
J. Indian Inst. Sci., Sept.–Oct. 2006, 86, 465–479
© Indian Institute of Science.

*Author for correspondence.

A novel multiplicative neural network architecture motivated
by spiking neuron model

DEEPAK MISHRA, ABHISHEK YADAV AND PREM K. KALRA
Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India
email: dkmishra@iitk.ac.in.

Received on August 11, 2005; Revised on September 6, 2006.

Abstract

In this paper, learning algorithm for a multiplicative neural network motivated by spiking neuron model (MSN) is
proposed and tested for various applications where a multilayer perceptron (MLP) neural network is convention-
ally used. It is observed that the inclusion of a few more biological phenomena in the formulation of artificial
neural network models make them more prevailing. Several benchmark and real-life problems of classification
and function-approximation are illustrated.

Keywords: Neuron models, artificial neural network, spiking neuron, multilayer perceptron.

1. Introduction

Researchers have proposed several neuron models for artificial neural networks. Although
these models are primarily inspired from biological neuron, there is still a gap between phi-
losophies used in neuron models for neuroscience studies and those used for artificial neu-
ral networks (ANN). Some of these models exhibit a close correspondence with their
biological counterparts while others do not. Freeman [1] has pointed out that while brains
and neural networks share certain structural features, such as massive parallelism, biologi-
cal networks solve complex problems easily and creatively, but existing neural networks do
not. He discussed the issues related to the similarities and dissimilarities between biological
and artificial neural systems of the present day. The main focus in the development of a
neuron model for artificial neural networks is not only its ability to represent biological ac-
tivities with its maximum intricacy, but also some mathematical properties, e.g. its capabi-
lity as a universal function approximator. However, it can be advantageous for artificial
neural networks if we can bridge the gap between biology and mathematics by investigating
the learning capabilities of biological neuron models for the applications of classification,
time-series prediction, function approximation, etc.

 The first artificial neuron model was proposed by McCulloch and Pitts [2] in 1943. They
developed this model based on the fact that the output of neuron is 1 if the weighted sum of
its inputs is greater than a threshold value, and 0, otherwise. In 1949, Hebb [3] proposed a
learning rule that became initiative for ANNs. He postulated that the brain learns by chang-
ing its connectivity patterns. Widrow and Hoff [4] in 1960 presented the most analyzed and

DEEPAK MISHRA et al. 466

most applied learning rule known as least mean square rule. Later in 1985, Widrow and
Sterns [5] found that this rule converges in the mean square to the solution that corresponds
to least mean square output error if all input patterns are of the same length. A single neu-
ron of the above and many other neuron types proposed by several scientists and research-
ers are capable of linear classification [6]. Yadav et al. [7] incorporated various aggregation
functions to model the nonlinear input–output relationships. In 2004, Mishra et al. [8] in-
vestigated the chaotic behavior in neural networks that represent biological activities in
terms of firing rate. Scholles et al. [9] discussed biologically inspired artificial neurons and
Feng and Li [10] introduced neuronal models with current inputs. Training the integrate-
and-fire model with the Informax principle was discussed by Feng’s groups [11, 12].

 Recently, spiking neural networks have been the subject of significant research reflecting
the view that spikes have a key role in biological information processing [13, 14]. New ad-
vances in neurophysiology have found that the difference in firing times could convey in-
formation about the input stimuli and that the relative order of firing times could be used as
an alternative to rate coding [15, 16]. The first supervised training for this new computa-
tional paradigm was suggested by Bohte et al. [17]. However, in this model, a large number
of parameters are to be adjusted. In our experiments, we found that the performance of this
network is very much dependent on the initial values of these parameters. Kalra and col-
leagues [18, 19] used a single neuron for classification and function approximation. This
model is inspired from the f/I characteristics of integrate-and-fire neuron model. His group
also presents a comparison between the performances of multilayer perceptron and single
multiplicative spiking neuron-based artificial neuron [20]. It has been found that for many
benchmark problems a single multiplicative spiking neuron and single integrate-and-fire
type neuron model-based learning is sufficient.

 To solve difficult problems, a neural network model for function approximation and clas-
sification is proposed and discussed in the present work. The functioning of the proposed
model is motivated by the activity of spiking neuron model. The proposed model considers
a modified aggregation methodology at network units. This modification accounts for
nonlinear aggregation operation at dendrites. Moreover, probability of spike is used as an
output instead of time of spike. We found that with such modifications, the learning per-
formance is drastically improved. These modifications provide an opportunity to add more
biological features in forming an artificial neural network for solving problems like func-
tion approximation and classification.

