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Abstract 
 

The Wiener index of a graph G is defined to be 12 , ( )
( , ),

u V G
d u

∈∑
X

X  where d(u, X) is the distance between the ver-

tices u and X in G. In this paper, we obtain an explicit expression for the Wiener index of an odd graph. 
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1. Introduction 
 
Let G = (V, E) be a simple connected undirected graph with |V(G)| = n and |E(G)| = m. 
Given two distinct vertices u, X of G, let d(u, X) denote the distance (= the number of edges 
on a shortest path between u and X) between u and X. The Wiener index W(G) of the graph 
G is defined by 

 
, ( )

1
( ) ( , ),

2 u V G

W G d u
∈

= ∑
X

X  

where the summation extends over all possible pairs of distinct vertices u and X  in V(G). 

 Given the structure of an organic compound, the corresponding (molecular) graph is ob-
tained by replacing the atoms by vertices and covalent bonds by edges (double and triple 
bonds also correspond to single edges unless specified otherwise). The Wiener index is one 
of the oldest molecular-graph-based structure-descriptors, first proposed by the chemist 
Harold Wiener [1] as an aid to determining the boiling point of paraffins. The study of 
Wiener index is one of the current areas of research in mathematical chemistry (see, for ex-
ample, [2] and [3]). It is now recognised that there are good correlations between Wiener 
index (of molecular graphs) and the physico-chemical properties of the underlying organic 
compounds. For more details on the computation of Wiener index and its application to 
chemistry, see [4]. Two recent surveys on the topic are [5] and [6]. Our notation and termi-
nology are as in [7]. 
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 In this note, we present a simple proof (based on mathematical induction) for an expres-
sion for the Wiener index of odd graphs. It is known that odd graphs have interesting com-
binatorial properties (see e.g. [8]). First, we recall the definition of an odd graph. For a 
positive integer k ≥ 2, let X be any set of cardinality 2k – 1 and V, the collection of all (k – 1)-
subsets of X. The odd graph Ok has V as its vertex set, and two vertices of Ok are adjacent if 
and only if the corresponding (k – 1)-subsets are disjoint. It is well known that O3 is the Pe-
tersen graph. Apart from possessing interesting combinatorial properties, odd graphs have 
found applications in the design of interconnection networks for high-performance parallel 
computing systems (see [9]). 
 
2. Wiener index of Ok 

It is clear that if A and B are distinct vertices of Ok, then |A � B| = i  for some i  ∈ {0, 
1 ,…, k – 2}. 
 
Lemma 1: 

Let k ≥ 2. Fix A0 ∈ V(Ok). Then for any A ∈ V(Ok), the distance d(A0, A) = i  in Ok iff  

 |A0 � A| = 
( )

1
2

2
2

,

.

i

i

if i is odd

k if i is even

−

+




−
 

Hence diam(Ok) = k – 1. 
 
Proof. If k = 2, Ok = C3, and the result is true. So assume that k ≥ 3. We prove the result by 
induction on  d(A0, A). Now, d(A0, A) = 0 iff A = A0, and d(A0, A) = 1 iff A � A0 = φ. Hence 
the result is true for i  = 0 and i  = 1. 

 Now consider the case when d(A0, A) = 2. Then there exists A1 ∈ V (Ok) such that A0A1A 
is a path of length 2 in Ok. This means that A0 � A1 = φ = A1 � A. Hence A0 � A � X\A1, and 
so k – 1 = |A0| ≤ |A0 � A| ≤ |X\A1| = (2k – 1) – (k – 1) = k. Consequently, k – 1 ≤ |A0 � A| ≤ k. 
But A0 v A and so |A0 � A| v k – 1. Thus |A0 � A| = k and |A0 � A| = |A0| + |A| – |A0 � A| = 
(k – 1) + (k – 1) – k = k – 2. Thus d(A0, A) = 2 implies that 

 |A0 � A| = k – 2. (1) 

Conversely, assume that |A0 � A| = k – 2. Set Y = A0 � A. Then A0 = Y � {y0}, and 
A = Y � {y} for same y0, y in X\Y, y0 v y. Let B = X\(Y � {y0, y}). Then B ∈ V (Ok) and 
A � B = φ = A0 � B. Hence A0BA is a path of length 2 in Ok, and d(A0, A) ≤ 2. But 
A0 � A v φ and so A is nonadjacent to A0 in Ok. Thus d(A0, A) = 2. Therefore 

 d(A0, A) = 2 iff |A0 � A| = k – 2. (2) 

So assume that d(A0, A) = i  > 2 and that the result is true if d(A0, A) ≤ i  – 1. 

