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Abstract 
 
In this paper, learning algorithm for a multiplicative neural network motivated by spiking neuron model (MSN) is 
proposed and tested for various applications where a multilayer perceptron (MLP) neural network is convention-
ally used. It is observed that the inclusion of a few more biological phenomena in the formulation of artificial 
neural network models make them more prevailing. Several benchmark and real-life problems of classification 
and function-approximation are illustrated. 
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1. Introduction 

Researchers have proposed several neuron models for artificial neural networks. Although 
these models are primarily inspired from biological neuron, there is still a gap between phi-
losophies used in neuron models for neuroscience studies and those used for artificial neu-
ral networks (ANN). Some of these models exhibit a close correspondence with their 
biological counterparts while others do not. Freeman [1] has pointed out that while brains 
and neural networks share certain structural features, such as massive parallelism, biologi-
cal networks solve complex problems easily and creatively, but existing neural networks do 
not. He discussed the issues related to the similarities and dissimilarities between biological 
and artificial neural systems of the present day. The main focus in the development of a 
neuron model for artificial neural networks is not only its ability to represent biological ac-
tivities with its maximum intricacy, but also some mathematical properties, e.g. its capabi-
lity as a universal function approximator. However, it can be advantageous for artificial 
neural networks if we can bridge the gap between biology and mathematics by investigating 
the learning capabilities of biological neuron models for the applications of classification, 
time-series prediction, function approximation, etc. 

 The first artificial neuron model was proposed by McCulloch and Pitts [2] in 1943. They 
developed this model based on the fact that the output of neuron is 1 if the weighted sum of 
its inputs is greater than a threshold value, and 0, otherwise. In 1949, Hebb [3] proposed a 
learning rule that became initiative for ANNs. He postulated that the brain learns by chang-
ing its connectivity patterns. Widrow and Hoff [4] in 1960 presented the most analyzed and 



DEEPAK MISHRA et al. 466 

most applied learning rule known as least mean square rule. Later in 1985, Widrow and 
Sterns [5] found that this rule converges in the mean square to the solution that corresponds 
to least mean square output error if all input patterns are of the same length. A single neu-
ron of the above and many other neuron types proposed by several scientists and research-
ers are capable of linear classification [6]. Yadav et al. [7] incorporated various aggregation 
functions to model the nonlinear input–output relationships. In 2004, Mishra et al. [8] in-
vestigated the chaotic behavior in neural networks that represent biological activities in 
terms of firing rate. Scholles et al. [9] discussed biologically inspired artificial neurons and 
Feng and Li [10] introduced neuronal models with current inputs. Training the integrate-
and-fire model with the Informax principle was discussed by Feng’s groups [11, 12]. 

 Recently, spiking neural networks have been the subject of significant research reflecting 
the view that spikes have a key role in biological information processing [13, 14]. New ad-
vances in neurophysiology have found that the difference in firing times could convey in-
formation about the input stimuli and that the relative order of firing times could be used as 
an alternative to rate coding [15, 16]. The first supervised training for this new computa-
tional paradigm was suggested by Bohte et al. [17]. However, in this model, a large number 
of parameters are to be adjusted. In our experiments, we found that the performance of this 
network is very much dependent on the initial values of these parameters. Kalra and col-
leagues [18, 19] used a single neuron for classification and function approximation. This 
model is inspired from the f/I characteristics of integrate-and-fire neuron model. His group 
also presents a comparison between the performances of multilayer perceptron and single 
multiplicative spiking neuron-based artificial neuron [20]. It has been found that for many 
benchmark problems a single multiplicative spiking neuron and single integrate-and-fire 
type neuron model-based learning is sufficient. 

 To solve difficult problems, a neural network model for function approximation and clas-
sification is proposed and discussed in the present work. The functioning of the proposed 
model is motivated by the activity of spiking neuron model. The proposed model considers 
a modified aggregation methodology at network units. This modification accounts for 
nonlinear aggregation operation at dendrites. Moreover, probability of spike is used as an 
output instead of time of spike. We found that with such modifications, the learning per-
formance is drastically improved. These modifications provide an opportunity to add more 
biological features in forming an artificial neural network for solving problems like func-
tion approximation and classification. 

 The rest of the paper is organised as follows. In Section 2, a brief discussion of the spik-
ing neuron model is presented. Inspired from the relationship between timings of incoming 
spikes and dynamics of internal state variables, a learning algorithm is proposed in Section 
3. The comparison of the proposed model with classical multilayer perceptron (MLP) is 
discussed in Section 4. In Section 5, we conclude our work with a brief discussion. 
 

