
SIMILARITY AND TYPICALITY OF TAXA* 

Discovering a structure a m o ~ ~ g  a sel of items ~J'irformation (or .subjects) is of 
primary importance in evevy branch of science. This survey m t i c b  outliner the 
principles and practice o f  numericai mxonomy, the sciemr of grouping o f  items of 
infomation on the baas o f  tfzeir attributes. The ~ d e  o f  digital computer in estab- 
lishkrg the resembiarzce or similovity nmong the itcnzs fioin a quantiiirtive &scription 
of rheir attributes, ns well as idewtfi~ing iypicul nwmbers is cicsmbed Importunt 
application areas are mentioned and a relevwit bibliography is prol-ided. 

Keywords: Numerical Taxonomy; Description space; Nominal-ordinal-interval-ratio 
scales; Taxon; Similarity; Resemblance; Correlation; Distance measure; Typicality; k-means; 
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One of the niost primitive and common activities or man conskls 
of sorting (like) things into categories or trying to discover a structure among 
the items of information presented to him. The persons, objects, events 
or other items of information encountered over a small period of time 
are too numerous for menial processing as ~lnique entities. Therefore 
each stimulus is described primarily in terns of category membership. 
Ideally one strives to find the minimu~n number of choices that would 
identify the given item unambiguously a11d uniquely. Accordingly, in any 
situation one tries atmost to enumerate a set of possible characteristics of 
objects 01 items of which any adequate ss~~bselection constitute the spci- 
fied object. In practice, however, some of these characteristics mdy only 
partially participate and accordingly while trying to assign the category 
membership the following three situations arise : 

I. The category membership is very wefl defined by a set of attri- 
butes. 
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2. The category Structure is not well known, it varies from nearly 
complete description oC categories to knowing merely the nunher of 
categories. 

3. Little or nothing is known about thc category structure. All 
that is available is a collection of observations whose category rnember- 
ships are unknown. 

When the category membership is well-dehed, we call the process of 
allocation or assignment of additional unidentified objects to the correct 
class; as identificaiion (some people call this as classification; this is not 
a correct usage). 

When the category structure is not loo well-known the problem is 
one of discrimination. 

When the category structnre is coniplele!y unknown the operational 
objective is to discover a category structure wwkich fits the observation. 
The problem is then to find the 'natural groups ' in such a way that the 
degree of 'natural awociation ' is high among the members of the bame 
group and low among members of different groups. Most of the problems 
we face in genetics, ecology, agricullure, biology and other sciences belong 
to situation 3. (We call this as classification into groups.) (Of course 
complications arise even in the case of situations 1 and 2 due to imperfect 
class definitions, overlapping categories and randorn variations in obser- 
vations). The essence of Cluster analysis, Factor analysis, Principal compo- 
nent analysis and olher topics of Multivariate statistical analysis is to 
assign meanings to natural groups and natural association. In our dis- 
cussion we will only be concerned with situation 3. 

In numerical taxonomy each item of information is called a taxolmc 
unit and the categories as taxa. Numerical taxonomy? is the science of 
grouping of taxonomic units on the basis of their attributes. These methods 
require the conversion of information about taxonomic entities into numerical 
quantities and the application of nmerical/stalistical computational tech- 
niques for grouping them. 

In practice, the analysis is carried out in the following sequence : 

Step 1.-Organisms and characters (called data units) are chosen 
and recorded. 

t This term was coined by biologists. In informat~on retrieval, it is called 'dumping'. 
In geography it is called ' regionalization '. Anthropologists call it ' seriatim '. Botanists1 
Ecologists call it as Ltypology '.   ow eyer, in all cases, the methodology remains essentially 
the same. 



Step 2.-The resemblances between every pair of orgarlisms are 
evaluated by using appropriately defined similarity (by using angular 
measures) or dissimilarity (by using distance measures) coefficients. 

Step 3.-'Natural gror~ps ' based on these resemblances are formed 
by u2ng clustering algorithms. 
All these three steps demand enormous attention and with each step is 
associated a number of problems. 

I. Choice of Data Units 

While choosing the data units two different situations arise: 

1. The sample is the complete object of analysis. The purpose is to 
discover a classification scheme for the given set of data units. It is not 
intended that the results should be applied to any additional data units 
outside the sample. In such a case the principal consideration is to 
make sure that no important data units are omitted. 

2. The sample is a porbon of a much larger population whch is the 
true object of interest. We can then apply the principles of radom * and 
independent selection. 