 The rest of the paper is organised as follows. In Section 2, a brief discussion of the spik-
ing neuron model is presented. Inspired from the relationship between timings of incoming
spikes and dynamics of internal state variables, a learning algorithm is proposed in Section
3. The comparison of the proposed model with classical multilayer perceptron (MLP) is
discussed in Section 4. In Section 5, we conclude our work with a brief discussion.

2. Biological neurons

2.1. Architecture of a biological neuron

Networks of biological neurons compute with the help of fast traveling pulses called action
potentials. A neuron is the fundamental building block of biological neural networks. A

NEURAL NETWORK MODEL FOR FUNCTION APPROXIMATION AND CLASSIFICATION 467

FIG. 1. A typical shape of the post-synaptic potentials
(PSP). It models the changes in the membrane poten-
tial of the target neuron owing to the arrival of a single
spike as a function of time-since-impact.

typical neuron has three major parts: soma, axon, and dendrites. Dendrites form a dendritic
tree which is a very fine bush of thin fibers around the neuron’s body. Dendrites receive in-
formation from neurons through axons. An axon is a long cylindrical connection that carries
impulses from the neuron. The end part of an axon splits into a fine arborization which ter-
minates in a small end-bulb almost touching the dendrites of neighboring neurons. The
axon-dendrite contact organ is called synapse. Details of the biological neuron can be found
in Koch [21], and Tuckwell [22]. Modeling such a complex system is difficult task and the
model often has to be drastically simplified in order to make both the computation and
analysis somewhat tractable. In the following subsection, we will discuss the functioning of
spiking neuron model that mimics the biological activities of single neuron.

2.2. Spiking neuron model

A spiking neuron is represented by voltage across its cell membrane and a threshold [15].
The status of a neuron is determined by integration of its excitatory and inhibitory post-
synaptic potentials (PSP). When its membrane potential reaches a certain threshold, the
neuron generates a spike which is propagated to other neurons. The synapse is responsible
for transforming the spike into a PSP. Typical shape of a PSP is shown in Fig. 1. A spike
takes certain time, called synaptic delay, to reach the post-synaptic neuron. We assume that
a neuron has n number of immediate predecessors called presynaptic neurons and receives a
set of spikes with firing times ti , i = 1, 2, … n. At most one spike is generated by each neu-
ron during the simulation interval (the presentation of an input pattern), and fires when in-
ternal state variable reaches a threshold. Dynamics of the internal state variable x(t) is
determined by the impinging spikes, whose impact is described by the spike-response func-
tion ε(t) weighted by the synaptic efficacy or weight wi [17].

1

() (),
n

i i
i

x t w t tε
=

= −∑ (1)

where wi is positive for excitatory synapse and negative for inhibitory synapse. The spike-
response function ε(t – ti), which is referred to as PSP, models how the arrival of a single
spike changes the membrane potential of the target neuron as a function of time-since-
impact. The height of PSP is modulated by synaptic weight wi to obtain the effective PSP at
the target neuron due to a spike from neuron-i . The commonly used spike response function
is given in Bohte et al. [17] and can be expressed by eqn (2).

DEEPAK MISHRA et al. 468

 1() .
tt

t e τε
τ

−= (2)

 As an extension of this model, we can consider synaptic delay δi , associated with each
input. Moreover, time-constant τ can be considered different for different inputs. Thus,

1

() (),
n

i i i
i

x t w t tε δ
=

= − −∑

 ()1

1

() .
t ti i

i

n
i i

i
i i

t t
x t w e

δ
τδ

τ

− −−

=

 − −
=  

 
∑ (3)

Thus, the state variable x, at a specified time instant t0 is

 ()()
0

1

() ,i i i

n
c d t

i i i
i

x a b t e +

=
= +∑ (4)

where,

 0 ,i
i i

i

t
a w

δ
τ

 −
=  

 

 ,i
i

i

w
b

τ
−

=

 01 ,i
i

i

t
c

δ
τ

 −
= −  

 

1

.i
i

d
τ

=

In generalized form, eqn (4) can be represented by:

 ()()

1

() .i i i

n
c d t

net i i i
i

x a b t e +

=
= +∑ (5)

Considering multiplicative aggregation at dendrites, as discussed in later section, eqn (5)
can be written as:

 1
()

1

() .
n

i i ii

n
c d x

net i i i
i

x a b x e =
+

=

∑= +∏ (6)

