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Abstract 
 
An efficient and reliable evolutionary-based meta-heuristic approach, termed as swarm intelligence, is presented 
for the solution of optimal power flow with both continuous and discrete variables. The continuous control vari-
ables are unit-active power outputs and generator-bus voltage magnitudes, while the discrete variables are trans-
former tap settings and switchable shunt devices. Particle swarm optimization, a new evolutionary computation 
technique based on swarm intelligence, is illustrated for two case studies of IEEE-30 bus system and 3-area IEEE 
RTS-96 system. Both normal and contingency states are considered for the optimal power flow solution. The fea-
sibility of the proposed method is compared with a simple genetic algorithm. The algorithm is computationally 
faster, in terms of the number of load flows executed, and provides better results than other heuristic techniques. 
 
Keywords: Power system optimization, optimal power flow, particle swarm optimization, genetic algorithm. 

 
1. Introduction 

Optimal power flow (OPF) problem is a static constrained nonlinear optimization problem, 
the solution of which determines the optimal setting for control variables in a power net-
work respecting various constraints [1, 2]. OPF has been widely used in power system op-
eration and planning [3]. Many techniques such as linear programming [4–6], nonlinear 
programming [7–10], and quadratic programming [11] have been applied to the solution of 
OPF problem. These methods rely on convexity to obtain the global optimum solution, and 
as such are forced to simplify the relationships to ensure convexity. However, the OPF 
problem is in general non-convex and, as a result, many local minima may exist. Classical 
optimization methods are highly sensitive to starting points and frequently converge to local 
optimum solution or diverge altogether. 

 Linear programming methods are fast and reliable but the main disadvantage is associ-
ated with piecewise linear cost approximation. Nonlinear programming methods have a 
problem of convergence and algorithmic complexity. Newton-based algorithm [2] has a 
problem in handling large number of inequality constraints. This method has a drawback—
the convergence characteristics are sensitive to the initial conditions. Interior point (IP) 
methods [12–14] convert the inequality constraints to equality by the addition of slack vari-
ables. In IP, if the step size is not chosen properly, the sublinear problem may have a solu-
tion that is infeasible in the original nonlinear domain [13]. These methods are usually 
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confined to specific cases of the OPF and do not offer great freedom in objective functions 
or the type of constraints that may be used. It is therefore important to develop new, more 
general and reliable algorithms. 

 Heuristic algorithms such as enhanced genetic algorithm [15], improved GA [16], refined 
GA [17], gradient projection method [18], and evolutionary programming [19] have been 
recently proposed for the OPF problem. Recent research has identified some deficiencies in 
GA performance. Recently, a new evolutionary computation technique, called particle 
swarm optimization (PSO), has been proposed and introduced by Angeline [20], and Ken-
nedy [21]. This technique combines social psychology principles in socio-cognition human 
agents and evolutionary computations. PSO has been motivated by the behavior of organ-
isms such as fish schooling and bird flocking. The particle swarm is an algorithm for find-
ing optimal regions of complex search spaces through the interaction of individuals in a 
population of particles. Particle swarm adaptation has been shown to successfully optimize 
a wide range of continuous functions [22–25]. PSO algorithm has been used successfully 
for economic dispatch [26]. PSOs are found have better convergence properties than genetic 
algorithms for a particular domain of unit commitment [27]. 

 The PSO algorithm is based on a metaphor of social interaction. It searches a space by 
adjusting the trajectories of individual vectors, called ‘particles’, as they are conceptualized 
as moving as points in multidimensional space. The individual particles are drawn stochas-
tically towards the positions of their own previous best performances and the best previous 
performance of their neighbors. Since its inception, two notable improvements have been 
introduced on the initial PSO which attempt to strike a balance between two conditions. The 
first one introduced by Shi and Eberhart [23] uses an extra ‘inertia weight’ term which is 
used to scale down the velocity of each particle and this term is typically decreased linearly 
throughout a run. The second version introduced by Clerc and Kennedy [28] involves a 
‘constriction factor’ in which the entire right side of the formula is weighted by a coeffi-
cient. Their generalized particle swarm model allows an infinite number of ways in which 
the balance between exploration and convergence can be controlled. The simplest of these 
is called Type-1 PSO. 

 This paper proposes an application of Type-1 PSO to OPF with both continuous and dis-
crete control variables. The continuous controllable system quantities are generator MW, 
controlled voltage magnitude and switchable shunt device while the discrete ones are trans-
former tapping. The objective is to minimize the fuel cost by optimizing the control vari-
ables within their limits, so that no violation on other quantities (e.g. transmission-circuit 
loading, load bus voltage magnitude, generator MVAR) occurs in either the normal or out-
age case system operating conditions. The proposed approach has been tested on IEEE-30 
bus system [7] for both normal and contingent case. 
 
2. Optimal power flow problem formulation 

The optimal power flow problem is a nonlinear optimization problem with nonlinear objec-
tive function and nonlinear constraints. The solution methods to optimal power flow using 
conventional methods are the widely used Newton method, gradient methods and interior 
point methods. Handling of a large number of different types of constraints is a limitation 
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with these methods [1–14]. Successful application of evolutionary programming methods 
like genetic algorithms, evolutionary computation, PSO, etc. has reduced the limitations of 
the conventional methods to a great extent [15–19] 

 The OPF problem requires the solution of nonlinear equations, describing optimal and/or 
secure operation of a power system. The general OPF problem can be expressed as: 
 

 Minimize F(x, u), (1) 

 subject to  g(x, u) = 0, (2) 

 h(x, u) ≤ 0, (3) 

where 

 [ ],T T
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The load flow equations are: 
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where NB is the number of buses. 

 The fuel cost function is given as: 
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where g(x, u) is a set of nonlinear equality constraints (power flow equations), and h(x, u), a 
set of nonlinear inequality constraints of a vector argument x and u. 