Case 1: i  odd 

There exist vertices A1, A2, …, Ai –1 of Ok such that A0A1 … Ai –1 A is a path of length i  in Ok. 
As d(A0, Ai –1) = d(A1, A) = i  – 1, by our induction assumption (as i  – 1 is even) 
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 |A0 � Ai–1| = |A1 � A| = k – 
1
.

2

i +
 (3) 

Since A1 � A0 = φ, we have by (3) 

 |A0 � A| ≤ |A| – |A � A1| = (k – 1) – 
1

2

i
k

+ −  
 = 

1
.

2

i −
 (4) 

Moreover, as d(A0, A) = i , we have d(A0, A) � {1, 3, … , i  – 2} (by induction assumption), 
we get, |A0 � A| = 1

2
.i −  

 Conversely, assume that |A0 � A| = 1
2

.i −  Set Y = A0 � A, and s = k – 1
2

.i +  Let 
A0 = Y � {a1, … , as}, and A = Y � {b1, … , bs}, where {a1, … , as} � {b1, … , bs} = φ. Fur-
ther assume that Z = X\(A0 � A). Now choose {z1, z2} ∈ Z, (since i  > 2, |Z| ≥ 2) and y ∈ Y 
and set 

 B = Z\{ z1, z2} � {a1, … , as, y}.  

Then 

 |B| = |Z| – 1 + s 
1 1

1 1.
2 2

i i
k k

+ + = − + − = −  
 

Thus B ∈ V(Ok), and |A0 � B| = s + 1 = k – ( 3) 2
2

,i − +  and |A � B| = 1. Now as i  is odd, i  – 3 is 
even, and by the induction hypothesis, d(A0, B) = i – 3. We can take A = {y, x1, …, xk–2}, 
and B = {y, y1, …, yk–2} (where no xi  is equal to any yj). Let X\(A � B) = {X, w}. If we take 
A1 = {X, y1, …, yk–2}, and A2 = {w, x1, …, xk–2}, then AA1A2B is a path of length 3 in Ok. 
Hence d(A, B) ≤ 3, and therefore, d(A0, A) ≤ d(A0, B) + d(A, B) ≤ (i  – 3) + 3 = i . By induc-
tion hypothesis, this implies that d(A0, A) = i . 
 
Case 2: i  even 

Let d(A0, A) = i . Then there exist vertices A1, …, Ai –1 of Ok such that A0A1 … Ai –1A is a path 
of length i  in Ok. As i  is even, by induction assumption, |A0 � Ai –2| = k – 

2
,i  and |A0 � Ai–1| = 

 2
2

.i −  Therefore |A0 � Ai –2| + |A0 � Ai –1| = 2
2 2

( )i ik −− +  = k – 1 = |A0|. This means, since  
Ai –1 � Ai –2 = φ, that A0 = (A0 � Ai  – 1) � (A0 � Ai  – 2). Again, as A � Ai  – 1 = φ, we have 

 A � A0 = A � [(A0 � Ai  – 1) � (A0 � Ai  – 2)] 

  = A � A0 � Ai  – 2 � A0 � Ai  – 2. (5) 

Now, A0 � A v A0 � Ai  – 2. Otherwise, by induction hypothesis, (as d(A0, Ai  – 2) = i  – 2), 
|A0 � Ai  – 2| = k – 

2
i = |A0 � A| and hence d(A0, A) = i  – 2, a contradiction. Thus 

 |A0 � A| ≤ k – 
2

.
2

i +
 (6) 