The expanded form of this equation is

 () ()()
1

i i i

n
c d x

net i i i
i

x a b x e +

=
= +∏

NEURAL NETWORK MODEL FOR FUNCTION APPROXIMATION AND CLASSIFICATION 469

() () () () () ()

() () () () () ()

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

n n n

n n n

c d x c d x c d x
n n n

c d x c d x c d x
n n n

a b x e a b x e a b x e

a b x a b x a b x e e e

+ + +

+ + +

    = + × + × × +     
  = + × + × × + × × × ×   

"

" "

() ()1

1

.
n

i i ii

n
c d x

i i i
i

a b x e = +

=

   ∑= + ×      
∏ (7)

 In this work, we concentrate mainly on the timing of spikes in spiking neuron model to
derive an aggregation function for the learning of a neural network. The details of the pro-
posed model are explained in the following sections.

3. The proposed learning scheme

In this section, we propose a learning scheme that will be used for the task like function ap-
proximation and classification. The formulation of the proposed scheme is inspired from the
functioning of multiplicative spiking neuron model whose details have been discussed in the
previous section. The proposed learning scheme is firstly formulated for doing single neu-
ron computation and further it is extended for forming the network of neurons.

 Inspired from the relationship between the timings of incoming spikes ti and state vari-
able x (eqns (3) and (4)) for spiking neuron model, following aggregation function is as-
sumed:

 () ()1

1

n
i i ii

n
c d x

net i i i
i

x a b x e = +

=

   ∑= + ×     
∏ (8)

where n is the number of inputs. xi is analogous to the input spike time ti and xnet is analo-
gous to the state variable x at a specified time t. It is to be noted that parameters ai , bi , ci and
di have been used to represent the constant values that depend upon τi , δi , wi and the speci-
fied time t at which the value of the state variable is to be calculated. It is to be noted here
that xi in eqn (8) is analogous to the input spike time; therefore, it is incorporating the fun-
damental property of the spiking neuron. Besides this, it is also incorporating the threshold
variability by imposing the probabilistic firing.

 In view of evidences in support of the presence of multiplicative operations in the nerv-
ous system [23], multiplication of net inputs to the activation function is considered. In-
stead of time of spike in the post-synaptic neuron, we considered the spiking probability y
till a specified time t as output. y is a nonlinear function of xnet and should have the follow-
ing properties:

1. It is a monotonically increasing function as the probability of spike is increased for in-
creasing xnet.

2. It is almost zero for low values of xnet as there is negligible probability of spike if xnet is
small. This is true even if threshold variability is taken into account.

3. It is almost unity for high values of xnet as spike is almost certain for large values of xnet.
This is also true even if threshold variability is taken into account.

DEEPAK MISHRA et al. 470

FIG. 2. Sketch of the proposed multiplicative neural network architecture motivated by spiking neuron model.

 Assumption of constant threshold would lead to a special case of this function. In that
case, the probability of spike would either be zero or one. Incorporation of threshold vari-
ability in our model is achieved by assuming this function as the sigmoid function. The
threshold variability causes probability of spike generation between 0 and 1 and if we will
not consider the threshold variability then probability of spike generation is either 0 or 1.
Hence, to incorporate threshold variability aggregated input is passed through the sigmoid
function. This is a continuous and differentiable nonlinear function given by

1

.
1 netx

y
e−=

+
 (9)

For single neuron computation, input–output relation is derived in eqns (8), and (9). When
we consider this neuron in network like architecture (Fig. 2), the input-output expressions
are modified as eqns (10).

 The MSN model is inspired from the fact that the actual shape of action potential does
not contain any neuronal information. It is the timing of spikes that matters. A substantial
body of evidence supports the presence of multiplicative-like operations in nervous system
[23]. Physiological and behavioral data strongly suggest that the optomotor response of in-
sects to moving stimuli is mediated by a correlation-like operation [21]. Another instance of a
multiplication-like operation in the nervous system is the modulation of receptive field location
of neurons in the posterior parietal cortex by the eye and head positions of monkey [21].

