J. Indian Inst. Scj.Sept.—Oct. 200686, 465—-479
© Indian Institute of Science.

A novel multiplicative neural network architecture motivated
by spiking neuron model

DEEPAK MISHRA, ABHISHEK Y ADAV AND PREM K. KALRA
Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpud Z&8ndia
email: dkmishra@tk.ac.in.

Received on August 12005; Revised on September 6, 2006.

Abstract

In this paper, learning algorithm for a multiplicative neural network motivated by spiking neuron model (MSN) is
proposed and tested for various applications where a multilayer perceptron (MLP) neural network is convention-
ally used. It is observed that the inclusion of a few more biological phenomena in the formulation of artificial
neural network models make them more prevailing. Several benchmark and real-life problems of classification
and function-approximation are illustrated.
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1. Introduction

Researchers have proposed several neuron models for artificial neural networks. Although
these models are primarily inspired from biological neuron, there is still a gap between phi-
losophies used in neuron models for neuroscience studies and those used for artificial neu-
ral networks (ANN). Some of these models exhibit a close correspondence with their
biological counterparts while others do not. Freeman [1] has pointed out that while brains
and neural networks share certain structural features, such as massive parallelism, biologi-
cal networks solve complex problems easily and creatively, but existing neural networks do
not. He discussed the issues related to the similarities and dissimilarities between biological
and artificial neural systems of the present day. The main focus in the development of a
neuron model for artificial neural networks is not only its ability to represent biological ac-
tivities with its maximum intricacy, but also some mathematical properties, e.g. its capabi-
lity as a universal function approximator. However, it can be advantageous for artificial
neural networks if we can bridge the gap between biology and mathematics by investigating
the learning capabilities of biological neuron models for the applications of classification,
time-series prediction, function approximation, etc.

The first artificial neuron model was proposed by McCulloch and Pitts [2] in 1943. They
developed this model based on the fact that the output of neuron is 1 if the weighted sum of
its inputs is greater than a threshold value, and 0, otherwise. In 1949, Hebb [3] proposed a
learning rule that became initiative fANNs. He postlated that the brain learns by chang-
ing its connectivity patterns. Widrow anaffi[4] in 1960 presented the most analyzed and
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most applied learning rule known as least mean square rule. Later in 1985, Widrow and
Sterns [5] found that this rule converges in the mean square to the solution that corresponds
to least mean square output error if all input patterns are of the same length. A single neu-
ron of the above and many other neuron types proposed by several scientists and research-
ers are capable of linear classification [6]. Yadasl.[7] incorporated various aggration
functions to model the nonlinear input—output relationships. In 2004, M&hala[8] in-
vestigated the chaotic behavior in neural networks that represent biological activities in
terms of firing rate. Schollest al.[9] discussed biologically inspired artificial neurons and

Feng and Li [10] introduced neuronal models with current inputs. Training the integrate-
and-fire model with the Informax principle was discussed by Feng’s groups [11, 12].

Recently, spiking neural networks have been the subject of significant research reflecting
the view that spikes have a key role in biological information processing [13, 14]. New ad-
vances in neurophysiology have found that the difference in firing times could convey in-
formation about the input stimuli and that the relative order of firing times could be used as
an alternative to rate coding [15, 16]. The first supervised training for this new computa-
tional paradigm was suggested by Boétal [17]. However, in this model, a large number
of parameters are to be adjusted. In our experiments, we found that the performance of this
network is very much dependent on the initial values of these parameters. Kalra and col-
leagues [18, 19] used a single neuron for classification and function approximation. This
model is inspired from th#l characteristics of integrate-and-fire neuron model. His group
also presents a comparison between the performances of multilayer perceptron and single
multiplicative spiking neuron-based artificial neuron [20]. It has been found that for many
benchmark problems a single multiplicative spiking neuron and single integrate-and-fire
type neuron model-based learning is sufficient.

To solve difficult problems, a neural network model for function approximation and clas-
sification is proposed and discussed in the present work. The functioning of the proposed
model is motivated by the activity of spiking neuron model. The proposed model considers
a modified aggregation methodology at network units. This modification accounts for
nonlinear aggregation operation at dendrites. Moreover, probability of spike is used as an
output instead of time of spike. We found that with such modifications, the learning per-
formance is drastically improved. These modifications provide an opportunity to add more
biological features in forming an artificial neural network for solving problems like func-
tion approximation and classification.

