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Abstract 
 
In the context of mobile ad hoc networks (MANETs), we consider the problem of identifying (a) an optimal pri-
mary path which satisfies the required QoS constraints, and (b) a set of alternate paths that may be used in case a 
link or a node on the primary path fails. The alternate paths are also required to satisfy the same set of QoS con-
straints as is the case with the primary path. In the paper, we have proposed that the traffic be re-routed along a 
subpath that bypasses a segment of the primary path that contains the failed link or node. The segments are de-
termined based on (a) availability of alternate paths, so that (b) QoS constraints are met. This flexibility in identi-
fying the segments can also be used to ensure that the delay in switching traffic over to an alternate path, and the 
resulting packet loss, are bounded. This paper is focused on proving that for a given (a) source–destination pair of 
nodes in a network, and (b) any primary path between them, the nodes on the primary path can be divided into a 
collection of segments such that for each segment there exists an alternate path which completely bypasses the 
segment if and only if there exist two or more node-disjoint paths between the source and destination nodes. This 
implies that if there exists a solution consisting of a set of alternate backup paths for a given primary path then 
such a solution can always be found for any primary path. We describe an algorithm to identify (a) a primary 
path, (b) the collections of segments, and (c) the corresponding set of alternate paths, one for each segment, each 
of which satisfies specified QoS constraints, so that the delay in switching traffic over to an alternate path is 
bounded. 
 
Keywords: Ad hoc networks, path protection, segment-backup paths, QoS-routes. 
 
1. Introduction 

In a mobile ad hoc network (MANET) a routing protocol invariably results in identifying a 
route from a given source node S to a given destination node D. Such a route is optimum in 
that it satisfies a required set of QoS constraints, specified in terms of end-to-end delay, packet 
loss, jitter, etc. Such a path is referred to as the primary path. However, when the primary 
path fails, one would switch traffic over to an alternate path, if such a path has been identi-
fied. Otherwise, a new path is discovered. In single path routing schemes [1–4] a new path 
is discovered only after detecting failure of a node (or link) along the primary path. Clearly, 
the resulting switch-over delay and packet loss will be significant, and enough to render ap-
plications such as VoIP to be less meaningful if run over MANETs. If, instead, multiple 
paths are identified upfront, then a new route discovery is required only when all paths fail.
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FIG. 1. Link bypass mechanism. 

 
 
FIG. 2. Node bypass mechanism. 

 
The solutions proposed in [5–14] suggest a variety of approaches to identifying (and setting 
up) alternate paths. These include re-routing packets along a subpath that bypasses the 
failed link or node, or one that bypasses the entire path (i.e. node-disjoint path) or the re-
maining portion thereof (Figs 1–3). Routing protocols such as TORA [11] and others [5–10, 
12] (Fig. 4) call for reorganization of the identified directed-acyclic graph (DAG) rooted at 
destination D and which represents a host of alternate routes from S to D. 
 These routing protocols, as well as the one proposed in the paper, assume that if a node 
(or link) on the primary path fails then the other nodes (and links) continue to be opera-
tional. In that case the alternate path, whether based on link (or node) bypass or based on 
TORA, will continue to be available for use. This assumption can be justified on account of 
the facts that (a) the identification of the primary and alternate paths is done at the time data 
transfer is required to be carried out, and (b) a change in the network topology is isolated or 
that multiple changes in the topology are rare. These assumptions are also needed if one 
considers and insists on QoS to be guaranteed in respect of certain parameters. 
 QoS-aware ad hoc routing protocols [13, 14], on the other hand, are based on multipath 
routing that use multiple paths that are node-disjoint. This has several drawbacks. 

(1) Usually, a working path that satisfies a QoS constraints is determined first. Then, sub-
sequently, a node-disjoint path is identified as a backup path. In some cases, the work-
ing path so determined may be routed through the network in a manner such that it 
“blocks” all node-disjoint paths in the network. In Fig. 5, for example, there exist two 
node-disjoint paths B1 = 〈S, B, D〉 and B2 = 〈S, C, D〉 from source S to destination D. 
However, if the working path selected is P = 〈S, B, C, D〉, then clearly there is no path 
which is node-disjoint with the working path. 