 In all the conventional neural network models, simple summation is necessary for them
to work. However, such a sum cannot distinguish among the individual contributions to it.
For the neurons to respond strongly to correlations among particular input pairs or groups,

NEURAL NETWORK MODEL FOR FUNCTION APPROXIMATION AND CLASSIFICATION 471

one must include multiplicative terms and then sum over the product. The multiplicative
operation can be used to implement second- and higher-order polynomial relations among a
set of inputs. Mel [24] and Durbin and Rumelhart [25] suggest that networks based on
sigma-pi units are more powerful and have many advantages with respect to the traditional
threshold-based networks. Koch and Poggio [23] discuss the relevance of multiplicative op-
erations, particularly in computation underlying motion perception and learning. Multipli-
cation in neurons often occurs in dendritic trees with voltage-dependent membrane
conductances [26]. Arcas et al. [27] provide a linear subspace-based approach to model the
computation abilities of a neuron. Linearity is believed to be sufficient in capturing the pas-
sive properties of dendritic membrane where synaptic inputs are currents. However, synap-
tic inputs can interact nonlinearly when synapses are colocalized on patches of dendritic
membrane with specific properties. Hence, an artificial neuron model then should be capa-
ble of including this inherent nonlinearity in the mode of aggregation. Multiplication, being
the most basic of all nonlinearities, has been a natural choice of models trying to include
nonlinearity in artificial neuron model. Poggio [28] explains the relevance of using multi-
plication as a computationally powerful and biologically realistic possibility of synthesizing
high-dimensional Gaussian radial basis function [29] from low dimensionality. The role of
multiplication is explained in the computation underlying motion perception and learning in
pairs of individual synapses to a small set of neurons. The nonlinear capability of neuron is
usually modeled through a stationary nonlinearity. This however is not sufficient to capture
the possible nonlinear association among the inputs to the single neuron systems. In view of
these evidences, we incorporate multiplication operation while aggregating inputs to the ac-
tivation function.

3.1. Development of the training algorithm

The ANN motivated from the multiplicative spiking neuron model is shown in Fig. 2. In
this network, all the inputs in each layer are aggregated according to eqn (8) to generate the
net output. This net is fed through a log sigmoid nonlinearity to create the final output in
each layer. This kind of neuron itself looks complex in the first instance but when used to
solve a complicated problem it needs reasonably less number of parameters as compared to
the existing conventional models. The gradient descent approach has been used to develop
the learning algorithm for the network. The learning rules for various weights of a feedfor-
ward (FF) network of the proposed multiplicative neuron model can be given by the follow-
ing set of equations.

3.1.1. Forward pass

In forward pass, the net summation and output at each neuron are calculated as per the
following equations

() ()1

1

1

1

ni
ji ji ii

j

ni
c d x

j ji ji i
i

j neth

neth a b x e

h
e

= +

=

−

   ∑= + ×      

=
+

∏

DEEPAK MISHRA et al. 472

() ()1

1

1
.

1

nh
kj kj jj

k

nh
r s h

k kj kj j
j

k nety

nety p q h e

y
e

= +

=

−

   ∑= + ×      

=
+

∏

(10)

3.1.2. Backward pass

After the forward pass, the total error of the network is given by eqn (11). A simple steepest
descent method is applied to minimize this error function.

 dyk = (yk – tk)

0

2

1

1
()

2

n

k
k

e dy
=

= ∑ (11)

where tk is target (not time) and yk is actual output of kth output neuron, e, a function of pa-
rameters aji , bji , cji , dji , pkj, qkj, rkj, and skj (i = 1, 2, … ni, j = 1, 2, … , nh, k = 1, 2, … , no).
Therefore, the parameter update rule (weight update rule) can be expressed by eqns (12)–
(15).

()

()

1

1

k
k k k

kj kj kj j

j
kj kj

k k k k
kj

j
kj kj

netye
dy y y

p p q h

e e
h

q p

e
dy y y nety

r

e e
h

s r

∂ = × × − ×
∂ +

∂ ∂= ×
∂ ∂

∂ = × × − ×
∂

∂ ∂= ×
∂ ∂

(12)

1

(1)
(

no
kj

k k k k ki
kji kj kj j

qe
dy y y nety S

a p q h=

  ∂  = × × − × × +   ∂ +  
∑

 (1)
()

j

j j
ji ji i

neth
h h

a b x
× − ×

+

 i
ji ji

e e
x

b a

∂ ∂= ×
∂ ∂

1

(1)
(

no
kj

k k k k kj
kji kj kj j

qe
dy y y nety s

c p q h=

  ∂  = × × − × × +   ∂ +  
∑

 (1)j j jh h neth× × − ×

 .i
ji ji

e e
x

d c

∂ ∂= ×
∂ ∂

 (13)