The rest of the paper is organised as follows. In Section 2, a brief discussion of the spik-
ing neuron model is presented. Inspired from the relationship between timings of incoming
spikes and dynamics of internal state variables, a learning algorithm is proposed in Section
3. The comparison of the proposed model with classical multilayer perceptron (MLP) is
discussed in Section 4. In Section 5, we conclude our work with a brief discussion.

2. Biological neurons
2.1. Architecture of a biological neuron

Networks of biological neurons compute with the help of fast traveling pulses called action
potentials. A neuron is the fundamental building block of biological neural networks. A
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typical neuron has three major parts: soma, axon, and dendrites. Dendrites form a dendritic
tree which is a very fine bush of thin fibers around the neuron’s body. Dendrites receive in-
formation from neurons through axons. An axon is a long cylindrical connection that carries
impulses from the neuron. The end part of an axon splits into a fine arborization which ter-
minates in a small end-bulb almost touching the dendrites of neighboring neurons. The
axon-dendrite contact organ is called synapse. Details of the biological neuron can be found
in Koch [21], and Tuckwell [22]. Modeling such a complex system is difficult task and the
model often has to be drastically simplified in order to make both the computation and
analysis somewhat tractable. In the following subsection, we will discuss the functioning of
spiking neuron modd¢hat mimics the biological activities of single neuron.

2.2.Spiking neuron model

A spiking neuron is represented by voltage across its cell membrane and a threshold [15].
The status of a neuron is determined by integration of its excitatory and inhibitory post-
synaptic potentialsHSP). When its membrane potiah reaches a certain threshold, the
neuron generates a spike which is propagated to other neurons. The synapse is responsible
for transforming the spike into a PSP. Typical shape of a PSP is shown in Fig. 1. A spike
takes certain time, called synaptic delay, to reach the post-synaptic neuron. We assume that
a neuron has number of immediate predessors called presynaptic neurons and receives a
set of spikes with firing timefs, i = 1, 2, ...n. At most one spike is generated by each neu-

ron during the simulation interval (the presentation of an input pattern), and fires when in-
ternal state variable reaches a threshold. Dynamics of the internal state ve(tialde
determined by the impinging spikes, whose impact is described by the spike-response func-
tion &(t) weighted by the synaptic efficacy or weight[17].

x(t) = iws(t— t), (1)

wherew; is positive for excitatory synapse and negative for inhibitory synapse. The spike-
response functioa(t —t;), which is referred to as PSP, models how the arrival of a single
spike changes the membrane potential of the target neuron as a function of time-since-
impact. The height of PSP is mddted by synaptic weight; to obtain the effectivBSP at

the target neuron due to a spike from neurohlhe commonly used spike response function

is given in Bohteet al.[17] and can be expressed by egn (2).
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As an extension of this model, we can consider synaptic delagsociated with each
input. Moreover, time-constamtcan be considered different for different inputs. Thus,

x(t) = iws(t—t -5),

-t -g O
X(t):ZWWEé( [ )
i=1 i

(3)
Thus, the state variable at a specified time instattis
%= ((a+hp) &v) (4)
=1

where,

o
1
=

DDIj

In generalized form, eqn (4) can be represented by:

X = Y ((a+Rt) &740). 5)

n
1=1

Considering multiplicative aggregation at dendrites, as discussed in later section, egn (5)
can be written as:

Xu=[]@+B%) S5, (6)

The expanded form of this equation is

n

%ot = [1( (2 + b x) &5741)
1l
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In this work, we concentrate mainly on the timing of spikespiking neuron modeb
derive an aggregation function for the learning of a neural network. The details of the pro-
posed model are explained in the following sections.

3. The proposed learning scheme

In this section, we propose a learning scheme that will be used for the task like function ap-
proximation and classification. The formulation of the proposed scheme is inspired from the
functioning ofmultiplicative spiking neuron modehose details have been discussed in the
previous section. The proposed learning scheme is firstly formulated for doing single neu-
ron computation and further it is extended for forming the network of neurons.