 The generator fuel cost curve is usually considered as quadratic (F = (a + bP + CP2)). In 
fact, it is a polynomial of higher order with sine (sin) or exponential (e) term, but is reduced 
to quadratic. The incremental fuel cost (IFC) is linear and this helps is determining the op-
timal solution (IFC = dF/dP = λ). In the Indian power scenario, there is an important need 
to reduce the power losses at the distribution level due to different voltage profiles. APDRP 
(accelerated power development reforms program) is one such effort made by the Indian 
power sector to reduce power losses by raising the distribution-level voltage from 440 volts 
to 11 kV. Real power loss minimization is different from real power optimization, but is 
strongly related to the context of reactive power optimization. 

 Vector x consists of dependent variables and vector u of control variables. The variables 
h(x, u) constitute a set of a system operating constraints that include: 

 The state variable vector x consists of the following: 
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 (a) Branch flow limits max
k kS S≤  k = 1 … nl 

 (b) Voltage at load buses min max
Lk Lk LkV V V≤ ≤  k = 1 … NL 

 (c) Generator MVAR  min max
Gk Gk GkQ Q Q≤ ≤  k = 1 … NG 

 (d) Slack bus MW  min max
G G GP P P≤ ≤  

The control variable vector u consists of the following: 

 (a) Generator MW except slack MW  min max
Gk Gk GkP P P≤ ≤  

 (b) Generator bus voltage  min max
Lk Lk LkV V V≤ ≤  k = 1 … NG 

 (c) Transformer tap setting  min max
k k kt t t≤ ≤  k = 1 … ntran 

 The transformer taps are discrete with a change step of 0.0125 pu. 

 (d) Bus shunt capacitor  min max
SCk SCk SCkb b b≤ ≤  k = 1 … NC. 

 On load transformer taps (OLTC) are widely used in practice for (i) voltage control, and 
for (ii) reactive power control and dispatch. This is the usual procedure for real power loss 
minimization. The proposed method discusses the general procedure for loss minimization 
using control variables (generator voltage set-point, transformer tap, and reactive power 
control). The present problem does not address the situation in a deregulated environment, 
where tap changing may not be used from an ISO perspective for real-power OPF. This is 
not within the scope of the present work. The transformer tap is practically discrete, but is 
usually considered as continuous in the optimization problem for ease of solution. Handling 
discrete variables is difficult in the conventional method (NLP of optimization problem); 
hence the swarm intelligence method is effectively used to handle mixed variables (discrete 
and continuous) to obtain an optimal solution. 
 
3. PSO 

3.1. Overview  

PSO is a population-based optimization method first proposed by Eberhart and colleagues 
[22, 23]. Some of the attractive features of PSO include the ease of implementation and the 
fact that no gradient information is required. It can be used to solve a wide array of differ-
ent optimization problems. Like evolutionary algorithms, PSO technique conducts search 
using a population of particles, corresponding to individuals. Each particle represents a 
candidate solution to the problem at hand. In a PSO system, particles change their positions 
by flying around in a multidimensional search space until computational limitations are ex-
ceeded. 

 The PSO technique is an evolutionary computation technique, but it differs from other 
well-known evolutionary computation algorithms such as the genetic algorithms. Although 
a population is used for searching the search space, there are no operators inspired by the



SWARM INTELLIGENCE APPROACH TO THE SOLUTION OF OPTIMAL POWER FLOW 443 

 

 
 
 
 

Xk – current position, 
Xk+1 – modified position, 
Vk – current velocity, 
Vk+1 – modified velocity 
Vpbest – velocity based on pbest 
Vgbest – velocity based on gbest 

FIG. 1. Concept of modification of a searching point 
by PSO. 

 
human DNA procedures applied on the population. Instead, in PSO, the population dynam-
ics simulates a ‘bird flock’s’ behaviour, where social sharing of information takes place and 
individuals can profit from the discoveries and previous experience of all the other compan-
ions during the search for food. Thus, each companion, called particle, in the population, 
which is called swarm, is assumed to ‘fly’ over the search space in order to find promising 
regions of the landscape. For example, in the minimization case, such regions possess lower 
function values than other, visited previously. In this context, each particle is treated as a 
point in a D-dimensional space, which adjusts its own ‘flying’ according to its flying ex-
perience as well as the flying experience of other particles (companions). In PSO, a particle 
is defined as a moving point in hyperspace. For each particle, at the current time step, a re-
cord is kept of the position, velocity, and the best position found in the search space so far. 
 
3.2. Algorithm 

The origins of PSO are best described as sociologically inspired, since the original algo-
rithm was based on the sociological behavior associated with bird flocking [21]. The algo-
rithm maintains a population of particles, where each particle represents a potential solution 
to an optimization problem. Let S be the size of the swarm, each particle i  can be repre-
sented as an object with several characteristics. These characteristics are assigned the fol-
lowing symbols. 

 Xi : The current position of the particle; 

 Vi : The current velocity of the particle; 
 Yi : The personal best position of the particle. 

Figure 1 shows the concept of modification of a searching point by PSO. A population of 
particles is initialized with random positions and Xi  velocities and Vi  a function FT* is 
evaluated, using the particle’s positional coordinates as input values. Positions and veloci-
ties are adjusted and the function evaluated with the new coordinates at each time step. 
When a particle discovers a pattern that is better than any it has found previously, it stores 
the coordinates in a vector Yi . The difference between the best point found by a particular 
agent and the individual’s current positions is stochastically added to the current velocity, 
causing the trajectory to oscillate around that point. Further, each particle is defined within 
the context of a topological neighborhood comprising itself and some other particles in the 
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population. The stochastically weighted difference between the neighborhood’s best posi-
tion Gj and the individual’s current position is also added to its velocity, adjusting it for the 
next time step. These adjustments to the particle’s movement through the space cause it to 
search around the two best positions. 
 