NEURAL NETWORK MODEL FOR FUNCTION APPROXIMATION AND CLASSIFICATION 473

The following equations show the update rule which is based on steepest descent algorithm

 new old
kj kj

kj

e
p p

p
η ∂= − ×

∂

 new old
kj kj

kj

e
q q

q
η ∂= − ×

∂

 new old
kj kj

kj

e
r r

r
η ∂= − ×

∂

 new old
kj kj

kj

e
s s

s
η ∂= − ×

∂
 (14)

 new old
ji ji

ji

e
a a

a
η ∂= − ×

∂

 new old
ji ji

ji

e
b b

b
η ∂= − ×

∂

 new old
ji ji

ji

e
c c

c
η ∂= − ×

∂

 new old
ji ji

ji

e
d d

d
η ∂= − ×

∂
, (15)

where ni = number of inputs applied to the network, nh = number of hidden layer neurons,
no = Number of outputs in the data set, η = learning rate, aji , bji , cji , dji , pkj, qkj, rkj, skj = Pa-
rameters of the proposed model. i = 1, 2, … , ni; j = 1, 2, … , nh; k = 1, 2, … , no.

4. Illustrative examples

In this section, we present experimental details and comparison between the proposed
(MSN) and conventional (MLP) neural architectures. Parameters of both the networks are
randomly initialized in the range [–0.1 0.1]. The networks are simulated on a machine hav-
ing Pentium (R) 4 CPU of 3.20 GHz with 512 MB of RAM. The validation set is used for
deciding when to terminate the training. Training is continued as long as the performance
on the validation set keeps on improving. When it ceases to improve, training is stopped.
Training is also stopped as the stopping criterion was fulfilled or when a maximum of 1000
or 2000 epochs are reached. The test set performance is then computed for that state of
network which has minimum error during the training process. The results shown in this
paper are obtained after taking the average multiple runs.

4.1. Classification problems

4.1.1. Pima Indian

This UCI dataset was contributed by Sigillito. The patients in the dataset are females at
least 21 years old of Pima Indian heritage living near Phoenix, Arizona, USA. The problem

DEEPAK MISHRA et al. 474

is to predict whether a patient would test positive for diabetes given a number of physio-
logical measurements and medical test results. There are two classes, seven numerical attrib-
utes, and 532 records. Out of 532 samples, 372 samples, are used for training, 160 for
validation and 54 for testing. Performance of the proposed model with three hidden units is
compared with the conventional MLP with five hidden units. The number of hidden units is
chosen after several (around ten) runs for each case. Specified structures gave the best results.
Table I presents the comparison between MLP and MSN. It is observed that the perform-
ance of the proposed model is better than the conventional neural network model (MLP).

4.1.2. Iris data

This classic data of Anderson and Fisher pertains to a four-input, three-class classification
problem. The first four columns indicate petal and sepal widths and lengths of various Iris
flowers, and the fifth column indicates the appropriate class (Setosa, Versicolor, and Vir-
ginia). For comparison of performance with MSN and MLP in case of Iris data problem, we
considered MLP with five hidden units. This data set has total 187 samples out of which
105 samples are used for training, 45 for validation and 37 for testing purpose. It is ob-
served that the performance of MSN is better than that of MLP. MSN with less number of
parameters is capable of learning this relationship faster than an MLP. Moreover, we found
less number of misclassified points with MSN model (Table I).

4.1.3. Boston housing data

This UCI dataset gives the housing values in Boston suburbs. There are three classes, 12
numerical attributes, one binary attribute, and 506 records. Out of 506 instants, 318 are
used for training, 137 for validation, and 51 for testing purpose. The performance results for
this data for all the three classes taken together are shown in Table I. It is found that the
performance of MSN is slightly better than that of MLP.

4.1.4. Congressional voting records data

This UCI dataset gives the votes of each member of the U.S. House of Representatives of
98th congress on 16 key issues. The problem is to classify a Congressman as a Democrat or
a Republican based on the 16 votes. There are two classes, 16 categorical attributes with
three categories each and 435 records. Of the records, 435,274 instants are used for train-
ing, 117 for validation and 44 for testing purpose. It is found from Table I that the perform-
ance of MLP is slightly better than that of MSN.

4.1.5. Wine recognition data

The data are the results of a chemical analysis of wines grown in the same region in Italy
but derived from three different cultivars. The analysis determined the quantities of 13 con-
stituents found in each of the three types of wines. In a classification context, this is a well-
posed problem. This classic data of Forina et al., pertains to a four-input, three-class classi-
fication problem. For comparison of the performance with MSN and MLP in the case of
wine data problem, we considered MLP with 5 hidden units and MSN with 3 hidden units.
The data set contains 178 samples, of which 80 are used in training, 40 in validation and 58
for testing. It is observed from Table I that the performance of the proposed model is sig-
nificantly better on this data set.