2. Biological neurons 

2.1. Architecture of a biological neuron 

Networks of biological neurons compute with the help of fast traveling pulses called action 
potentials. A neuron is the fundamental building block of biological neural networks. A
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FIG. 1. A typical shape of the post-synaptic potentials 
(PSP). It models the changes in the membrane poten-
tial of the target neuron owing to the arrival of a single 
spike as a function of time-since-impact. 

 

typical neuron has three major parts: soma, axon, and dendrites. Dendrites form a dendritic 
tree which is a very fine bush of thin fibers around the neuron’s body. Dendrites receive in-
formation from neurons through axons. An axon is a long cylindrical connection that carries 
impulses from the neuron. The end part of an axon splits into a fine arborization which ter-
minates in a small end-bulb almost touching the dendrites of neighboring neurons. The 
axon-dendrite contact organ is called synapse. Details of the biological neuron can be found 
in Koch [21], and Tuckwell [22]. Modeling such a complex system is difficult task and the 
model often has to be drastically simplified in order to make both the computation and 
analysis somewhat tractable. In the following subsection, we will discuss the functioning of 
spiking neuron model that mimics the biological activities of single neuron. 
 

2.2. Spiking neuron model 

A spiking neuron is represented by voltage across its cell membrane and a threshold [15]. 
The status of a neuron is determined by integration of its excitatory and inhibitory post-
synaptic potentials (PSP). When its membrane potential reaches a certain threshold, the 
neuron generates a spike which is propagated to other neurons. The synapse is responsible 
for transforming the spike into a PSP. Typical shape of a PSP is shown in Fig. 1. A spike 
takes certain time, called synaptic delay, to reach the post-synaptic neuron. We assume that 
a neuron has n number of immediate predecessors called presynaptic neurons and receives a 
set of spikes with firing times ti , i  = 1, 2, … n. At most one spike is generated by each neu-
ron during the simulation interval (the presentation of an input pattern), and fires when in-
ternal state variable reaches a threshold. Dynamics of the internal state variable x(t) is 
determined by the impinging spikes, whose impact is described by the spike-response func-
tion ε(t) weighted by the synaptic efficacy or weight wi  [17]. 
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where wi  is positive for excitatory synapse and negative for inhibitory synapse. The spike-
response function ε(t – ti), which is referred to as PSP, models how the arrival of a single 
spike changes the membrane potential of the target neuron as a function of time-since-
impact. The height of PSP is modulated by synaptic weight wi  to obtain the effective PSP at 
the target neuron due to a spike from neuron-i . The commonly used spike response function 
is given in Bohte et al. [17] and can be expressed by eqn (2). 
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 As an extension of this model, we can consider synaptic delay δi , associated with each 
input. Moreover, time-constant τ can be considered different for different inputs. Thus, 
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Thus, the state variable x, at a specified time instant t0 is 
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In generalized form, eqn (4) can be represented by: 
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Considering multiplicative aggregation at dendrites, as discussed in later section, eqn (5) 
can be written as: 
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The expanded form of this equation is 
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 In this work, we concentrate mainly on the timing of spikes in spiking neuron model to 
derive an aggregation function for the learning of a neural network. The details of the pro-
posed model are explained in the following sections. 
 
3. The proposed learning scheme 

In this section, we propose a learning scheme that will be used for the task like function ap-
proximation and classification. The formulation of the proposed scheme is inspired from the 
functioning of multiplicative spiking neuron model whose details have been discussed in the 
previous section. The proposed learning scheme is firstly formulated for doing single neu-
ron computation and further it is extended for forming the network of neurons. 

 Inspired from the relationship between the timings of incoming spikes ti  and state vari-
able x (eqns (3) and (4)) for spiking neuron model, following aggregation function is as-
sumed: 
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where n is the number of inputs. xi  is analogous to the input spike time ti  and xnet is analo-
gous to the state variable x at a specified time t. It is to be noted that parameters ai , bi , ci  and 
di  have been used to represent the constant values that depend upon τi , δi , wi  and the speci-
fied time t at which the value of the state variable is to be calculated. It is to be noted here 
that xi  in eqn (8) is analogous to the input spike time; therefore, it is incorporating the fun-
damental property of the spiking neuron. Besides this, it is also incorporating the threshold 
variability by imposing the probabilistic firing. 