 

 
 
FIG. 3. Remaining-links bypass strategy (source cour-
tesy [10]). 

 
 
FIG. 4. A new DAG shown in Fig. (b) is formed by re-
versing links (shown in bold) if link (4, D) in a net-
work shown in Fig. (a) fails. 
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FIG. 5. Delay over each link. No end-to-end backup 
path, if working path is 〈S, B, C, D〉. 

 
(2) The switch-over delay can be as high as the delay of the working path from the source 

to the destination. This happens when the last link fails. 

 The existing algorithms or protocols do not explicitly require that the alternate routes so 
identified also satisfy the same set of QoS constraints that are satisfied by the primary path. 
One is, therefore, tempted to re-visit the algorithms and ensure that the resulting alternate 
routes also satisfy the QoS constraints. However, the more fundamental concern has to do 
with the conditions under which such alternate paths exist. In particular, it is unclear as to 
“for a given primary path, what is sufficient to guarantee that there will exist a complete set 
of paths that bypass nodes along the primary path”. Or, “for a given primary path, what is 
sufficient to guarantee that a node-disjoint path exists”.  

 It is also unclear whether these sufficient conditions are necessary as well. The answer to 
one of these questions is clear. Even if there exist two node-disjoint paths between a given 
pair of source and destination nodes, for the particular selected primary path P, there may 
not exist a path that is node-disjoint to P (see Fig. 5, where P = 〈S, B, C, D〉). The difficulty 
is that the primary path is invariably identified first based on certain QoS preferences, and it 
is only later that one searches for an alternate node-disjoint path. In the context of 
MANETs, we have proposed that the traffic be re-routed along a subpath that bypasses a 
segment (or a portion) of the primary path that contains the failed link or node. The identi-
fication of the segments (and their size) is not fixed a priori but will be determined based on 
(a) the availability of alternate paths, so that (b) QoS constraints are met. This has several im-
plications, the most significant of which has to do with the availability of alternate paths. 

 In Section 2, we formally define the notion of segment-backup paths. Section 3 shows the 
existence of a complete set of segment-backup paths and its one-to-one correspondence 
with a pair of node-disjoint paths. In Section 4, we argue that the proposed scheme based on 
segment-backup paths is capable of addressing QoS constraints in a comprehensive manner. 
Algorithm to compute these segment-backup paths is given in Section 5. Concluding re-
marks are made in Section 6. 
 
2. Segment-backup paths 

The notion of segments has simultaneously been introduced in MPLS [15] and wireline [16] 
networks wherein the network topology is known a priori. In MANETs, on the other hand, 
the network topology is not known a priori but using a suitable ad hoc routing protocol can 
significantly be determined by discovering a large number of loop-free paths between a 
given source and destination. In this section, we introduce the notion of a complete set of 
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FIG. 6. A segment-backup path π1 (shown bold) is 
used when either node 2 or 3 fails. 

 
segment-backup paths which may also be applied suitably in the context of MANETs. A 
complete set of segment-backup paths protects against failure of one or more nodes/links in 
a segment of the primary path. A segment, in turn, consists of one or more contiguous 
nodes and associated links. 

 Consider, for example, a portion of the MANET given in Fig. 6. There, we assume that 
the primary path from source S to destination D is given by π0 = 〈S, 2, 3, … , 8, D〉. We 
view the primary path as made up of, for instance, three segments, viz. 〈2, 3〉, 〈4, 5, 6〉, and 
{7, 8}. If a node in a given segment fails, we consider this to mean that the corresponding 
segment has failed. (We assume that the source node S and the destination node D never 
fail. This is reasonable since if S or D fails then there is no way that communication from S 
to D can be maintained.) 