Particle (X): It is a candidate solution represented by an m-dimensional vector, where m is 
the number of optimized parameters. At time t, the i th particle Xi(t) can be described as 
Xi(t) = [Xi 1(t), Xi 2(2), … , Xin(t)], where Xs are the optimized parameters and Xik(t) is the po-
sition of the i th particle with respect to the kth dimension; i.e. the value of the kth optimized 
parameter in the i th candidate solution. 
 
Population, pop(t): It is a set of n particles at time t, i.e. pop(t) = [X1(t), X2(t) … Xn(t)]. 
 
Swarm: It is an apparently disorganized population of moving particles that tend to cluster 
together while each particle seems to be moving in a random direction [22]. 
 
Particle velocity: V(t): It is the velocity of the moving particles represented by an m-
dimensional vector. At time t, the i th particle velocity Vi(t) can be described as Vi(t) = 
[Vi 1(t), Vi 2(2), … , Vin(t)], where Vik(t) are the velocity components of the i th particle with 
respect to the kth dimension. The velocity update step is specified separately for each di-
mension j  ∈ 1 … n, so that Vij  denotes the j th dimension of the velocity vector associated 
with the i th particle. The velocity update equation is then 

1
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( ) (0, )( ( ) ( ))
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(0, )( ( ) ( ))

i j i j i j
i j

j i j

V t rand Y t X t
V t
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χ

ϕ χ

+ − + 
+ =   − 
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From the definition of the velocity of the equation it is clear that ϕ2 regulates the maximum 
step service in the direction of the global best particle, and ϕ1, the step size in the direction of 
the personal best position of the particle. The value of Vij is clamped to the range [–Vimax, Vmax] 
to reduce the likelihood that the particle might leave the search space. The position of each 
particle is updated using the new velocity vector for that particle, so that 

 ( 1) ( ) ( 1).i i iX t X t V t+ = + +  (10) 

Personal best (Pbest): The Pbest position associated with the particle i  is the best position 
that the particle has visited (a previous value of Xi) yielding the highest fitness value for 
that particle. For a minimization task, a position yielding the smaller function value is re-
garded as having fitness. The symbol F*T will be used to denote the objective function that is 
being minimized. The update equation for the Pbest position is presented in eqn (11). 

 Yi(t)    if  F*T(Xi(t + 1)) ≥ F*T(Yi(t)) 

 Yi(t + 1) =  (11) 

 Xi(t + 1)  if  F*T(Xi(t + 1)) < F*T(Yi(t)) 

Global best (Gbest): The Gbest offers a faster rate of convergence at the expense of robust-
ness. It maintains only a single ‘best solution’, called the Gbest particle, across the entire 
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particle in the swarm. This particle acts as an attractor, pulling all the particles towards it. 
Eventually all particles will converge to this position, so if it is not updated regularly, the 
swarm may converge prematurely. 
 
Control parameters (ϕ1 and ϕ2): There are two important facts to consider when setting ϕ1 
and ϕ2. The first fact is that the relation between the two values decides the point of attrac-
tion, which is given by: 

 1 2

1 2

( ) ( )
.iY t G tϕ ϕ

ϕ ϕ
+
+

 (12) 

If ϕ1 S ϕ2, particle i will be much more attracted to the best found position found by itself, 
Yi(t), rather than the best position found by the neighborhood, G(t), and vice versa if 
ϕ1 A ϕ2. In the other extreme case, where ϕ1 = 0, the particle’s own cognitive learning part 
is 0, and the whole swarm is attracted to one single point only, namely G(t). Essentially, the 
swarm now turns into one big hill-climber. If ϕ1 = ϕ2, each particle will be attracted to the 
average Yi(t) and G(t). Since ϕ1 expresses how much the particle trusts its own past experi-
ence, it is called the cognitive parameter, and since ϕ2 expresses how much it trusts the 
swarm, it is called the social parameter. In this implementation the control parameters are 
equal, i.e. ϕ1 = ϕ2. Thus, setting the control variables high enables the swarm to react rap-
idly to changes in the search, whereas if they are set low, the particles will react slowly and 
move in waves of huge magnitude and low frequencies. 
 
Constriction factor (χ): This factor may help in sure convergence. Low values of χ facili-
tate rapid convergence and little exploration and high values gives slow convergence and 
much exploration. Mathematician Maurice Clerc, who has proposed the constriction factor 
[26], has studied the particle swarm system by means of second-order differential equa-
tions. In doing so, it is possible to determine under which conditions the swarm will con-
verge. In the constriction model we can set χ as a function of ϕ1 and ϕ2, so that 
convergence is ensured even without Vmax. An additional parameter k, which controls the 
convergence speed of the particles to the point of attraction, is added instead of χ. The sup-
posed advantage of this shift from χ to k is that k can control swarm behavior more clearly 
and reliably: If k is close to 0, we get fast convergence (almost hill-climbing behavior), and 
if k is near 1 we get the slowest possible convergence with a high degree of exploration, 
which is desired for strongly multimodal problems. The constriction factor in the velocity 
update equation is represented by χ. 

 
2

2

| 2 4 |

κχ
ϕ ϕ ϕ

=
− − −

, (13) 

and ϕ = ϕ1 + ϕ2 ϕ > 4. (14) 

Let ϕ1 = ϕ2 = 2.1; substituting ϕ = ϕ1 + ϕ2 = 4.2. 
 