 In view of evidences in support of the presence of multiplicative operations in the nerv-
ous system [23], multiplication of net inputs to the activation function is considered. In-
stead of time of spike in the post-synaptic neuron, we considered the spiking probability y 
till a specified time t as output. y is a nonlinear function of xnet and should have the follow-
ing properties: 

1. It is a monotonically increasing function as the probability of spike is increased for in-
creasing xnet. 

2. It is almost zero for low values of xnet as there is negligible probability of spike if xnet is 
small. This is true even if threshold variability is taken into account. 

3. It is almost unity for high values of xnet as spike is almost certain for large values of xnet. 
This is also true even if threshold variability is taken into account. 
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FIG. 2. Sketch of the proposed multiplicative neural network architecture motivated by spiking neuron model. 

 
 Assumption of constant threshold would lead to a special case of this function. In that 
case, the probability of spike would either be zero or one. Incorporation of threshold vari-
ability in our model is achieved by assuming this function as the sigmoid function. The 
threshold variability causes probability of spike generation between 0 and 1 and if we will 
not consider the threshold variability then probability of spike generation is either 0 or 1. 
Hence, to incorporate threshold variability aggregated input is passed through the sigmoid 
function. This is a continuous and differentiable nonlinear function given by 
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For single neuron computation, input–output relation is derived in eqns (8), and (9). When 
we consider this neuron in network like architecture (Fig. 2), the input-output expressions 
are modified as eqns (10). 

 The MSN model is inspired from the fact that the actual shape of action potential does 
not contain any neuronal information. It is the timing of spikes that matters. A substantial 
body of evidence supports the presence of multiplicative-like operations in nervous system 
[23]. Physiological and behavioral data strongly suggest that the optomotor response of in-
sects to moving stimuli is mediated by a correlation-like operation [21]. Another instance of a 
multiplication-like operation in the nervous system is the modulation of receptive field location 
of neurons in the posterior parietal cortex by the eye and head positions of monkey [21]. 

 In all the conventional neural network models, simple summation is necessary for them 
to work. However, such a sum cannot distinguish among the individual contributions to it. 
For the neurons to respond strongly to correlations among particular input pairs or groups, 
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one must include multiplicative terms and then sum over the product. The multiplicative 
operation can be used to implement second- and higher-order polynomial relations among a 
set of inputs. Mel [24] and Durbin and Rumelhart [25] suggest that networks based on 
sigma-pi units are more powerful and have many advantages with respect to the traditional 
threshold-based networks. Koch and Poggio [23] discuss the relevance of multiplicative op-
erations, particularly in computation underlying motion perception and learning. Multipli-
cation in neurons often occurs in dendritic trees with voltage-dependent membrane 
conductances [26]. Arcas et al. [27] provide a linear subspace-based approach to model the 
computation abilities of a neuron. Linearity is believed to be sufficient in capturing the pas-
sive properties of dendritic membrane where synaptic inputs are currents. However, synap-
tic inputs can interact nonlinearly when synapses are colocalized on patches of dendritic 
membrane with specific properties. Hence, an artificial neuron model then should be capa-
ble of including this inherent nonlinearity in the mode of aggregation. Multiplication, being 
the most basic of all nonlinearities, has been a natural choice of models trying to include 
nonlinearity in artificial neuron model. Poggio [28] explains the relevance of using multi-
plication as a computationally powerful and biologically realistic possibility of synthesizing 
high-dimensional Gaussian radial basis function [29] from low dimensionality. The role of 
multiplication is explained in the computation underlying motion perception and learning in 
pairs of individual synapses to a small set of neurons. The nonlinear capability of neuron is 
usually modeled through a stationary nonlinearity. This however is not sufficient to capture 
the possible nonlinear association among the inputs to the single neuron systems. In view of 
these evidences, we incorporate multiplication operation while aggregating inputs to the ac-
tivation function. 
 
3.1. Development of the training algorithm 

The ANN motivated from the multiplicative spiking neuron model is shown in Fig. 2. In 
this network, all the inputs in each layer are aggregated according to eqn (8) to generate the 
net output. This net is fed through a log sigmoid nonlinearity to create the final output in 
each layer. This kind of neuron itself looks complex in the first instance but when used to 
solve a complicated problem it needs reasonably less number of parameters as compared to 
the existing conventional models. The gradient descent approach has been used to develop 
the learning algorithm for the network. The learning rules for various weights of a feedfor-
ward (FF) network of the proposed multiplicative neuron model can be given by the follow-
ing set of equations. 
 