N
E

U
R

A
L

 N
E

T
W

O
R

K
 M

O
D

E
L

 F
O

R
 F

U
N

C
T

IO
N

 A
P

P
R

O
X

IM
A

T
IO

N
 A

N
D

 C
L

A
S

S
IF

IC
A

T
IO

N
4

7
5

Table I
Comparison of training and testing performance data for various examples

Sl Parameter Pima Indian problem Iris data Boston housing data Congressional voting records data
no. MLP MSN MLP MSN MLP MSN MSN MLP

1. Minimum MSE for 0.0446 0.0432 0.0026 0.0018 0.0141 0.0156 0.0032 0.0093
 training data
2. Minimum MSE for 0.0610 0.0531 0.0024 0.0047 0.0177 0.0155 0.0097 0.0045
 validation data
3. MSE for testing data 0.0541 0.0402 0.0541 0.0018 0.0209 0.0184 0.0131 0.0184
4. Iterations needed 500 475 1000 1000 1000 1000 1000 1000
5. Correlation coefficient 0.5775 0.6693 0.9838 0.979 0.8594 0.9039 0.9123 0.9029
6. Total training time (s) 140.6 160.90 545.4531 565.7500 615.1250 679.8281 588.9844 656.7188
7. Total testing time (s) 2.13 2.53 1.5000 1.6250 4.4531 2.9063 3.1719 4.8750
8. AIC (Akaikes –1392.0 –1661.9 –576.3466 –631.7954 –1.2151 × 103 –1.0914 × 103 –1.4059 × 103 –1.1791 × 103
 information criterion)
9. Number of hidden 5 3 5 3 5 3 5 3
 neurons
 Wine recognition data Electroencephalogram data Wolfer sun spot data MackeyGlass (MG) time series data
 MLP MSN MLP MSN MLP MSN MLP MSN

1. Minimum MSE for 0.0023 6.6274 × 10–4 0.0033 0.0034 0.0027 0.0023 1.5339 × 10–4 1.0150 × 10–4
 training data
2. Minimum MSE for 0.0029 0.0024 0.0033 0.0034 0.0033 0.0026 1.7600 × 10–4 1.2280 × 10–4
 validation data
3. MSE for testing data 0.0033 7.0507 × 10–4 0.0035 0.0044 0.0044 0.0044 2.0266 × 10–4 1.4411 × 10–4
4. Iterations needed 1000 1000 1000 1000 1000 1000 1000 1000
5. Correlation coefficient 0.9692 0.9939 0.8218 0.8199 0.8846 0.8950 0.9953 0.9978
6. Total training time (s) 555.7813 550.4219 654.4844 706.5938 540.6250 523 654.7969 698.4063
7. Total testing time (s) 3.6719 2.8281 0.0313 0.0313 4.6094 2.7656 0.0469 0.0469
8. AIC (Akaikes –368.7272 –530.8070 –1.9541 × 103 –1.9645 × 103 –384.0096 –407.4649 –2.7165 × 103 –2.8666 × 103
 information criterion)
9. Number of hidden 5 3 5 3 5 3 5 3
 neurons

DEEPAK MISHRA et al. 476

FIG. 3. Target and actual output of the proposed model
and MLP for electroencephalogram data.

FIG. 4. Target and actual output of the proposed model
and MLP for wolfer annual sunspot data.

4.2. Function approximation problems

4.2.1. Electroencephalogram (ECG) data

EEG data used here is taken from the website of ColoState University. The presence of ran-
domness and chaos [8] in this data makes it interesting for neural network-related research.
In this problem, four measurements y(t – 1), y(t – 2), y(t – 4) and y(t – 8) were used to pre-
dict y(t). Figure 3 shows the comparison between MLP and MSN in terms of deviation of
actual outputs from corresponding targets. The EEG data set contains 800 samples, of
which 350 were used for training, 150 for validation and 300 for testing. It can be seen that
the performance of MSN for training as well as testing data is identical to MLP, but the
number of hidden units needed in MLP is more than that in MSN (Table I).

4.2.2. Wolfer sun spot data

Wolfer sun spot [30] numbers are used for time-series analysis. The data set, usually attrib-
uted to Rudolf Wolf, consists of means of daily relative numbers of sunspot sightings. The
relative number for a day is given by k(f + 10g), where g is the number of sunspot groups
observed, f, the total number of spots within the groups and k, a scaling factor relating the
observer and telescope to a baseline. The relative numbers are then averaged to give an an-
nual figure. The averaged annual sun spot numbers used here are for 180 years (1749–
1929). Among 180 points, 70 are used for training, 30 for validation and 80 for testing the
capability of the proposed model. The performance of the proposed neuron model is com-
pared with that of MLP in Table I. Figure 4 shows the plot of target and actual output val-
ues for MLP and MSN. It is evident from the table and plot that the performance of the
proposed model is comparable to conventional neural network model.