The data units must now be consistently described in terms of their 
characteristics, attributes, class membership, etc. Collectively these 
descriptors are the variables of the problem. 

These characteristicse* may be morphological, physiological, ethnologica 
distributional, etc. One should guard against introducing bias Into the 
cho~ce of characteristics. For instance 

1. Meaningless characters should be eliminated; which are not 
really attributes, e.g., the number of leaves in a tree. 

* Randonxation means all data units are equally likely as far as selection of a sample is 
concerned (unbiased). Under randor selection any groups that exist in the data will tend to 
be represented m the sample in proportion to their relative size in population. The size of the 
sample must be chosen so that small or rare groups are no* lost. Independerce means +he 
choice of each data unit is not influenced by the choice of any other. But if selection of some 
data units promoteq the candidacy of othem, the effect should be exploited for the evidence of 
association ratter than neutralized m deference to independence. 

** Usually the number ofcharacteristics that are choren are arouod 60 so as to be easily 
handled by a computer. 
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2. Logically correlated characters should be eliminated. Any 
redundant property that is a logical coilsequence should be avoided. 

3. Partially logically correlated characters should be carefully tacMed 
(see next section). 

4. Invariant characteristics are to be eliminated. 

5. Empirically correlated characters should be eliminated. 

II. Description o f  Obects, Description Space and Representation o f  Data 

Thus we conceptually visualize every object by making representation 
or symbolism (e.g., thc name is a symbol). By a represenlation i t  is meant 
any structure whethcr abstract or concrete of which the features purport 
to symbolize or correspond in some sense with the given set of objects. 

Using these wc try lo study the resemblance or distinguish the objects. 
An object can then have associated with it a descriptwe statementwhich 
locales it as a point in the n-dimensionaldescription space B. All the 
dimensions that we can distinguish present in 8 and discriminations along 
any one dimension are assumed to be as h e  as can be made. Normally 
these discriminations along any one dimension are called scores. While 
forming these scores we usually use different scales of measurement. 

1. A nominal scale merely distinguishes between objects or classes. 
That is, with respect to A and B one can only say 

e.g., A = crow, B =coal, C = Rose 

x =Black (Property) 

2. An ordinal scale induces an ordering of the objects. In addjtioa 
to distinguishing between xA = x B  and x,# x, the case of inequality is 
further refined to distinghish 

namely the comparative degree. 

e.g., Coal fs darker than crow. 

3. An interval scale assigns a meaningul measure of the difference 
between the two objects. 



One may say not only XA > X B  but a h  ( X A  - X B )  units of difference. 
e.g., density or grey levels. 
4. A ratio scale is an interval scale with a meaninful zero point. 

If xA > X B  then one may say that A is xA/xB times superior to B. 
e.g., Specific gravlty. 

These scale definitions are ordered hierarchically from nominal up to 
ratio scale. Each scale embodies all the properties of all the scales below 
in ordering. Therefore, by giving up information one may reduce a scale 
to any lower order scale. Frequently variables on nominal and ordinal 
scales are referred to as (categorical) qualitative variables often with 
ambiguity as to whether any order relation exists. For contrast, variables 
on interval or ratio scales are referred to as quantitative variables. 

The n quantitative characteristics or attributes of t specimens are 
tabulated as an n x t data matrix (called score matrix) thus* 

Characters) Operational Taxonomic Unit (OTU) 
Attributes Specimens 

1 2  . . . .  t 

1 

Score X,, 

Here the t columns represeur the t individuals to be grouped on the 
basis of resemblances and whose n rows are the n unit characters. Each 
Xij (0 or 1 or multivalued) is the score of the individual j for character i. 

The standard score (zero mean and unit variance) Zii is defined thus - 
2.. 1 1 - ~ t  - X~ - 9 . zi = ,=6 X~ljlt = univariate mean of ith character 

1-1 

0- 

* By the use of principal componellts method (and extra computation) it is possible to 
construct a se, of fewer than n composite kariables which are h e a r  combmations of the original 
variables and which account for the variance of the original data. But aliother way, the axes 
representing the oliginal variables may be rotated lndlvidually to be orthogonal with each other 
and in the Process it may be found that fewer than n orthogonal axes wiU span the space. The 
principal components method helps to define such an  orthogonal set wiih maximum variance 
properties. (See Bibliography). TO find the principal components we have to find the eigen- 
values and eigenvectors of the sample variance-Covariance matrix. 