 In Fig. 6, we have also shown several other subpaths, one of which is 〈S, A, B, 4〉. This 
subpath together with 〈4, 5, 6, 7, 8, D〉 may be used to route packet from S to D in case a 
node in segment {2, 3} fails (or any of the associated links (S, 2) and (2, 3) fails). Such a 
subpath 〈S, A, B, 4〉 is referred to as a bridge, and the resulting alternative path π1 = 〈S, A, 
B, 4, 5, 6, 7, 8, D〉 is called a segment-backup path. Clearly, and similarly, if node 4, 5, or 6 
in the next segment {4, 5, 6} fails then the segment-backup path π2 = 〈S, 2, 3, C, E, 7, 8, D〉 
may be used. Similarly, the segment backup path π3 = 〈S, 2, 3, 4, 5, 6, F, D〉 is used in case 
node 7 or 8 fails. The collection of the three segment-backup paths is called complete set of 
segment-backup paths. 
 
2.1. Formal definitions 

For a given network, let G = (N, L), where N = {1, 2, … , n} is the set of nodes, and 
L = {〈i, j〉| i ≠ j, i, j ∈ N} is the set of bidirectional links. Further, for a given source node, 
S = p1 and destination node, D = pn, let π0 = 〈p1, p2, … , pn–1, pn〉 or 〈S, p2, … , pn–1, D〉, be 
the primary path. 
 
Definition 1: For a given primary path π0 = 〈p1, p2, … , pn–1, pn〉, the collection of nodes 

 σ = {pi, pi+1, … , pj}, (1) 

where 1 < i ≤ j < n is said to be a segment provided pi, pi+1, … , pj are contiguous nodes 
along π0. Further, the ordered collection of segments 

 Ω = {σ1, σ2, … , σm}, m ≥ 0 (2) 

is said to be a complete set of segments on π0 provided segments σ1, σ2, … , σm are pairwise 
disjoint and for each segment 
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FIG. 7. A segment bypass P (σ) = 〈S, 2, A, B, 5, 6, D〉 
corresponding to segment σ = {3, 4}. 
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 This definition of a complete set of segments ensures that every intermediate node on the 
primary path π0 is contained in some segment. In Fig. 6, for example, m = 3 and σ1 = {2, 
3}, σ2 = {4, 5, 6}, s3 = {7, 8}. 
 
Definition 2: For a given primary path π0 = 〈p1, p2, … , pn–1, pn〉, and a segment σ = {pi, 
pi+1, … , pj}, where 1 < i ≤ j < n, a subpath 

 B(σ) = 〈x1, x2, … , xk〉 (4) 

is said to be a bridge across the segment σ, if 

 (a) x1 = pi–1, xk = pt, j + 1 ≤ t ≤ n, and 

 (b) the subpath 〈x2, x3, … , xk–1〉 and π0 have no common node(s).  
 
Definition 3: For a given primary path π0 = 〈S, p2, … , pn–1, D〉 and a bridge B(σ) = 〈x1, 
x2, … , xk〉 corresponding to a segment σ = {pi, pi+1, … , pj}, where 1 < i ≤ j < n, the path 

 P  (σ) = 〈S, p2, … , pi–2, x1, x2, … , xk, pt+1, … , D〉, (5) 

where x1 = pi–1, xk = pt, j + 1 ≤ t ≤ n is said to be a segment bypass corresponding to segment 
σ.  

 The path P (σ) may or may not be useful in transferring packets from S to D in case any 
node pk ∈ σ = {pi, pi+1, … , pj} fails. In order to understand this fully, consider the network 
given in Fig. 7, where primary path π0 = 〈S, 2, 3, 4, 5, 6, D〉, σy = {3, 4}, and P (σy) = 〈S, 2, 
A, B, 5, 6, D〉. It is tempting to suggest that if node 3 or 4 fails then node 2 will detect its 
failure or be notified of the node failure, and subsequently switch traffic over the bridge  
〈2, A, B, 5〉, resulting in all traffic going over P (σy) = 〈S, 2, A, B, 5, 6, D〉. This is perfectly 
acceptable, except that the strategy will not work in case node 6 fails. When that happens 
node 5 will detect failure of node 6 and notify node 2 which will redirect traffic over the 
bridge 〈2, A, B, 5〉. Node 5 must necessarily drop all these re-routed packets. Alternatively, 
node 5 sends another notification to node 2, but along the upstream nodes B and A. Irre-
spective of the strategy used by node 5, the segment bypass P (σy) is useful only when node 
6 is in some segment σz, where z > y, and there is a segment bypass, P (σz), that corresponds 
to σz. 