Inspired from the relationship between the timings of incoming sfikesd state vari-
ablex (egns (3) and (4)) for spiking neuron model, following aggregation function is as-

sumed:
& U Osr+dx)0
et — a+ = 8
Xoe @1( hx)gxae? q (8)

wheren is the number of inputg; is analogous to the input spike tim@ndX,e: is analo-

gous to the state variabteat a specified time It is to be noted that parametersb;, ¢; and

d; have been used to represent the constant values that depens, dgow and the speci-

fied timet at which the value of the state variable is to be calculated. It is to be noted here
thatx; in egn (8) is analogous to the input spike time; therefore, it is incorporating the fun-
damental property of the spiking neuron. Besides this, it is also incorporating the threshold
variability by imposing the probabilistic firing.

In view of evidences in support of the presence of multiplicative operations in the nerv-
ous system [23], multiplication of net inputs to the activation function is considered. In-
stead of time of spike in the post-synaptic neuron, we considered the spiking prolyability
till a specified timd as outputy is a nonlinear function of,.;and should have the follow-
ing properties:

1. It is a monotonically increasing function as the probability of spike is increased for in-
creasingXnet.

2. Itis almost zero for low values ®f.; as there is negligible probability of spikeit:is
small. This is true even if threshold variability is taken into account.

3. Itis almost unity for high values ®f.: as spike is almost certain for large values,ef
This is also true even if threshold variability is taken into account.
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FIG. 2. Sketch of the proposed multiplicative neural network architecture motivated by spiking neuron model.

Assumption of constant threshold would lead to aispease of this function. In that
case, the probability of spike would either be zero or one. Incorporation of threshold vari-
ability in our model is achieved by assuming this function as the sigmoid function. The
threshold variability causes probability of spike generation between 0 and 1 and if we will
not consider the threshold variability then probability of spike generation is either 0 or 1.
Hence, to incorporate threshold variability aggregated input is passed through the sigmoid
function. This is a continuous and differentiable nonlinear function given by

y=—t . )

1+e Xnet

For single neuron computation, input—output relation is derived in egns (8), and (9). When
we consider this neuron in network like architecture (Fig. 2), the input-output expressions
are modified as eqns (10).

The MSN model is inspired from the fact that the actual shape of action potential does
not contain any neuronal information. It is the timing of spikes that matters. A substantial
body of evidence supports the presence of multiplicative-like operations in nervous system
[23]. Physiological and behavioral data strongly suggest that the optomotor response of in-
sects to moving stimuli is mediated by a correlation-like operation [21]. Another instance of a
multiplication-like operation in the nervous system is the modulatioaceptive field loation
of neurons in the posterior parietal cortex by the eye and head positions of monkey [21].

In all the conventional neural network models, simple summatioadsssary for them
to work. However, such a sum cannot distinguish among the individual contributions to it.
For the neurons to respond strongly to correlations among particular input pairs or groups,
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one must include multiplicative terms and then sum over the product. The multiplicative
operation can be used to implement second- and higher-order polynomial relations among a
set of inputs. Mel [24] and Durbin and Rumelhart [25] suggest that networks based on
sigma-pi units are more powerful and have many advantages with respect to the traditional
threshold-based networks. Koch and Poggio [23] discuss the relevance of multiplicative op-
erations, particularly in computation underlying motion perception and learning. Multipli-
cation in neurons often occurs in dendritic trees with voltage-dependent membrane
conductances [26]. Arcag al.[27] provide a linear subspace-based approach to model the
computation abilities of a neuron. Linearity is believed to be sufficient in capturing the pas-
sive properties of dendritic membrane where synaptic inputs are currents. However, synap-
tic inputs can interact nonlinearly when synapses are colocalized on patches of dendritic
membrane with specific properties. Hence, an artificial neuron model then should be capa-
ble of including this inherent nonlinearity in the mode of aggregation. Mulgitpdiz, being

the most basic of all nonlinearities, has been a natural choice of models trying to include
nonlinearity in artificial neuron model. Poggio [28] explains the relevance of using multi-
plication as a computationally powerful and biologically realistic possibility of syiathgs
high-dimensional Gaussian radial basis function [29] from low dimensionality. The role of
multiplication is explained in the computation underlying motion perception and learning in
pairs of individual synapses to a small set of neurons. The nonlinear capability of neuron is
usually modeled through a stationary nonlinearity. This however is not sufficient to capture
the possible nonlinear association among the inputs to the single neuron systems. In view of
these evidences, we incorporate multiplication operation while aggregating inputs to the ac-
tivation function.