Again since d(Ai  – 2, A) = 2, |A � Ai  – 2| = k – 2. 
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Table I 
Distance d(A0, A) and corresponding |A0 � A| 

d(A0, A) 0 1 2 3 4 5 … k – 1 
|A0 � A| k – 1 0 k – 2 1 k – 3 2 … 2

2
k−    

 
Hence there exist x ∈ A and y ∈ Ai  – 2 such that 

 A � Ai  – 2 = A\{ x} = Ai  – 2\{ y}. (7) 

Now, from (7), Ai  – 2\{ y} � A, (A0 � Ai  – 2)\{ y} C A0 � A, and hence 

 |A0 � A| ≥ |A0 � Ai  – 2| – 1 = k – 1
2

i −  = k – 
2

.
2

i + 
  

 (8) 

From (6) and (8), it follows that if d(A0, A) = i , (i  even), then |A0 � A| = k – 2
2

.i +  

 Conversely, assume that 

 |A0 � A| = k – 
2

.
2

i +
 (9) 

Let Y = A0 � A, and A0 = Y � { α1, … ,αs}, and A = Y � { β1, … ,βs}, where s = i /2. 

Let Z0 = Y � { α1, β2, … βs}. Then Z0 ∈ V (Ok), |A0 � Z0| = k – 
2
,i and |A � Z0| = k – 2. 

By assumption, these imply that 

 d(A0, Z0) = i  – 2, and d(Z0, A) = 2. 

Hence d(A0, A) ≤ i . But by (9) and by induction assumption, we have d(A0, A) ≥ i . Thus 
d(A0, A) = i. � 
 
Table I which has been constructed using Lemma 1 gives the possible values for d(A0, A) 
for a fixed vertex A0 of Ok and the corresponding numbers |A0 � A|. 
 
Remark 1: 

Table I shows that the diameter of the odd graph Ok is k – 1. Indeed, if V(Ok) = {X0, … , X2k–2}, 
one diametral path is given by A0A1 … Ak–1, where 

 Ai  = {Xj: 2
i  ≤ j  ≤ 

2
i  + k – 2 if i  is even, and 

 k + 1
2

i −  ≤ j  ≤ 2k + 1
2

i −  – 2 if i  is odd, ( j  taken modulo 2k – 1)}. 

Remark 2: 

Fix A0 ∈ V(Ok). Let 0 ≤ j  ≤ k – 2. Then the number of vertices B of Ok such that |A0 � B| = j  
is equal to 

 

2
1 1 1

.
11 1

k k k k kk

jj k j j j j

− − −        
        = =        +− − +        
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Remark 3: 

From Table I, it is clear that if |A0 � A| = j  ≤  2
2

k− , then d(A0, A) = (2j  + 1), and if 
|A0 � A| = j  ≥  2

2
k−  + 1, then d(A0, A) = 2(k – 1 – j). 

 These remarks enable us to compute the Wiener index W(Ok) of the odd graph Ok. 
 
Theorem 1: 

 

2
2

2
2

2 2
2

0 1

2 1 1 11 (2 1) 2( 1 )
( ) .

2 (1 ) (1 )1

k

k

k

k
j j

k k kj k k j k
W O

j jk j j

−

−

  − 

=  = + 

 − − −     + − −      = +      + +−      
∑ ∑  

Proof. By Remarks (2) and (3), the sum of the distances from a fixed vertex A0 to all the 
vertices of Ok is 

 

2
2

2
2

2 2
2

0 1

1 1(2 1) 2( 1 )
.

(1 ) (1 )

k

k

k

j j

k kj k k j k
D

j jj j

−

−

  − 

=  = +  

− −   + − −   = +   + +   
∑ ∑  (10) 

As the expression in (10) is independent of the vertex A0, we get 

 
2 11

( ) .
2 1

k

k
W O D

k

− 
 =  − 

 � 

Remark 4: 

Taking k = 3 and 4, we get W(O3 = Petersen graph) = 75, and W(O4) = 1435. 
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