 This is equally true of a P (σk), k = 1, 2, … , z. Therefore, to ensure that segment bypass, P 
(σk), k = 1, 2, … , z, may be used to re-route traffic in case a node pi ∈ σk fails, it is neces-
sary and sufficient that every node pl on the primary path and beyond the nodes in σk is
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FIG. 8. A situation where packets are incorrectly re-
routed to a segment bypass P (σk) = 〈S, 2, A, B, C, 7, 
8, D〉 in case node 8 fails. 

 
 
FIG. 9. A situation where packets are correctly re-
routed to a segment-backup path π(σk) = 〈S, 2, A, B, C, 
7, 8, D〉 in case node 8 fails. 

 
such that pl ∈ σy, y > k. In that case a segment bypass P (σk) is referred to as a segment-
backup path, π(σk), and the collection of {πk, k = 1, 2, … , z} is referred to as a complete set 
of segment-backup paths corresponding to the complete set of segments {σk, k = 1, 2, … , z}. 

 Before stating the formal definition of a segment-backup path, it is worth re-stating that a 
segment bypass has the potential of being used as an alternate path, but only if certain other 
considerations are satisfied, the most important of which is that all nodes downstream along 
the primary path are also protected by some segment-backup path. Otherwise, the packets 
will be incorrectly re-routed along the bypass when an unprotected downstream node fails, 
as shown in Fig. 8. However, as shown in Fig. 9, if the downstream nodes are also protected 
then packets will be routed correctly along the segment-backup path corresponding to the 
segment that contains the failed node. Also note that the segment bypass corresponding to 
the last segment is by default a segment-backup path. 
 
Definition 4: For a given primary path π0 = 〈S, p2, … , pn–1, D〉, a corresponding complete 
set of segments Ω = {σ1, σ2, … , σm}, and a segment σy, 1 ≤ y ≤ m, a corresponding segment 
bypass P (σy) is a corresponding segment-backup path, 

 π(σy) = P (σy), (6) 

provided y = m or if y < m, there exists a segment-backup path π(σz), for every σz, 
y < z ≤ m.  

 For brevity, π(σy) is also written as πy. 
 
Definition 5: For a given primary path π0 = 〈p1, p2, … , pn〉, a segment σ = {pi, pi+1, … , pj} 
where 1 < i ≤ j < n, and its corresponding bridge B(σ) = 〈x1, x2, … , xk〉, the first node x1 of 
B(σ)) (where x1 = pi–1) is said to be a segment switching router (SSR) for the segment σ. 
Similarly, the last node xk of B(σ)) (where xk = pt, j + 1 ≤ t ≤ n) is said to be the segment 
merging router (SMR) of the segment σ.  

 The SSR for the segment σ has the responsibility to switch the traffic over the segment-
backup path π(σ) in case any component of the segment σ fails. Similarly, the SMR has the 
responsibility to merge the traffic coming from the source S over the remaining portion, viz. 
〈SMR, … , D〉 of the primary path π0. 