4.2.3. MackeyGlass (MG) time-series data

The MackeyGlass (MG) time series [19] represents a model for white blood cell production
in leukemia patients and has nonlinear oscillations. The MG-delay difference equation is
given by eqn (16).

NEURAL NETWORK MODEL FOR FUNCTION APPROXIMATION AND CLASSIFICATION 477

FIG. 5. Target and actual output of the proposed model
and MLP for MackeyGlass (MG) time series data.

FIG. 6. Target and actual output of the proposed model
and MLP for BoxJenkins gas furnace data.

10

()
(1) (1) ()

1 ()

y t
y t b y t a

y t

τ
τ

−+ = − +
+ −

, (16)

where a = 0.2, b = 0.1, and τ = 17. The time delay τ is a source of complications in the na-
ture of the time series. The objective of the modeling is to predict the value of the time se-
ries based on four previous values. Four measurements, y(t – 1), y(t – 7), y(t – 13) and y(t – 19),
are used to predict y(t). The training is performed on 315 samples; validation is performed
on 135 samples and the model is tested on 500 time instants post training. Figure 5 shows
the prediction results. In Table I, the performance of the proposed neuron model with one
hidden layer having three nodes is compared with a multilayer network with one hidden
layer having five nodes. It can be seen that the performance of MSN for training as well as
testing data is much better than that of MLP. MSN is capable to learn this relationship
faster than that in the case of MLP and its performance on seen as well as unseen data is
significantly better.

4.2.4. BoxJenkins gas furnace data

The BoxJenkins gas furnace dataset reports the furnace input u(t) as the gas flow rate and
the furnace output y(t) as the CO2 concentration. In this gas furnace, air and methane were

Table II
Comparison of training and testing performance for BoxJenkins gas
furnace data

Sl. Parameter MLP MSN
no.

1. Minimum MSE for training data 2.0004 × 10–4 2.0995 × 10–4
2. Minimum MSE for validation data 2.6728 × 10–4 2.2219 × 10–4
3. MSE for testing data 0.0011 0.0012
4. Iterations needed 1000 1000
5. Total training time (s) 540.1563 549.7188
6. Total testing time (s) 0.0156 0.0156
7. AIC (Akaikes information criterion) –842.2168 –837.3350
8. Number of hidden neurons 3 3
9. Correlation coefficient 0.9692 0.9693

DEEPAK MISHRA et al. 478

combined in order to obtain a mixture of gases which contained CO2. We model the furnace
output y(t) as a function of the previous output y(t – 1) and input u(t – 1). The training is
performed on 101 samples; validation is performed on 44 samples and the model is tested
on 145 samples. The generalization capability of the proposed model is shown in Fig. 6.
Table II shows the comparison of training and generalization capabilities of the proposed
neuron with MLP.

5. Conclusions

This paper presents a new approach towards the conceptualization of an artificial neural
system motivated from the spiking neuron model with better learning and generalization
capabilities. Idea of the spiking neuron model is inspired from the fact that the actual shape
of action potential does not contain any neuronal information. It is the timing of spikes that
matters. The proposed model incorporates multiplicative aggregation at dendrites and
threshold variability in biological neurons. The training and testing results with different
benchmark and real-life problems are discussed. It is found that the proposed artificial neu-
ral network with comparatively less number of hidden neurons is capable of performing
classification and function approximation tasks as efficiently as a multilayer perceptron
with several hidden neurons. Moreover, in many cases, its learning is significantly better
than that of a conventional multilayer perceptron.

References

1. W. J. Freeman, Why neural networks do not yet fly: inquiry into the neurodynamics of biological intelli-
gence, IEEE Int. Conf. on Neural Networks, July 24–27, 1988, Vol. 2, pp. 1–7 (1988).

2. W. McCulloch, and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Bio-
phys., 5, 115–133 (1943).

3. D. Hebb, Organization of behavior, Wiley (1949).

4. B. Widrow, and M. E. Hoff, Adaptive switching circuits, IREWESCON Connection Records, IRS, New York
(1960).

5. B. Widrow, and S. Steams, Adaptive signal processing, Prentice-Hall (1985).

6. M. Sinha, D. K. Chaturvedi, and P. K. Kalra, Development of flexible neural network, J. IE(I), 83 (2002).

7. R. N. Yadav, V. Singh, and P. K. Kalra, Classification using single neuron, Proc. IEEE Int. Conf. on Indus-
trial Informatics, Banff, Alberta, Canada, Aug. 21–24, 2003, pp. 124–129.