Stopping criteria: These are the conditions under which the search process will terminate. 
In this study, the search will terminate if one of the following criteria is satisfied: (a) the 
number of iterations since the last change of the best solution is greater than a pre-specified 
number or (b) the number of iterations reaches the maximum allowable number. 
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Implementation 

 1. Choose the population size and the number of generations (number of iterations). 
 2. Select the control variables of a system, as state variables (Xi). 
 3. Set the time counter t = 0 and generate randomly n particles, {Xi(0), i = 1 … n} where 

Xik(0) is generated by random-selecting a value with uniform probability over the kth 
optimized parameter search space [Xmin, Xmax]. Similarly, generate randomly initial ve-
locities of all particles, {Vi(0), i = 1 … n}, where Vi(0) = [Vi 1(0), Vi 2(0), … ,Vin(0)]. 
Vik(0) is generated by randomly selecting a value with uniform probability over the kth 
dimension [–Vkmax, Vkmax]. Execute load flow considering the unit generations for each 
particle except for the slack bus, to evaluate the system transmission loss, slack bus 
generation and violation for the line flow limits and voltages at each bus. Maximum 
velocity of a particular dimension is given by eqn (14) 

 max min
max

( )
.k k

k
X X

V
Na

−
=  (15) 

 where Na is number of intervals. 

4. Evaluate the fitness for each particle according to the objective function (including 
penalty functions). The fitness function includes the total generation cost FT and the 
penalty functions. The penalty function used in implementation is quadratic. It act as a 
soft constraint. The constraint includes the line flow limits, generator MVAR limit and 
the bus voltages at each bus. 

Augmented cost *(( ))TF  

 max 2 lim 2 lim 2 lim 2
1 2 1 1 3 4

1 1 1

* ( ) ( ) ( ) ( ) .
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i i i
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  (16) 

 5. Set Gbest _counter = 1. 
 6. For each particle, as its best position, say it as Pbest set and assign Gbest that corresponds 

to the Xi(0) = [Xi1(0), Xi2(0), … , Xin(0)] particle shown by Gbest_counter from Pbest. 
 7. Update the time counter t = t + 1. 
 8. Using the global best and the individual best of each particle, the i th particle velocity 

in the kth dimension is updated as per eqn (8). It is worth mentioning that the second 
term represents the cognitive part of PSO where the particle changes its velocity based on 
its own thinking and memory. The third term represents the social part of PSO where the 
particle changes its velocity based on the social-psychological adaptation of knowledge. 
If a particle violates the velocity limits, set its velocity equal to the limit. 

 9. Based on the updated velocities, each particle changes its position according to eqn (9). If 
a particle violates the position limits in any dimension, set its position at the proper limit. 

10. Personal best updating according to eqn (10). 
11. After the first iteration, the Gbest_counter updates itself according to the minimum 

value of the fitness function from the Pbest set. 
12. When any stopping criteria are satisfied stop program. Else go to step 7. 
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Table I 
System description of case studies for IEEE-30 and RTS-96 bus systems 

Variables IEEE-30 IEEE RTS-96 
 Bus system 1-Area system 3-Area system 5-Area system 
  (Area-A) (Area-B) (Area-C) 
 

Buses 30 24 73 121 
Branches 41 38 120 198 
Generators 6 33 99 165 
Generator buses 6 11 33 55 
Shunts 9 1 3 5 
Tap-changing transformers 4 5 16 26 
Control variables 24 49 150 250 
Equality constraints 2 2 2 2 
Inequality constraints 96 134 410 680 

 
4. Simulation results  

The suitability of the proposed method has been tested for IEEE-30 bus, and the widely 
used IEEE RTS (reliability test system). They are chosen as they are benchmark systems, 
have more control variables and provide results for comparison of the proposed method. 
The approach can be generalized and easily extended to large-scale systems. 

 In this section, the PSO solution of the OPF is evaluated using two test systems: (i) 
IEEE-30 bus system [7], and 2) IEEE (reliability test system) RTS-96 [27]. Ten runs have 
been performed for each case examined. The results, which follow, are the best solution 
over these ten runs. The results are compared with GA. The system description of case stud-
ies of IEEE-30 bus and RTS-96 bus system are given in Table I. 
 
Case study 1: IEEE 30-bus system 

The EEE-30 bus system consists of six generators, four transformers, 41 lines, and nine 
shunt capacitors. In PSO and GA solution for OPF, the total control variables are 24: five 
unit active power outputs, six generator bus voltage magnitudes, four transformer tap set-
tings, and nine bus shunt admittances. All generator active power, and generator bus volt-
ages are continuous and transformer tap-setting and shunts are discrete variables. The limits 
of variables for the IEEE-30 bus system are given below. 

Two different studies have been carried out on the IEEE-30 bus system. 
 

No. Description Units Variable type Lower Upper 
    limits limits 
 

1. Voltage PQ-bus pu Continuous 0.95 1.05 
2. Voltage PV-bus pu Continuous 0.90 1.10 
3. Transformer taps pu Discrete 0.90 1.10 
    Step size: 0.0125 
    (17 steps) 
4. Shunt capacitor pu Discrete 0.0 0.05 
    Step Size: 0.010 
   (6 Steps) 
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Table II 
GA and PSO parameters for best results of optimal power flow for IEEE-30 
bus system 

Sl Genetic algorithm (GA)  Particle swarm optimization (PSO) 
 

no.
 Parameters Values Parameters Values 

 

1. Population 40 Population 20 
2. String size 155 ϕ1 2.1 
3. Probability of crossover 0.800 ϕ2 2.1 
4. Probability of mutation 0.005 κ 1 
5. Generations 150 Generations 150 
6. Number of load flows 6000 Number of load flows 3000 
  (Population × generations) (40 × 150) (Population × generations) (20 × 150) 

 
Case study 1: All control variables are continuous. Both normal network and contingency 
case with congestion were carried out. 