 It is important to note that while SSRs of two successive bridges B(σz) and B(σz+1) cannot 
be the same, the SMRs of these bridges may be the same. In such case, the bridge B(σz+1) is 
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FIG. 10. Even if nodes 7 or 8 are protected by π(σ2) 
and π(σ3), path π(σ3) is used to switch traffic if node 7 
or 8 fails. 

 
said to be an inner bridge of the bridge B(σz). To see the significance of inner bridges, con-
sider the network given in Fig. 10, for example. Therein the segment-backup paths are 
π(σ1) = 〈S, A, B, 4, 5, 6, 7, 8, D〉, π(σ2) = 〈S, 2, 3, C, E, F, D〉 and π(σ3) = 〈S, 2, 3, 4, 5, 6, F, 
D〉. While nodes in σ2 are protected against failure by π(σ2), nodes in σ3 may be protected 
by π(σ2) or by π(σ3). In other words, bridge B(σ3) = 〈6, F, D〉 is an inner bridge of the 
bridge B(σ2) = 〈3, C, E, F, D〉. In the proposed scheme it is implied that if a node in σ3 were 
to fail then the segment-backup path π(σ3) must be used. That is, the responsibility of de-
tecting failure and switching traffic over a bridge across σ3 should be with the closest seg-
ment switching router, viz. node 6 in the above example. This is desirable since the time to 
detect and notify failure is likely to be minimum for node 6 (as opposed to node 3). 

 In this way, the maximum switch-over delay, defined as the delay between the time of 
node or link failure and the time when SSR switches data traffic over the corresponding 
segment-backup path, can be controlled since it depends significantly upon the segment size. 

 We now define a complete set of segment-backup paths in order to ensure that an alterna-
tive path is available in case any node along the primary path, viz. pk ∈ {p2, … , pn–1}, fails. 
 
Definition 6: For a given primary path π0 = 〈S, p2, … , pn–1, D〉 and a complete set of seg-
ments Ω = {σ1, σ2, … , σm}, the set of segment-backup paths 

 0
1,2,...,

( ) { ( )},r
r m

π π σ
=

Π = ∪  (7) 

is said to be a complete set of segment-backup paths provided π(σr) is a segment-backup 
path corresponding to segment σr for all r = 1, 2, … , m.  

 Apart from improved switch-over delay (as briefly mentioned earlier), the other major 
advantages of the scheme based on segment-backup paths are: 

• A greater possibility of the existence of a complete set of segment-backup paths, and 
• The possibility of ensuring that every alternate path also meets QoS constraints. 

 These are discussed in the sections that follow. 
 
3. Existence of segment-backup paths 

The proposed methodology has the advantage that the primary path may be selected based 
on QoS considerations rather than consideration of fault tolerance alone. 

 To illustrate, consider the network given in Fig. 11, where the delay over each link is 
identified. If the shortest delay path 〈S, B, C, D〉 is identified as the primary path from S to 
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FIG. 11. No end-to-end backup path, if primary path is 
〈S, B, C, D〉. 

 
D, then there exists no alternate path that is node-disjoint with 〈S, B, C, D〉, even though 
there exist two node-disjoint paths between S and D. On the other hand, we can identify a 
complete set of segment-backup paths that protect against failure of node B or C. These are 
〈S, C, D〉 and 〈S, B, D〉. In this section, we formally argue that for any selected primary 
path, there will always exist a complete set of segment-backup paths provided there exist 
two node-disjoint paths between the given source and destination nodes. This result is for-
mally stated below as Theorem 1 (see also [16]). 
 
Theorem 1. In an undirected graph G, if ∃ two loop-free node disjoint paths Q and R from 
a given source node S to a given destination node D, then intermediate nodes on any given 
loop-free path π0 from S to D can be broken into k primary segments, Ω = 〈σ1, σ2, … , σk〉, 
k ≥ 0, such that corresponding to each σi, i = 1, … , k, ∃ a segment-backup path πi. 
 
Proof: Let Q = 〈q1, q2, … , qb〉 and R = 〈r1, r2, … , rc〉 be the given loop-free node disjoint 
paths from source S to destination D. Further, let π0 = 〈p1, p2, … , pa〉 be any loop-free path 
from S to D. Note, 

 p1 = q1 = r1 = S (source node), (8) 
and 
 pa = qb = rc = D (destination node). (9) 

We now show that ∃ a set of segments, Ω = {σ1, σ2, … , σk}, consisting of intermediate 
nodes on the path π0 and a set, π = {π1, … , πk}, of segment-backup paths, where each πi is a 
backup path for the corresponding segment σi. Since each segment-backup path πi is differ-
ent from a primary path only in respect of the bridge B(σi) (Fig. 12), we may, equivalently, 
obtain a set of bridges B(σi) in place of a set of paths, πi. 
 