3.1.Development of the training algorithm

The ANN motivated from the nitiplicative spiking neuron model is shown in Fig. 2. In

this network, all the inputs in each layer are aggregated according to eqn (8) to generate the
net output. This net is fed through a log sigmoid nonlinearity to create the final output in
each layer. This kind of neuron itself looks complex in the first instance but when used to
solve a complicated problem it needs reasonably less number of parameters as compared to
the existing conventional models. The gradient descent approach has been used to develop
the learning algorithm for the network. The learning rules for various weights of a feedfor-
ward (FF) network of the proposed multiplicative neuron model can be given by the follow-
ing set of equations.

3.1.1.Forward pass

In forward pass, the net summation and output at each neuron are calculated as per the
following equations

i O n(c+d
I’leth = é:l(é}l + IR ix)gggq( i M)E
h 1

i - 1+ e—netr]
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3.1.2.Backward pass

After the forward pass, the total error of the network is given by eqgn (11). A simple steepest
descent method is applied to minimize this error function.

dyi = (Y —t)

_l < 2
e=3 (dy) (11)

wheret, is target (not time) any is actual output dfth output neurone, a function of pa-
rametersy;, by, ¢, dji, Py O, Ny @NAs (i = 1, 2, ...ni,j = 1,2, ... nh,k=1, 2, ... ,no).
Therefore, the parameter update rule (weight update rule) can be expressed by egns (12)—
(15).
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The following equations show the update rule which is based on steepest descent algorithm

p;}ew = chj)Id _,7 X E
opy
qgew = q<?ld _,7 X E
a9
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ar,,
new 0 de
s =g"-n xa (14)
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ji i aaji
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bre" = b —px —
n [ n abji
C_r!ew = C_old _,7 X E
n o aCji
new — ol de
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whereni = number of inputs applied to the netwonk,= number of hidden layer neurons,
no = Number of outputs in the data sgts learning rateg;, b, Cji, d;i, Py, Ak, M S = Pa-
rameters of the proposed modiet 1, 2, ... )ni;j=1,2, ... nhy k=1, 2, ... ,no.

4. lllustrative examples

In this section, we present experimental details and comparison between the proposed
(MSN) and conventional (MLP) neural architectures. Parameters of both the networks are
randomly initialized in the range [-0.1 0.1]. The networks are simulated on a machine hav-
ing Pentium (R) 4 CPU of 3.20 GHz with 512 MB of RAM. The validation set is used for
deciding when to terminate the training. Training is continued as long as the performance
on the validation set keeps on improving. When it ceases to improve, training is stopped.
Training is also stopped as the stopping criterion was fulfilled or when a maximum of 1000
or 2000 epochs are reached. The test set performance is then computed for that state of
network which has minimum error during the training process. The results shown in this
paper are obtained after taking the average multiple runs.

4.1. Classification problems
4.1.1.Pima Indian

This UCI dataset was contributed by Sigillito. The patients in the dataset are females at
least 21 years old of Pima Indian heritage living near Phoenix, Arizona, USA. The problem
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is to predict whether a patient would test positive for diabetes given a number of physio-
logical measurements and medical test results. There are two classes, seven numerical attrib-
utes, and 532 records. Out of 532 samples, 372 samples, are used for training, 160 for
validation and 54 for testing. Performance of the proposed model with three hidden units is
compared with the conventional MLP with five hidden units. The number of hidden units is
chosen after several (around ten) runs for each case. Specified structures gave the best results.
Table | presents the comparison between MLP and MSN. It is observed that the perform-
ance of the proposed model is better than the conventional neural network model (MLP).

4.1.2.Iris data

This classic data of Anderson and Fisher pertains to a four-input, three-class classification
problem. The first four columns indicate petal and sepal widths and lengths of various Iris
flowers, and the fifth column indicates the appropriate class (Setosa, Versicolor, and Vir-
ginia). For comparison of performance with MSN and MLP in caggsoflata problemwe
considered MLP with five hidden units. This data set has total 187 samples out of which
105 samples are used for training, 45 for validation and 37 for testing purpose. It is ob-
served that the performance of MSN is better than that of MLP. MSN with less number of
parameters is capable of learning this relationship faster than an MLP. Moreover, we found
less number of misclassified points with MSN model (Table I).

4.1.3.Boston housing data

This UCI dataset gives the housing values in Boston suburbs. There are three classes, 12
numerical attributes, one binary attribute, and 506 records. Out of 506 instants, 318 are
used for training, 137 for validation, and 51 for testing purpose. The performance results for
this data for all the three classes taken together are shown in Table I. It is found that the
performance of MSN is slightly better than that of MLP.