3.1.1. Forward pass 

In forward pass, the net summation and output at each neuron are calculated as per the 
following equations 
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3.1.2. Backward pass 

After the forward pass, the total error of the network is given by eqn (11). A simple steepest 
descent method is applied to minimize this error function. 

 dyk = (yk – tk) 

 
0

2

1

1
( )

2

n

k
k

e dy
=

= ∑  (11) 

where tk is target (not time) and yk is actual output of kth output neuron, e, a function of pa-
rameters aji , bji , cji , dji , pkj, qkj, rkj, and skj (i  = 1, 2, … ni, j  = 1, 2, … , nh, k = 1, 2, … , no). 
Therefore, the parameter update rule (weight update rule) can be expressed by eqns (12)–
(15). 
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The following equations show the update rule which is based on steepest descent algorithm 
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where ni = number of inputs applied to the network, nh = number of hidden layer neurons, 
no = Number of outputs in the data set, η = learning rate, aji , bji , cji , dji , pkj, qkj, rkj, skj = Pa-
rameters of the proposed model. i  = 1, 2, … , ni; j  = 1, 2, … , nh; k = 1, 2, … , no. 
 
4. Illustrative examples 

In this section, we present experimental details and comparison between the proposed 
(MSN) and conventional (MLP) neural architectures. Parameters of both the networks are 
randomly initialized in the range [–0.1 0.1]. The networks are simulated on a machine hav-
ing Pentium (R) 4 CPU of 3.20 GHz with 512 MB of RAM. The validation set is used for 
deciding when to terminate the training. Training is continued as long as the performance 
on the validation set keeps on improving. When it ceases to improve, training is stopped. 
Training is also stopped as the stopping criterion was fulfilled or when a maximum of 1000 
or 2000 epochs are reached. The test set performance is then computed for that state of 
network which has minimum error during the training process. The results shown in this 
paper are obtained after taking the average multiple runs. 
 

4.1. Classification problems 

4.1.1. Pima Indian 

This UCI dataset was contributed by Sigillito. The patients in the dataset are females at 
least 21 years old of Pima Indian heritage living near Phoenix, Arizona, USA. The problem 
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is to predict whether a patient would test positive for diabetes given a number of physio-
logical measurements and medical test results. There are two classes, seven numerical attrib-
utes, and 532 records. Out of 532 samples, 372 samples, are used for training, 160 for 
validation and 54 for testing. Performance of the proposed model with three hidden units is 
compared with the conventional MLP with five hidden units. The number of hidden units is 
chosen after several (around ten) runs for each case. Specified structures gave the best results. 
Table I presents the comparison between MLP and MSN. It is observed that the perform-
ance of the proposed model is better than the conventional neural network model (MLP). 
 
4.1.2. Iris data 

This classic data of Anderson and Fisher pertains to a four-input, three-class classification 
problem. The first four columns indicate petal and sepal widths and lengths of various Iris 
flowers, and the fifth column indicates the appropriate class (Setosa, Versicolor, and Vir-
ginia). For comparison of performance with MSN and MLP in case of Iris data problem, we 
considered MLP with five hidden units. This data set has total 187 samples out of which 
105 samples are used for training, 45 for validation and 37 for testing purpose. It is ob-
served that the performance of MSN is better than that of MLP. MSN with less number of 
parameters is capable of learning this relationship faster than an MLP. Moreover, we found 
less number of misclassified points with MSN model (Table I).  
 
4.1.3. Boston housing data 

This UCI dataset gives the housing values in Boston suburbs. There are three classes, 12 
numerical attributes, one binary attribute, and 506 records. Out of 506 instants, 318 are 
used for training, 137 for validation, and 51 for testing purpose. The performance results for 
this data for all the three classes taken together are shown in Table I. It is found that the 
performance of MSN is slightly better than that of MLP. 
 

4.1.4. Congressional voting records data 

This UCI dataset gives the votes of each member of the U.S. House of Representatives of 
98th congress on 16 key issues. The problem is to classify a Congressman as a Democrat or 
a Republican based on the 16 votes. There are two classes, 16 categorical attributes with 
three categories each and 435 records. Of the records, 435,274 instants are used for train-
ing, 117 for validation and 44 for testing purpose. It is found from Table I that the perform-
ance of MLP is slightly better than that of MSN. 
 