Case study 2: All generator active power, and generator bus voltages are continuous and 
transformer tap-setting and shunts are discrete variables. Normal network and contingency 
case with congestion were studied. The congestion was created due to the outage of line 6–
28 and the reduction in line limit from 0.32 to 0.12 pu of line (8–28). 

 The PSO and GA parameters used for the optimal power flow solution are given in Table 
II. The gene length for unit power output is 12 bits and for generator voltage magnitudes 
eight bits. They are both treated as continuous controls. The transformer tap value is en-
coded using eight bits. The bus shunt admittances can take six discrete values; each one is 
encoded using three bits. 

 Two sets of 10 runs were performed; the first GA with basic GA operators and the sec-
ond is type 1 PSO (constriction factor approach). Table III shows the optimal setting of the 
generator bus voltages and generator active power for both PSO and GA. Figure 2 shows 
the variation of the total cost for normal (case 1) and with line 6–28 outage (case 2) for an 
IEEE-30 bus system. It can be observed that the total cost for the line outage is more than 
that for the normal case, which is as expected. 

 Table IV shows the optimal control variables obtained for the optimal power flow of the 
IEEE-30 bus system. The total fuel cost corresponding to the power generation is also pro- 
 
Table III 
Optimal active power generation and generator bus voltages for IEEE-30 bus system 

Unit  Bus Generator bus voltages and unit real power control 
 

no.
 

no.
 Particle swam optimization (PSO) Genetic algorithm (GA) 

 

  Voltages [pu] Unit real power [MW] Voltages [pu] Unit real power [MW] 
 

1.  1 1.0850 175.44 1.0647 176.19 
2.  2 1.0674 49.95 1.0447 48.99 
3.  5 1.0322 20.91 1.0082 20.99 
4.  8 1.0467 22.46 1.0147 21.95 
5. 11 1.0837 11.68 1.0294 12.38 
6. 13 1.0530 12.00 1.0759 12.20 
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Table IV 
Control variables for cases 1 and 2 for the IEEE-30 bus system 

Sl I. Generator voltages II. Power generation III. Transformer taps IV. Shunt capacitors 
no. Gen Case 1 Case 2 PG Case 1 Case 2 Transf Case 1 Case 2 Shunt Case 1 Case 2 
 voltage (pu) (pu)  (MW) (MW) Tap (pu) (pu) Cap (pu) (pu) 
 

1. |VG1| 1.0850 1.0518 PG1 1.7515 1.5870 Xtrf6–9 1.000 0.925 SC10 0.0500 0.0500 
2. |VG2| 1.0671 1.0188 PG2 0.5020 0.5053 Xtrf6–10 1.000 0.975 SC12 0.0172 0.0138 
3. |VG5| 1.0317 1.0015 PG5 0.2151 0.2200 Xtrf4–12 0.975 0.925 SC15 0.0500 0.0000 
4. |VG8| 1.0434 1.0033 PG8 0.1950 0.1724 Xtrf28–27 0.975 1025 SC17 0.0322 0.0206 
5. |VG11| 1.0816 1.0793 PG11 0.1400 0.2125    SC20 0.0349 0.0206 
6. |VG13| 1.0471 1.0653 PG13 0.1200 0.2277    SC21 0.0450 0.0249 
7.          SC23 0.0450 0.0253 
8.          SC24 0.0104 0.0271 
9.          SC29 0.0071 0.0071 

 Total fuel cost 
6

1

( )($ / h)i i
i

F P
=
∑  800.7399  812.3125 

     
(Case 1) (Case 2) 

Case 1: Normal operation; Case 2: Contingent case with congestion. 
 

vided. Table V shows the comparison of the cost of generation for the IEEE-30 bus system 
for the above cases with other available methods. Table VI shows the optimal control vari-
ables of shunt capacitors and transformer taps obtained from the optimal power flow for the 
IEEE-30 bus system. It can be observed from Table II that the number of load flows re-
quired for obtaining a best solution using PSO (3000) is half of that required by GA (6000). 

 Figure 3 shows the convergence of PSO and GA for the optimal power flow problem. 
The operating costs of the best solution in the normal operation achieved by the PSO and 
GA are, respectively, $800.9194 and $801.6738 per hour. It can be observed that the con-
vergence of PSO is faster than that of GA while obtaining a better solution in lesser 
computational time. 
 

Case study 2: IEEE RTS-96 

The three-area IEEE RTS-96 [27] is a 73-bus, 120-branch system. It consists of three areas 
connected through five tie lines. The system description is given in Table I. Area-A unit 
 

  
FIG. 2. Total cost of IEEE-30 bus system for population size of 10 for (a) normal and (b) line 6–28 outage and 
congestion. 
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Table V 
Comparison of the cost of generation for IEEE-30 bus 
system for various cases 

Sl Techniques used Cost ($/h) 
no.  (Case 1) (Case 2) 
 

1. Gradient projection method 804.583 – 
2. Simple genetic algorithm 802.06 – 
3. Improved genetic algorithm 800.81 812.33 
4. Enhanced genetic algorithm 802.40 – 
5. Particle swarm optimization 800.74 812.31 

Case 1: Normal operation; Case 2: Contingent case with 
congestion. 
 

 
FIG. 3. Convergence curve for GA and PSO for IEEE-
30 bus system. 

Table VI 
Control variables (shunt capacitor compensation 
and transformer tap) for IEEE-30 bus system 

Sl I. Transformer  II. Shunt 
no. taps   capacitors 
 

 Transf tap GA PSO Shunt cap GA PSO 
 

1. Xtrf6–9 11 11 SC10 6 1 
2. Xtrf6–10 2 9 SC12 3 1 
3. Xtrf4–12 10 6 SC15 5 5 
4. Xtrf28–27 10 6 SC17 5 6 
5.    SC20 5 1 
6.    SC21 6 5 
7.    SC23 6 1 
8.    SC24 6 5 
9.    SC29 5 1 

Shunt capacitor compensation (0th Step = 0.0 MVAR 
and 4th Step = 5.0 MVAR). Transformer tap (0th Step = 
0.9 pu and 17th Step = 1.1 pu). 
 
