake messages can be viewed as a challenge and the
verify_data of the finish handshake message can be called as a response signature element.

(a) (b)

M. KESHAVA 396

Following are the key differences between the authentication mechanism proposed in this
paper and EAP–TTLS protocol.

(1) This modified EAP–TLS protocol eliminates the need for the tunnel phase (phase 2),
which is required in the EAP–TTLS protocol. This reduces the number of messages
required for mutual authentication while creating a new session and thus speeds up au-
thentication. While the elimination of the AVP layer means that the deployment of
password-based authentication protocols such as EAP–MD5, EAP–MSCHAP or any other
vendor-specific protocol is no longer possible, the authentication is still secure because
this protocol hides both the challenge and the password-based response signature.

(2) Both EAP–TLS and EAP–TTLS protocols skip authentication while resuming an older
session. The modified EAP-TLS protocol provides flexibility of performing password-
based mutual authentication in case of session resumption but this causes a slightly
lower performance.

Acknowledgments

It is a pleasure to acknowledge Mr G. T. Raju Assistant Professor, Department of Computer
Science, and Mr. Ashok Kumar, Assistant Professor, Department of Information Science,
BMS College of Engineering, Bangalore, for the guidance provided throughout this re-
search work. The Device Driver team members of Semiconductor Group of the SASKEN
Communication Technologies and Mr Vinay Keelara, Member of Technical Staff, EDGE
Dynamics, Philadelphia, USA, deserve special acknowledgement for enthusiastic support
during the finalization of this paper. Last but not the least, this paper owes great deal of
thanks to Mr K Sreenivasa Rao, Assistant Editor, Journal of the Indian Institute of Science,
and to an anonymous reviewer for the encouragement and involvement in innumerable re-
views to elevate the quality of this research.

References

1. B. Aboba, and D. Simon, PPP EAP TLS authentication protocol, RFC 2716, Microsoft (1999).

2. Paul Funk, and Simon Balke-Wilson, EAP tunneled TLS protocol, Draft-ietf-pppext-eap-ttls-01.txt (2002).

3. ANSI/IEEE STD 802.1X, Standard for port based network access control (2001).

4. T. Dierks, and C. Allen, The TLS protocol version 1.0, RFC2246 (1998).

5. ANSI/IEEE STD 802.11i, Wireless LAN medium access control and physical layer (PHY) specifications:
Medium access control (MAC) security enhancements (2004).

6. L. Blunk, and J. Vollbrecht, PPP extensible authentication protocol (EAP), RFC 2284 (1998).

7. C. Rigney, A. Rubens, W. Simpson, and S. Willens, Remote authentication dial in user service (RADIUS),
RFC 2865 (2000).

8. Ashwin Palekar, Dan Simon, Glen Zorn, Joe Salowey, Hao Zhou, and S. Josefsson, Protected EAP protocol
version 2, Draft-josefsson-pppext-eap-tls-eap-07.txt.

9. N. Cam-Winget, D. McGrew, J. Salowey, and H. Zhou, The flexible authentication via secure tunneling ex-
tensible authentication protocol method (EAP-FAST), Draft-cam-winget-eap-fast-03.txt.

10. ANSI/IEEE STD 802.11, Wireless LAN medium access control and physical layer (PHY) specifications
(1999).

11. http://www.openssl.org, Open source SSL & TLS implementation.

12. http://www.freeradius.org, Open source free RADIUS server implementation.

13. http://open1x.sourceforge.net, Open source 802.1x supplicant and authenticator implementation.