4.1.5. Wine recognition data 

The data are the results of a chemical analysis of wines grown in the same region in Italy 
but derived from three different cultivars. The analysis determined the quantities of 13 con-
stituents found in each of the three types of wines. In a classification context, this is a well-
posed problem. This classic data of Forina et al., pertains to a four-input, three-class classi-
fication problem. For comparison of the performance with MSN and MLP in the case of 
wine data problem, we considered MLP with 5 hidden units and MSN with 3 hidden units. 
The data set contains 178 samples, of which 80 are used in training, 40 in validation and 58 
for testing. It is observed from Table I that the performance of the proposed model is sig-
nificantly better on this data set. 
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Table I 
Comparison of training and testing performance data for various examples 

Sl Parameter Pima Indian problem Iris data  Boston housing data Congressional voting records data 
no.  MLP MSN MLP MSN MLP MSN MSN MLP 
 

1. Minimum MSE for 0.0446 0.0432 0.0026 0.0018 0.0141 0.0156 0.0032 0.0093 
 training data 
2. Minimum MSE for 0.0610 0.0531 0.0024 0.0047 0.0177 0.0155 0.0097 0.0045 
 validation data 
3. MSE for testing data 0.0541 0.0402 0.0541 0.0018 0.0209 0.0184 0.0131 0.0184 
4. Iterations needed 500 475 1000 1000 1000 1000 1000 1000 
5. Correlation coefficient 0.5775 0.6693 0.9838 0.979 0.8594 0.9039 0.9123 0.9029 
6. Total training time (s) 140.6 160.90 545.4531 565.7500 615.1250 679.8281 588.9844 656.7188 
7. Total testing time (s) 2.13 2.53 1.5000 1.6250 4.4531 2.9063 3.1719 4.8750 
8. AIC (Akaikes –1392.0 –1661.9 –576.3466 –631.7954 –1.2151 × 103 –1.0914 × 103 –1.4059 × 103 –1.1791 × 103 
 information criterion) 
9. Number of hidden 5 3 5 3 5 3 5 3 
  neurons 
  Wine recognition data Electroencephalogram data Wolfer sun spot data  MackeyGlass (MG) time series data 
  MLP MSN MLP MSN MLP MSN MLP MSN 

 

1. Minimum MSE for 0.0023 6.6274 × 10–4 0.0033 0.0034 0.0027 0.0023 1.5339 × 10–4 1.0150 × 10–4 
 training data 
2. Minimum MSE for 0.0029 0.0024 0.0033 0.0034 0.0033 0.0026 1.7600 × 10–4 1.2280 × 10–4 
 validation data 
3. MSE for testing data 0.0033 7.0507 × 10–4 0.0035 0.0044 0.0044 0.0044 2.0266 × 10–4 1.4411 × 10–4 
4. Iterations needed 1000 1000 1000 1000 1000 1000 1000 1000 
5. Correlation coefficient 0.9692 0.9939 0.8218 0.8199 0.8846 0.8950 0.9953 0.9978 
6. Total training time (s) 555.7813 550.4219 654.4844 706.5938 540.6250 523 654.7969 698.4063 
7. Total testing time (s) 3.6719 2.8281 0.0313 0.0313 4.6094 2.7656 0.0469 0.0469 
8. AIC (Akaikes –368.7272 –530.8070 –1.9541 × 103 –1.9645 × 103 –384.0096 –407.4649 –2.7165 × 103 –2.8666 × 103 
 information criterion) 
9. Number of hidden 5 3 5 3 5 3 5 3 
  neurons 
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FIG. 3. Target and actual output of the proposed model 
and MLP for electroencephalogram data. 

 

FIG. 4. Target and actual output of the proposed model 
and MLP for wolfer annual sunspot data. 

 
4.2. Function approximation problems 

4.2.1. Electroencephalogram (ECG) data 

EEG data used here is taken from the website of ColoState University. The presence of ran-
domness and chaos [8] in this data makes it interesting for neural network-related research. 
In this problem, four measurements y(t – 1), y(t – 2), y(t – 4) and y(t – 8) were used to pre-
dict y(t). Figure 3 shows the comparison between MLP and MSN in terms of deviation of 
actual outputs from corresponding targets. The EEG data set contains 800 samples, of 
which 350 were used for training, 150 for validation and 300 for testing. It can be seen that 
the performance of MSN for training as well as testing data is identical to MLP, but the 
number of hidden units needed in MLP is more than that in MSN (Table I). 
 