4.1.4.Congressional voting records data

This UCI dataset gives the votes of each member of the U.S. House of Representatives of
98th congress on 16 key issues. The problem is to classify a Congressman as a Demaocrat or
a Republican based on the 16 votes. There are two classes, 16 categorical attributes with
three categories each and 435 records. Of the records, 435,274 instants are used for train-
ing, 117 for validation and 44 for testing purpose. It is found from Table | that the perform-
ance of MLP is slightly better than that of MSN.

4.1.5.Wine recognition data

The data are the results of a chemical analysis of wines grown in the same region in Italy
but derived from three different cultivars. The analysis determined the quantities of 13 con-
stituents found in each of the three types of wines. In a classification context, this is a well-
posed problem. This classic data of Forgnal., pertains to a four-input, three-class classi-
fication problem. For comparison of the performance with MSN and MLP in the case of
wine data problemwe considered MLP with 5 hidden units and MSN with 3 hidden units.
The data set contains 178 samples, of which 80 are used in training, 40 in validation and 58
for testing. It is observed from Table | that the performance of the proposed model is sig-
nificantly better on this data set.



Table |

Comparison of training and testing performance data for various examples E
S| Parameter Pima Indian problem Iris data Boston housing data Congressional voting records dat%
no. MLP MSN MLP MSN MLP MSN MSN MLP ;
1. Minimum MSE for 0.0446 0.0432 @026 0.0018 0.0141 0.0156 0.0032 0.0093 ﬂ
training data s

2. Minimum MSE for 0.0610 0.0531 @024 0.0047 0.0177 0.0155 0.0097 0.0045 o
validation data §

3. MSE for testing data 0.0541 0.0402 041 0.0018 0.0209 0.0184 0.0131 0.0184 =z
4. lterations needed 500 475 1000 1000 1000 1000 1000 1000 o
5. Correlation coefficient 0.5775 0.6693 9638 0.979 0.8594 0.9039 0.9123 0.9029 %
6. Total training time (s) 140.6 160.90 545.4531 565.7500 615.1250 679.8281 588.9844 656.7188 ~
7. Total testing time (s) 2.13 2.53 1.5000 1.6250 4.4531 2.9063 3.1719 4.8750 3
8. AIC (Akaikes -1392.0 -1661.9 -576.3466 -631.7954 2151x 100 —1.0914x 1¢°  —-1.4059x 10° —1.1791x 10° o
information criterion) E

9. Number of hidden 5 3 5 3 5 3 5 3 z
neurons 9.
Wine recognition data Electroencephalogram data Wolfer sun spot data MackeyGlass (MG) time series d&

MLP MSN MLP MSN MLP MSN MLP MSN )Z>

1. Minimum MSE for 0.0023 6.627410* 0.0033 0.0034 0.0027 0.0023 5339x 10 1.0150x 10°* %
training data Py

2. Minimum MSE for 0.0029 0.0024 0.0033 0.0034 0.0033 0.0026 760Dx 10* 1.2280x 10°* 2
validation data =

3. MSE for testing data 0.0033 7.0587.0* 0.0035 0.0044 0.0044 0.0044 0266x 10 1.4411x 10 >
4. lterations needed 1000 1000 1000 1000 1000 1000 1000 1000 o
5. Correlation coefficient 0.9692 0.9939 0.8218 0.8199 0.8846 0.8950 9953. 0.9978 Z
6. Total training time (s) 555.7813 550.4219 654.4844 706.5938 540.6250 523  654.7969 698.4063 >
7. Total testing time (s) 3.6719 2.8281 0.0313 0.0313 4.6094 2.7656 0469 0.0469 %
8. AIC (Akaikes -368.7272 -530.8070  -1.95410° -1.9645x 10° —384.0096 —407.4649  7A65x10° —2.8666x 10° o
information criterion) S

9. Number of hidden 5 3 5 3 5 3 5 3 )
neurons %
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4.2. Function approximation problems

4.2.1.Electroencephalogram (ECG) data

EEG data used here is taken from the website of ColoState University. The presence of ran-
domness and chaos [8] in this data makes it interesting for neural network-related research.
In this problem, four measuremem(s — 1),y(t — 2),y(t — 4) andy(t — 8) were used to pre-

dict y(t). Figure 3 shows the comparison between MLP and MSN in terms of deviation of
actual outputs from corresponding targets. The EEG data set contains 800 samples, of
which 350 were used for training, 150 for validation and 300 for testing. It can be seen that
the performance of MSN for training as well as testing data is identical to MLP, but the
number of hidden units needed in MLP is more than that in MSN (Table I).