 
Table VII 
Fuel cost for IEEE-3-area RTS-96 
 

Fuel/ Coal/ Oil/ Oil/ Hydro Nuclear 
unit type steam steam CT  
 

Price  5.01 10.49 34.45 0.00 2.65 
[$/Gcal] 

 
 

cost data is derived from the heat rate data provided in [29] and the fuel cost data is listed in 
Table VII. The value of water is zero, assuming excessive inflows. Fuel costs of Areas-B 
and -C are selected three times of those of Area-A to impose exports from Area-A to Areas-
B and -C. A contingency case with tie lines 107–203 and 123–217 out of service, under 
90% peak load conditions, is studied. To impose congestion the ratings of tie lines 113–215 
and 121–325 are reduced by 50% (to 250 MVA). 

 This system has a total of 150 control variables as follows: 98 unit active power outputs, 
33 generator-bus voltage magnitudes, 16 transformer tap settings, and three bus shunt ad-
mittances. All generator active power, and generator bus voltages are continuous and trans-
former tap setting and shunts are discrete variables. The limits of variables for the IEEE 
RTS-96 system are given below. 
 

Sl Description Units Variable Lower Upper 
no.   type limits limits 
 

1. Voltage PQ-bus pu Continuous 0.95 1.05 
2. Voltage PV-bus pu Continuous 0.95 1.10 
3. Transformer taps pu Discrete 0.90 1.10 
   Step size: 0.0125 
    (17 steps) 
4. Shunt reactor capacitor MVAR Discrete –150.0 50.0 
    Step size: 50 MVAR 
   (4 steps) 
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 The GA and PSO parameters used for the OPF solution for the best case are given in Ta-
ble VIII.  Two further studies have been carried out for the IEEE RTS-96 system. 

1. Normal network. 
2. Contingent case with congestion on tie lines. 
 2.1. Contingent case with congestion on tie lines. 
 2.2. Contingency: Outage of line (107–203) and (123–217). 
3. Congestion: Reduction in tie line limit by 50% (250 MVA) of line (113–215) and 

(121–325). 
4. Load change: 90% of peak load. 

 First, the unconstrained schedule is obtained by ignoring branch flow limits. Branch flow 
limits are ignored by selecting the corresponding penalty weight to zero in eqn (11). The 
unconstrained schedule results in a 60.2 MVA overloading of tie line 121–325. The corre-
sponding operating cost is $221086.15 per hour. Next, the constrained schedule is calcu-
lated by activating the branch flow constraints. Tie line 121–325 flow is now reduced to 
245.09 MVA (below the 250 MVA line rating). The operating cost is increased to 
$221,962.08 per hour due to congestion. The same of the best solution in the normal opera-
tion achieved by the PSO and GA are $221,962.08 and $222,430.39 per hour, respectively. 
Table VIII shows that the number of load flows required for obtaining a best solution using 
PSO is half of that of GA. 
 
5. Computational requirements 

In GA and PSO, if a population of size PS is allowed to evolve for a total number of NG 
generations, the product PS • NG determines the required number of load flows required 
and hence the computational requirements of both the methods. It is widely recognized 
among GA practitioners that the required fitness evaluation for a particular GA implemen-
tation depends on problem difficulty, which, in turn, depends on two factors: (i) the chro-
mosome length, and (ii) the shape and characteristics of the fitness landscape. Problems 
with smooth fitness landscapes are easy to solve with GA. If the global optimum is located 
at the bottom of a steep gorge of the fitness landscape, GA may require a large

Table VIII 
GA and PSO parameters for best results of optimal power flow 
for RTS-96 system 

Sl  Genetic algorithm (GA) Particle swarm optimization (PSO) 
 

no.
 Parameters Values Parameters Values 

 

1. Population 80 Population 20 
2. String size 1529 ϕ1 2.1 
3. Probability  
  of crossover 0.800 ϕ2 2.1 
4. Probability  
  of mutation 0.005 κ 1 
5. Generations 300 Generations 150 
6. Number of  24000 Number of 3000 
  load flows (80 × 300) load flows (20 × 150) 
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Table IX 
Optimal generator bus voltages for IEEE RTS-96 system 

Sl Bus  GA PSO Sl Bus  GA PSO Sl Bus GA PSO 
no. no. (V pu) (V pu) no. no. (V pu) (V pu) no. no. (V pu) (V pu) 
 

 1. 101 1.0325 1.0146 12. 201 0.9687 1.0378 23. 301 1.0211 1.0267 
 2. 102 1.0351 1.0141 13. 202 0.9698 1.0371 24. 302 1.0162 1.0268 
 3. 107 0.9694 1.0496 14. 207 1.0295 1.0100 25. 307 1.0627 1.0556 
 4. 113 0.9883 1.0344 15. 213 1.0567 1.0666 26. 313 1.0083 1.0359 
 5. 114 1.0242 1.0520 16. 214 1.0298 1.0145 27. 314 0.9983 1.0404 
 6. 115 0.9824 1.0045 17. 215 1.0581 1.0092 28. 315 1.0122 1.0194 
 7. 116 1.0025 1.0114 18. 216 1.0590 1.0110 29. 316 0.9985 1.0182 
 8. 118 1.0610 1.0309 19. 218 1.0705 1.0065 30. 318 1.0432 1.0431 
 9. 121 1.0456 1.0274 20. 221 1.0715 1.0148 31. 321 1.0533 1.0304 
10. 122 1.0589 1.0437 21. 222 1.0866 1.0593 32. 322 1.0559 1.0152 
11. 123 0.9871 1.0007 22. 223 1.0571 1.0493 33. 323 0.9650 1.0425 
 

number of fitness evaluations to locate it. In PSO, the particle contains the solution and 
time depends on the fitness evaluation, velocity and state updating equation. 