Similarity and Typicality of Taxa 

and - 
,Z (Xij - Fi)' 

= univariate standard deviation. 

III. Resemblance or similarity between OTU and typicality 

Estimation of resemblancet or similarity is the most important and 
fundamental step in numerical taxonomy. 

For visualizing the idea of degree of similarity consider the illustration 
in Fig. 1. Imagine the smaller form inflated by an internal pressure 

FIG. 1 

(growth, in effect) so that the difference in volume between the two forms 
is reduced. The growth pattern may be of any kind, and the two forms 
become identical when the set of marked points coincide. 

Formally, for describing this, we can set up an n-dimensional set of 
Cartesian coordinates in which the axes are the directions of displacement 
of the marked points. Each of the two forms can then be located within 
the framework of reference by noting the amount of the displacementt of 
each marked point along its axis of variation. In order to measure their 

j- The association of pairs of characters (rows) can be examined over all OTU (columns). 
This is called R-technique. The converse, namely, the association of pairs of OTU's (columns) 
over all characters (rows) is called the Q-technique. Main emphasis in numerical taxonomy is 
the Q-technique. The main mathematical steps are formally the same and an R-study can be 
made by transposing the data matrix so that the characters (rows) become the individuals 
comparable to the former OTU's and the actual OTU's or taxa (columns) become the attributes 
o w  which the association is computed. 



similarity one can use the Euclidean distancc between the two forms by using 
the n-dimensional Pythagoras equatioll 

This distance (measured in this Euclidean space) will be meaningul only 
if the movement of any one of the nlarked point is independent of the move- 
ment of other points there being no corrchtion bctween the measured 
cliaracters. In general, substanlid1 correlations exist and this bias our 
measure of distance. 

To chinate  the effect of correlatcd characters, we set thc angles 
between the axes of our chart so that the cosine of the angle between any 
two axes equals the coefficient of correlation between thc charactcrs whose 
displacement tl~cy reprcsent. l o  act in this way would be very cumbersome. 
Therefore, we use a mahod by which the distances can be computed whilst 
taking into account the correlations bciwcen characters. This mcthod 
consists in inserting into thc calculation a metric tensor (the fundamental 
tensor descriptive of a space) in which the con-elations between the charac- 
ters are removed by distorting the space to a calculated extent. We now 
have 

0% = ,y gij xi xj 

where D2 is the gcneralizcd distance: between the two fonns, adjusted for 
any correlation that may exist between the nicasured characters and gi, 
is the metric tensor which repretcnts the inverse of the dispersion matrix 
(covariance or variance-covariance matrix). Xi Xj is the vector of dtfier- 
races between the characters on smaller form and those on the larger one. 

ilf gii. = 1, gti = 8 (isF j), then we go to the Pythagorean equation. 
In fact gu describes the extent to which the Riemannian hyperspace has to 
be distorted to accommodate tho interrelationship existing between the 
characters when measured in Euclidean space. 

The generalized distance has the character of a geodesic, the line of 
shortest pa& between the two forms in a curved space; it reduces to a 
straight line in Euclidean space. 

f Mahalanobis is the originator of this very important and fmdmental  concept; he11ca 
this distance measure is known as Mahalanobis distancc. 'This is widely used after the advent 
of hi&-speed computers. 
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Most of the mcasures for ~csemblance are etther based on distance or 
angular mcasurcs. rllc distance mcasure s, 111 pa~t~cular, sdt~sfy the metm 
properties.* 

The followmg lnt  givcs some of the Important distance, measures used. 
(Note that all are Q-tcchniques) 

11' 

Minkowski : d. ( j ,  k )  = [2 1 XY - Xik 1 
,=I 

Manhattan or city block metric: 

j = [  1=1 I - x i * ] ]  

n x.. -. x. / 
Canberra metric : d,.,, ( j ,  k )  = 2' -:! , 'k 

.=I Xi? 8 X i k  

Mahalanobis metric7 D2jk = S1;.k S-? Sjrc 

where S-I is the inverse of variance-covariance matrix and 6ik =vector 
diffcrcnce between meals of samples j and /c for all chan~cters. 