4.2.2.Wolfer sun spot data

Wolfer sun spot [30] numbers are used for time-series analysis. The data set, usually attrib-
uted to Rudolf Wolf, consists of means of daily relative numbers of sunspot sightings. The
relative number for a day is given k{f + 10g), whereg is the number of sunspot groups
observedf, the total number of spots within the groups &nd scaling factor relating the
observer and telescope to a baseline. The relative numbers are then averaged to give an an-
nual figure. The averaged annual sun spot numbers used here are for 180 years (1749—
1929). Among 180 points, 70 are used for training, 30 for validation and 80 for testing the
capability of the proposed model. The performance of the proposed neuron model is com-
pared with that of MLP in Table I. Figure 4 shows the plot of target and actual output val-
ues for MLP and MSN. It is evident from the table and plot that the performance of the
proposed model is comparable to conventional neural network model.

4.2.3.MackeyGlass (MG) time-series data

The MackeyGlass (MG) time series [19] represents a model for white blood cell production
in leukemia patients and has nonlinear oscillations. The MG-delay difference equation is
given by eqn (16).
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2 Y-
1+y°(t-1)

wherea = 0.2,b = 0.1, andr = 17. The time delayis a source of complications in the na-

ture of the time series. Thejebtive of the modeling is to predict the value of the time se-

ries based on four previous values. Four measurenyénis]l),y(t — 7),y(t — 13) and(t — 19),

are used to predigi(t). The training is performed on 315 samples; validation is performed

on 135 samples and the model is tested on 500 time instants post training. Figure 5 shows

the prediction results. In Table I, the performance of the proposed neuron model with one

hidden layer having three nodes is compared with a multilayer network with one hidden

layer having five nodes. It can be seen that the performance of MSN for training as well as

testing data is much better than that of MLP. MSN is capable to learn this relationship

faster than that in the case of MLP and its performance on seen as well as unseen data is

significantly better.

y(t+1) = (1= b)y(t)+ (16)

4.2.4.BoxJenkins gas furnace data

The BoxJenkins gas furnace dataset reports the furnacedtpas the gas flow rate and
the furnace outpu(t) as the C@concentration. In this gas furnace, air and methane were

Table Il
Comparison of training and testing performance for
furnace data

BoxJenkins gas

Sl. Parameter MLP MSN

no.

1. Minimum MSE for training data 2.000410* 2.0995x 107
2.  Minimum MSE for validation data 2.6728107*% 2.2219x 10°*
3. MSE for testing data 0.0011 0.0012

4. lterations needed 1000 1000

5. Total training time (s) 540.1563 549.7188
6. Total testing time (s) 0.0156 0.0156

7. AIC (Akaikes information criterion) —-842.2168 -837.3350
8. Number of hidden neurons 3 3

9. Correlation coefficient 0.9692 0.9693




478 DEEPAK MISHRAEet al.

combined in order to obtain a mixture of gases which contained\@®model the furnace
outputy(t) as a function of the previous outpeft — 1) and input(t — 1). The training is
performed on 101 samples; validation is performed on 44 samples and the model is tested
on 145 samples. The generalization capability of the proposed model is shown in Fig. 6.
Table Il shows the comparison of training and generalization capabilities of the proposed
neuron with MLP.

5. Conclusions

This paper presents a new approach towards the conceptualization of an artificial neural
system motivated from the spiking neuron model with better learning and generalization
capabilities. Idea of the spiking neuron model is inspired from the fact that the actual shape
of action potential does not contain any neuronal information. It is the timing of spikes that
matters. The proposed model incorporates multiplicative aggregation at dendrites and
threshold variability in biological neurons. The training and testing results with different
benchmark and real-life problems are discussed. It is found that the proposed artificial neu-
ral network with comparatively less number of hidden neurons is capable of performing
classification and function approximation tasks as efficiently as a multilayer perceptron
with several hidden neurons. Moreover, in many cases, its learning is significantly better
than that of a conventional multilayer perceptron.
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