 Table IX shows the optimal generator bus voltages obtained by GA and PSO for IEEE 
RTS-96 system. Table X shows control variables (shunt capacitor compensation and trans-
former tap) obtained by GA and PSO for IEEE RTS-96 bus system. For the assessment of 
PSO- and GA-based OPF computational requirements, an experiment was designed. Four 3-
area systems of increasing size are created, based on IEEE RTS-96 [27] (1-, 3-, and 5-area  
configurations). The optimal GA population size is varying according to system size. The 
population size and the number of generations for the system are given in Table XI, which 
summarizes the results of ten test runs in all test systems. The last three rows report the av-
erage (over 10 runs) computational requirements of PSO and GA. The number of genera-
tions (NG) to arrive at a good quality OFF solution is reported in the second row. A good-
quality OFF solution is one with fitness value within 0.2% of the fitness obtained after al-
lowing PSO and GA to evolve for respective generations. Table XI shows that the differ-
ence of the best and worst solutions increases slightly and the execution time increases 
considerably as the system size increases. 
 

6. Conclusions 

This paper presents a PSO solution to the optimal power flow problem and is applied to 
small- and medium-sized power systems. The main advantage of PSO over other modern 
 
Table X 
Control variables (shunt capacitor compensation and transformer tap) for IEEE RTS-96 bus system 

Sl Shunt GA PSO Transf GA PSO Transf GA PSO Transf GA PSO 
no. cap   tap   Tap   Tap 
 

1. SC106 3 2 Xtrf103–124 12 10 Xtrf203–224  7  2 Xtrf303–324  7  6 
2. SC206 3 2 Xtrf109–111 11 10 Xtrf209–211  7 14 Xtrf309–311 16 15 
3. SC306 2 3 Xtrf109–112 11 16 Xtrf209–212 14  8 Xtrf309–312 12 14 
4.    Xtrf110–111  9 11 Xtrf210–211  9  5 Xtrf310–311  6  8 
5.    Xtrf110–112 11  8 Xtrf210–212  3  6 Xtrf310–312 11 14 
6.          Xtrf323–325  8  3 

Shunt capacitor compensation (0th Step = 0.0 MVAR and 4th Step= –150.0 MVAR) 
Transformer tap (0th Step = 0.9 pu and 17th Step = 1.1 pu) 
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Table XI 
Computational requirements of PSO and GA for IEEE RTS-96 bus system 

Sl IEEE RTS-96 bus system 1-Area system 3-Area system 5-Area system 
no. configuration  PSO GA PSO GA PSO GA 
 

1. Population size 20 40 20 840 40 150 
2. No of generations (NG) 100 100 300 300 500 500 
3. Number of load flows 2000 4000 24000 4000 20000 75000 
4. Operating Best 35557 35603 221961 222430 302163 302542 
5. Cost Worst 35646 35698 222531 223063 302941 303511 
6. [Units/h] % Difference 0.25% 0.26% 0.26% 0.28% 0.26% 0.2632% 

 

heuristics is modeling flexibility, sure and fast convergence, less computational time than 
other heuristic methods. And it can be easily coded to work on parallel computers. 

 The main disadvantage of PSO and GA is that they are heuristic algorithms, and they do 
not provide the guarantee of optimal solution for the OPF problem. Type-1 PSO, which is 
based on constriction factor approach, is useful for obtaining high-quality solution in a very 
less time compared to other classical methods and GA. 

 The future work in this area consists of the applicability of PSO and GA solutions to 
large-scale OFF problems of systems with several thousands of nodes, utilizing the strength 
of parallel computers. 
 
References 

1. H. W. Dommel, and W. F. Tinney, Optimal power flow solutions, IEEE Trans. Power Apparatus Systems, 
87, 1866–1876 (1968). 

2. D. I. Sun, B. Ashley, B. Brewer, A. Hughes, and W. F Tinney, Optimal power flow by Newton approach, 
IEEE Trans. Power Apparatus Systems, 103, 2864–2880 (1984). 

3. J. A. Momoh, R. J. Koessler, M. S. Bond, B. Stott, D. Sun, A. Papalexopoulos, and P. Ristanovic, Chal-
lenges to optimal power flow, IEEE Trans. Power Systems, 12, 444–455 (1997). 

4. B. Stott, and E. Hobson, Power system security control calculation using linear programming, Parts I and II, 
IEEE Trans. Power Apparatus Systems, 97, 1713–1731 (1978). 

5. B. Stott, and J. L. Marinho, Linear programming for power system network security applications, IEEE 
Trans. Power Apparatus Systems, 98, 837–848 (1979). 

6. R. Mota-Palomino, and V. H. Quintana, A penalty function-linear programming method for solving power 
system constrained economic operation problems, IEEE Trans. Power Apparatus Systems, 103, 1414–1442 
(1984). 

7. O. Alsac, and B. Stott, Optimal load flow with steady state security, IEEE Trans. Power Apparatus Systems, 
93, 745–751 (1974). 

8. R. R. Shoults, and D. T. Sun, Optimal power flow based on P-Q decomposition, IEEE Trans. Power Appara-
tus Systems, 101, 397–405 (1982). 

9. M. H. Bottero, F. D. Galiana, and A. R. Fahmideh-Vojdani, Economic dispatch using the reduced hessian, 
IEEE Trans. Power Apparatus Systems, 101, 3679–3688 (1982). 