Among the angular measures, thc Pcarsou poduct-monlent corre- 
latiou coefficient is the one most widely used. This coeflicient computed 
between OTU j and k is 

i-l  
j k  = -  = . -  . - ;=== 

J a (xij - 2j)' E (xir - Yk) '  
<El "'-1 

. - 

* +(n,b)>O; $ (n ,a )=O 
(b (4 b) =- 6 (b, a) ( s y m e t ~ y j  

+ (a, C) (l' (a, I)  i- $ (b, C) (triangle inequality) 

I€, however, d, (a, e)< max. [d, (a, h), & (6, c)J, we call it ultmmetric. 

where 

.El 

The S-matrix is sums of square artd moss products of deviation scores matrix divided by 
the number sf objects, It is &Q called the di~persien matrix. 



where 

zij ==character state value of character i in OTU j 

kj = 1 Xg =mean of all state values for OTUj 
n ,-, 

n =number of characters sampled. 

Other measures for agreement are by the use of association coefficients; 
usually these are computed in practical problems with two state characters. 

When character states are compared over pairs of columns in a con- 
ventional data matrix the outcome can be summarized in a conventional 
2 x 2 frequency table such as 

OTUj 

In the left upper hand corner, we place the number of characters coded 1 
in both OTU, while in the right hand lower corner, we write the number 
of characters coded 0 in both. The other quadrants register the number 
of characters in which the two OTU's disagree being coded 1 for j and 0 
for k (or converse) 

n = sum of frequencies 
m = a  f d (number of matches) 
u = b + c (number of mismatches) 

Then the following coefficients can be defined: 

1. Jaccard coefficient : a/(a + u) = a/(a + b + c) 
2. Simple matching : m/(m + u) 
3. Yule coefficient : (ad - bc)/(ad + bc). 

N. Taxonomic Structure (typicality and cluster) 

Once the resemblance between any pair of taxonomic units is established 
we can form a t X E matrix R with elemats Sij denoting the siznibrity 
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coefficient. Since symmetric distance measures are usually used the 
]nat.rix R is symmetric with rii = I .  

The taxonomic structure is now to be detected using this matrix. For 
this we need to group or luster OTU hich have a high degree of ascocia- 
tion thereby partitioning the given set of t elements. 

While clustering some important problems arise: 

1. What is a cluster centre? How to define this? 

It can be viewed in two different ways, viz., as a point representing an 
actual organism or as a point representing hypothetical organism Such 
as the average man who has 0.8 wife and 2.3 children). 

The average organism or centroid %is given by the point in the des- 
cription space whose coordinates are the mean values of each character over 
the given cluster of OTU's. It is also the centre of gravity of the cluster. 

For (0, 1) data 1 another construct commonly used in microbiology is 
the hypothetical median organism. It is that organism which possesses 
the commonest state for each character (called typical). 

The most usual measure of an actual OTU is the centrotype. It is the 
OTU with the highest mean resemblance to all other OTU's of the cluster. 
It is the OTU nearest to the centroid (in Euclidean distance models; not 
necessarily in other models). 

. . ,  

$ For example, if the data matrix is - 
mO OTU 

We say OTU 4 is the typical ' one. 3 u 1 2 3 4 5 6 7  

! 0 0 0 1 1 1 1  
2 0 0 0 1 1 1 1  
3 1 1 1 1 0 0 0  
q 1 1 1 1 0 0 0  



Clustering and ClassiJication 

Ideally what we desire is to classify the objects and to take typical 
objects as reprereniatites of the whole body of the objects. This helps to 
encode the original infolmation as efficiently as possible. For example, 
when thinking of the human population, we may divide it into nations and 
bear only typical representatives of them in our mind. 

Rank Correlations and Clustering 

The formation of resemblance matrix considering 3 t (t -1) pairs 
of individuals over the n-variables is a large computational problem 
(psychologists call this as Q-technqiue). In addition, the different vari- 
ables may be measured in different units and correlations of a pair 
of individuals over n-values of non-comparable units, do not, in general 
make sense. This difficulty is not overcome even by standardizing (Reducing 
to zero mean and unit variance). For this purpose it is better to use rank 
correlation procedures. 

Here corresponding to each property the objects are ranked. The 
1 variance of a set of t-ranks in - (t2 - 1); when ties are present this result 12 

needs modification, viz., 

1 Var (x) = - [(t8 - t) - (a8 -a)] 12t 

where summation extends over all ties of extent a. 