8. D. Mishra, A. Yadav, and P. K. Kalra, Chaotic behavior in neural networks and FitzHugh-Nagumo neuronal
model, Proc. ICONIP-2004, LNCS 3316, Dec. 2004, India, pp. 868–873.

9. M. Scholles, B. J. Hosticka, M. Kesper, P. Richert, and M. Schwarz, Biologically-inspired artificial neurons:
modeling and applications, Proc. 1993 Int. Jt Conf. Neural Networks, IJCNN ’93-Nagoya, Oct. 25–29, 1993,
Vol. 3, pp. 2300–2303 (1993).

10. J. Feng, and G. Li, Neuronal models with current inputs, J. Phys. A, 24, 1649–1664 (2001).

11. J. Feng, H. Buxton, and Y. C. Deng, Training the integrate-and-fire model with the Informax principle I, J.
Phys. A, 35, 2379–2394 (2002).

12. J. Feng, Y. Sun, H. Buxton, and G. Wei, Training integrate-and-fire neurons with the Informax principle II,
IEEE Trans. Neural Networks, 14, 326–336 (2003).

13. W. Gerstner, Time structure of the activity in neural network models, Phys. Rev. E, 51, 738–758 (1995).

NEURAL NETWORK MODEL FOR FUNCTION APPROXIMATION AND CLASSIFICATION 479

14. J. J. Hopfield, Pattern recognition computation using action potential timing for stimulus representation, Na-
ture, 376, 33–36 (1995).

15. W. Gerstner, and W. Kistler, Spiking neuron models: Single neurons, populations, plasticity, Cambridge
University Press (2002).

16. W. Maass, Networks of spiking neurons: the third generation of neural network models, Neural Networks,
10, 1659–1671 (1997).

17. S. M. Bohte, H. La Poutre, and J. N. Kok, SpikeProp: Error-backpropagation for networks of spiking neu-
rons, ESANN2000, pp. 419–425 (2000).

18. A. Yadav, D. Mishra, R. N. Yadav, S. Ray, and P. K. Kalra, Learning with single integrate-and-fire neuron,
IEEE Int. Jt Conf. on Neural Network, IJCNN-2005, Montreal, Canada, Vol. 4, pp. 2156–2161 (2005).

19. A. Yadav, D. Mishra, R. N. Yadav, S. Ray, and P. K. Kalra, Time-series prediction with single integrate-
and-fire neuron, Appl. Soft Computing, 1 (in press).

20. D. Mishra, A. Yadav, and P. K. Kalra, A neural network using single multiplicative spiking neuron for func-
tion approximation and classification, IEEE Int. Jt Conf. on Neural Network, IJCNN-2006, Canada, pp. 396–
403 (2006).

21. C. Koch, Biophysics of computation: Information processing in single neurons, Oxford University Press
(1999).

22. H. C. Tuckwell, Introduction to theoretical neurobiology, Cambridge University Press (1988).

23. C. Koch, and T. Poggio, Multiplying with synapses and neurons. Single neuron computation, Academic
Press, pp. 315–315 (1992).

24. B. W. Mel, and C. Koch, Sigma-pi learning: on radial basis functions and cortical associative learning, in
Advances in neural information processing systems, Vol. 2 (D. S. Touretzky, ed.), Morgan Kaufmann, pp.
474–481 (1990).

25. R. Durbin, and D. E. Rumelhart, Product units: a computationally powerful and biologically plausible exten-
sion to back-propagation networks, Neural Computation, 1, 133–142 (1989).

26. B. W. Mel, Information processing in dendritic trees, Neural Computation, 6, 1013–1085 (1994).

27. B. A. Arcas, A. L. Fairhall, and W. Bialek, What can a single neuron compute?, Proc. Adv. Neural Inf. Sys-
tem (T. Leen, T. Dietterich, and V. Tresp, eds), Vol. 13, pp. 75–81, The MIT Press (2001).

28. T. Poggio, On optimal nonlinear associative recall, Biol. Cybernetics, 19, 201–209 (1975).

29. S. Haykin, Neural networks: A comprehensive foundation, Pearson Education (2003).

30. A. J. Inzenman, J. R. Wolf, and H. A. Wolfer, An historical note on the Zurich sunspot relative numbers, J.
R. Stat. Soc., A, 146, 311–318 (1983).