4.2.2. Wolfer sun spot data 

Wolfer sun spot [30] numbers are used for time-series analysis. The data set, usually attrib-
uted to Rudolf Wolf, consists of means of daily relative numbers of sunspot sightings. The 
relative number for a day is given by k( f + 10g), where g is the number of sunspot groups  
observed, f, the total number of spots within the groups and k, a scaling factor relating the 
observer and telescope to a baseline. The relative numbers are then averaged to give an an-
nual figure. The averaged annual sun spot numbers used here are for 180 years (1749–
1929). Among 180 points, 70 are used for training, 30 for validation and 80 for testing the 
capability of the proposed model. The performance of the proposed neuron model is com-
pared with that of MLP in Table I. Figure 4 shows the plot of target and actual output val-
ues for MLP and MSN. It is evident from the table and plot that the performance of the 
proposed model is comparable to conventional neural network model. 
 
4.2.3. MackeyGlass (MG) time-series data 

The MackeyGlass (MG) time series [19] represents a model for white blood cell production 
in leukemia patients and has nonlinear oscillations. The MG-delay difference equation is 
given by eqn (16). 
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FIG. 5. Target and actual output of the proposed model 
and MLP for MackeyGlass (MG) time series data. 

 
FIG. 6. Target and actual output of the proposed model 
and MLP for BoxJenkins gas furnace data. 
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where a = 0.2, b = 0.1, and τ = 17. The time delay τ is a source of complications in the na-
ture of the time series. The objective of the modeling is to predict the value of the time se-
ries based on four previous values. Four measurements, y(t – 1), y(t – 7), y(t – 13) and y(t – 19), 
are used to predict y(t). The training is performed on 315 samples; validation is performed 
on 135 samples and the model is tested on 500 time instants post training. Figure 5 shows 
the prediction results. In Table I, the performance of the proposed neuron model with one 
hidden layer having three nodes is compared with a multilayer network with one hidden 
layer having five nodes. It can be seen that the performance of MSN for training as well as 
testing data is much better than that of MLP. MSN is capable to learn this relationship 
faster than that in the case of MLP and its performance on seen as well as unseen data is 
significantly better. 
 

4.2.4. BoxJenkins gas furnace data 

The BoxJenkins gas furnace dataset reports the furnace input u(t) as the gas flow rate and 
the furnace output y(t) as the CO2 concentration. In this gas furnace, air and methane were  
 
Table II 
Comparison of training and testing performance for BoxJenkins gas 
furnace data 

Sl. Parameter MLP MSN 
no. 
 

1. Minimum MSE for training data 2.0004 × 10–4 2.0995 × 10–4 
2. Minimum MSE for validation data 2.6728 × 10–4 2.2219 × 10–4 
3. MSE for testing data 0.0011 0.0012 
4. Iterations needed 1000 1000 
5. Total training time (s) 540.1563 549.7188 
6. Total testing time (s) 0.0156 0.0156 
7. AIC (Akaikes information criterion) –842.2168 –837.3350 
8. Number of hidden neurons 3 3 
9. Correlation coefficient 0.9692 0.9693 
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combined in order to obtain a mixture of gases which contained CO2. We model the furnace 
output y(t) as a function of the previous output y(t – 1) and input u(t – 1). The training is 
performed on 101 samples; validation is performed on 44 samples and the model is tested 
on 145 samples. The generalization capability of the proposed model is shown in Fig. 6. 
Table II shows the comparison of training and generalization capabilities of the proposed 
neuron with MLP. 
 
5. Conclusions 

This paper presents a new approach towards the conceptualization of an artificial neural 
system motivated from the spiking neuron model with better learning and generalization  
capabilities. Idea of the spiking neuron model is inspired from the fact that the actual shape 
of action potential does not contain any neuronal information. It is the timing of spikes that 
matters. The proposed model incorporates multiplicative aggregation at dendrites and 
threshold variability in biological neurons. The training and testing results with different 
benchmark and real-life problems are discussed. It is found that the proposed artificial neu-
ral network with comparatively less number of hidden neurons is capable of performing 
classification and function approximation tasks as efficiently as a multilayer perceptron 
with several hidden neurons. Moreover, in many cases, its learning is significantly better 
than that of a conventional multilayer perceptron. 
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