10. J. A. Momoh, A generalized quadratic-based model for optimal power flow, Proc. IEEE Int. Conf. Systems 
Man and Cybernetics, Cambridge, MA, USA, Vol. 1, pp. 261–271, 1989 (1989). 



K. S. SWARUP 454 

11. R. C. Burchett, H. H. Happ, and K. A. Wirgau, Large-scale optimal power flow, IEEE Trans. Power Appara-
tus Systems, 101, 3722–3732 (1982). 

12. G. L. Torres, and V. H. Quintana, An interior-point method for nonlinear optimal power flow using voltage 
rectangular coordinates, IEEE Trans. Power Systems, 13, 1211–1218 (1998). 

13. J. A. Momoh, and J. Z. Zhu, Improved interior point method for OPF problems, IEEE Trans. Power Systems, 
14, 1114–1120 (1999). 

14. H. Wei, H. Sasaki, J. Kubokawa, and R. Yokoyama, An interior point nonlinear programming for optimal 
power flow problems with a novel data structure, IEEE Trans. Power Systems, 13, 870–877 (1998). 

15. A. G. Bakirtzis, P. N. Biskas, C. E. Zoumas, and V. Petridis, Optimal power flow by enhanced genetic algo-
rithm, IEEE Trans. Power Systems, 17, 229–236 (2002). 

16. L. L. Lai, J. T. Ma, R. Yokoyama, and M. Zhao, Improved genetic algorithms for optimal power flow under 
both normal and contingent operation states, Int. J. Electl Power Energy Systems, 19, 287–292 (1997). 

17. S. R. Paranjothi, and K. Anburaja, Optimal power flow using refined genetic algorithm, Electric Power 
Components Systems, 30, 1055–1063 (2002). 

18. K. Y. Lee, and Y. M. Park, A unified approach to optimal real and reactive dispatch, IEEE Trans. Power 
Apparatus Systems, 104, 1147–1153 (1985). 

19. J. Yuryevich, and J. Kit Po Wong, Evolutionary programming based optimal power flow algorithm, IEEE 
Trans. Power Systems, 14, 1245–1250 (1999). 

20. P. J. Angeline, Using selection to improve particle swarm optimization, Proc. 1998 Int. Conf. on Evolution-
ary Computation–The IEEE World Congress on Computational Intelligence, Anchorage, May 1998, pp. 84–
89 (1998). 

21. J. Kennedy, The particle swarm: Social adaptation of knowledge, Proc. Int. Conf. on Evolutionary Computa-
tion (ICEC’97), pp. 303–308 (1997). 

22. J. Kennedy, and R. Eberhart, Particle swarm optimization, Proc. IEEE Int. Conf. on Neural Network, Vol. 4, 
pp. 1942–1948 (1995). 

23. Y. Shi, and R. Eberhart, A modified particle swarm optimizer, Proc. 1998 Int. Conf. on Evolutionary Com-
putation–The IEEE World Congress on Computational Intelligence, Anchorage, May 1998, pp. 69–73 
(1998). 

24. He Zhenya, Wei Chengjian, Yang Luxi, Gao Xiqi, Yao Susu, R. C. Eberhart, and Yuhui Shi, Extracting rules 
from fuzzy neural network by particle swarm optimization, Proc. 1998 Int. Conf. on Evolutionary Computa-
tion–The IEEE World Congress on Computational Intelligence, Anchorage, May 1998, pp. 74–77 (1998). 

25. J. Kennedy, and W. M. Spears, Matching algorithms to problems: An experimental test of the particle swarm 
optimization and some genetic algorithms on the multimodal problem generator, Proc. IEEE Int. Conf. on 
Evolutionary Computation–The IEEE World Congress on Computational Intelligence, pp. 78–83 (1998). 

26. K. S. Swarup, and P. Rohit Kumar, A new evolutionary computation technique for economic dispatch with 
security constraints, Int. J. Electl Power Energy Systems, 28, 273–283 (2006). 

27. K. S. Swarup, and S. Yamashiro, A genetic algorithm approach to generator unit commitment, Int. J. Electl 
Power Energy Systems, 25, 679–687 (2003). 

28. M. Clerc, and J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional 
complex space, IEEE Trans. Evolutionary Computation, 6, 58–73 (2002). 

29. C. Grigg, P. Wong, P. Albrecht, R. Allan, M. Bhavaraju, R. Billinton, Q. Chen, C. Fong, S. Haddad, S. Ku-
ruganty, W. Li, R. Mukerji, D. Patton, N. Rau, D. Reppen, A. Schneider, M. Shahidehpour, and C. Singh, 
The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the ap-
plication of probability methods subcommittee, IEEE Trans. Power Systems, 14, 1010–1020 (1999). 

 



SWARM INTELLIGENCE APPROACH TO THE SOLUTION OF OPTIMAL POWER FLOW 455 

List of principle symbols used 

PD = Total system demand  
PL = Total transmission loss 
FT = Total fuel cost  
F*T = Augmented fuel cost  
Pmax

Gi  = Maximum operating limit of the i th generator 
Pmin

Gi  = Minimum operating limit of the i th generator 
ai , bi , ci  = Cost coefficient of the i th generator 
Jmax

J   = Maximum magnitude of current in j th line 
K1 = Line loading penalty factor 
K2 = Penalty factor for the slack generation 
K3 = Penalty factor for bus voltages 
rand = Random number between 0 and ϕ/2 
ϕi  = Weighting factor 
ϕ = Social coefficient 
χ = Constriction coefficient 
Yi ,j = Individual particles best fitness yet encountered 
Gj = Best value so far in the group. 
Vk

i ,j = Velocity of agent i at iteration k 
Xk

i ,j = Current position of agent i  at iteration k 
Na = Number of intervals 
QGI = Reactive power generated by i  generator 
VLi  = Voltage at i th load bus 
 
 