For each pair j, k, we calculate 
* (Xj - Xk)' 

S = 'z ---- ., Var Xj 

where Xj and X r  are the values of the ranks for each i, for the pair in 
question. Note S is also a kind of distance. Given all these distances 
the clustering is done as follows: 

Pick the pair which are closest. Then add that member which in- 
creases their average distance the least; then add a fourth member which 
increases the mean distance the least; and so on until a point is reached 
at which the addition of a new member adds too much to the mean distance. 
The amount which is to be considered ' too much ' is an arbitrary figure 
If this procedure does not exhaust the set, proceed to @e nearest unused 
pairs and repeat the procedure. 
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Hierarchical Chsterirtg 

Therc arc scvcral otlm procedures in which this measure of nearness 
is defined suitably. Thcsc can be roughly classihed under two types. 

Type 1.- Mcthods which slart will1 an ahslnned number r of clusters 
and modify lhc value of r us the clustering algorill~ proceeds. 

Type 2.-Methods wl~ich t'y to find out a fixed n~uxber r of dusters 
iteratively. 

The fornlcr class is known as hierarchical and is dvided into : 

(i) Agglonvxative hierarchical clusl.ering where r decreases as the 
proccdure continues. 

(ii) Divisrvc biernrchical clustermg wherc r increases as the procedure 
continues. 

Usually type 2 methods are more widely used. For this purpose 
some critcrion function 1s to be minimized. 

Criterion Function 

Suppose we have a set x of t samples x, . . . xt and it is desired to find 
the disjoint clusters X, . . . X,  in such a way as to minimize a criterion func- 
tion. Let Xk have n?k samples so that 

(i) Mean value of kth cluster 

( 1 1 )  D~speraion rnattlx of kth cluster 

(ill) Mean vector of ilie entire data 



(iv) Scatter matrix for X 

(v) Within cluster scatter matrix 

(vi) Between cluster scatter matrix 

ST, SW and SB obey the identity 

ST =SW + SB 

(vii) Minimum variance criterion with Euclidean distance measure 

This is a measure of the deviation of the sample in cluster Xk from its 
centre pk. D attains minimum when pk is the centre of Xk. This criterion 
is most suited to data sets with widely separated, compact, ellipsoidal 
clusters. 

For multivariate normal distribution, it is preferable to use the Maha- 
lanobis distance measure with a covariance matrix corresponding to within 
cluster variance, viz., 

where SW =within cluster scattering matrix. 

In such a case, each cluster determines its own metric, viz., the Mahalwobis 
distance for the cluster. However, in using this distance we pay a higher 
cost for computation. Using this concept, a procedure known as k-means 
method hasebeen developed. 

k-means procedure 

The k-means procedure consists of simply starting with k-groups each 
of which consists of a single random point and thereafter adding each new 
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point to the group whose mean, the new point is nearest. After a point is 
added to a group the mean of that group is adjusted in order to take 
account of the new point. Thus at  each stage the k-means are in fact the 
means of the groups they represent. 

There is another important algorithm due to Ward for hierarchical 
clustering. 

Step 1.-Here we begin with t groups ( t  =number of individuals) 
each consisting of one observation. At this stage D = 0. 

Step 2.-At each stage reduce the number of groups by one through 
merger of those groups whose combination gives the least possible increase 
in D. 

Step 3.-Continue for a total of ( t  - 1) merges until there is one 
group. 

This technique tends to give minimum D partitions for each number 
of groups from t to 1. 

Graph theory also plays a very important role in developing algorithms 
for clustering (see bibliography). 

V. Concluding Remarks 

Numerical taxonomy has wide applications in various fields ranging 
from biology to earth sciences. The development of high speed computers 
with large memory has made it possible to realize many of the algorithms 
for finding the similarity and typicality of taxa with ease. The following 
are some of the typical application areas in the context of our CoUntry's 
needs : 

1. Drug design based on chemo taxonomy; classification of medicinal 
plants in terms of their chemism. 

2. Microbiology 

3. Protein taxonomy-Phylogenetic tree construction. 

4. Nosology-Classification of diseases from Symptoms. 

5. Forensic Science-Physiognomy-Hum face recognition. 
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Calendar of events: ConferenceslSylnposia at the Indian btitute of 
Science Campus 

Sl. Name of the School 
No. 

Period Sponsoring Department 
of the Institute 

1. Material Science Sympoisum on 'Phase October 1975 B.A.R.C., Bombay 
Tramsformations and Phase Equilibria' 

2, Intensive Course on Fluid Engineering 20 October to School of Automation 
2 November 1975 

3. Lecture Course on Cavitation November to Chemical Engineering 
December 1975 

4. Crystal Chemistry for College Teachers December 1975 Inorganic and Physical 
ChemistrJl 

On the basis of the information received by the Editorial Office on 15th October 1915. 
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