Case 1: Length of π0, A(π0) = 1: Since π0 = 〈S, D〉 has no intermediate node, there is no 
segment for which a segment-backup path needs to be identified. Therefore, Ω = { }. 
 
Case 2: Length of π0, A(π0) > 1: We consider the node p2 on path π0. Since Q and R are node 
disjoint, p2 is either not on Q or not on R or both. 

 Let p2 not be on R. In that case, ∃ a subpath of R, viz. 〈r1, r2, … , rj〉 for which r1 = p1 = S 
and rj = pk (for some 3 ≤ k ≤ a and k = min{3, 4, … , a}) such that 〈r1, r2, … , rj〉 and 〈p1, 
p2, … , pk〉 are node disjoint (Fig. 13). Note, in the worst case rj = pk = D. The segment, {p2, 
p3, … , pk–1} = σ1, and B(σ1) = 〈r1, r2, … , rj〉. That is, Ω = {σ1} and B(Ω) = {B(σ1)}. 
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FIG. 12. Illustration of three bridges B1, B2 and B3 
(shown dotted) corresponding to three segments σ1 = 
{2}, σ2 = {3, 4, 5, 6} and σ3 = {7, 8, 9}, respectively. 

 
 
FIG. 13. If p2 is not on R then ∃ a subpath of R which 
starts at S and ends at node pk on primary path π0 (for 
some 3 ≤ k ≤ a and k = min{3, 4, … , a}) such that it is 
disjoint with the path 〈p1, … , pk〉. 

 
 Note the above discussion also takes care of the case where p2 is neither on Q nor on R. 
The case when p2 is not on Q can be similarly handled by interchanging the roles of Q and 
R. 

 If k = a, the sufficiency proof is complete. Otherwise, we need to identify the remainder 
of set Ω by considering the remaining subpath, 〈pk–1, pk, … , pa〉. 

 Now, consider node pk. Since Q and R are node disjoint, pk is not on Q (as pk is on R). In 
that case, ∃ a subpath of Q, viz. 〈qi, qi+1, … , qj〉 for which qi = px (for some 1 ≤ x ≤ k – 1 and 
x = max{1, 2, … , k – 1}) and qj = py (for some k + 1 ≤ y ≤ a and y = min{k + 1, k + 2, … , 
a}) such that path 〈px, px+1, … , py〉 and 〈qi, qi+1, … , qj〉 are node disjoint (Note, in the worst 
case, qi = px = S. Similarly, in the worst case, qj = py = D). As a result, σ2 = 〈px+1, … , py–1〉 
and the corresponding bridge, B(σ2) = 〈qi, qi+1, … , qj〉. Now, consider Ω = {σ1, σ2}. 
Clearly, since it may be the case that σ1 ∩ σ2 ≠ φ, we redefine  σ1 ← σ1 – σ2. If σ1 = φ then 
{Ω ← Ω – {σ1}, B(Ω) ← B(Ω) – {B(σ1)}}. Note: The operation ← is an assignment, while 
σ1 – σ2 removes all nodes in σ2 from σ1. 

 Having shown how σ2 and B(σ2) may be computed, we complete the proof using induc-
tion. We assume that at induction step m ≥ 1, Ω = {σ1, σ2, … , σm}, such that σi, i = 1, 2, … , 
m, are pairwise disjoint and |σi| ≥ 1, and B(Ω) ={B(σ1), B(σ2), … , B(σm)}. Let σm = {pn+1, 
pn+2, … , pt–1} and B(σm) = 〈pn, r2, … , pt〉. Now if pt = pa, the proof is complete. Otherwise, 
if pt is not on R, we similarly identify a subpath 〈rf, rf+1, … , rg〉 for which rf = px (for some 
1 ≤ x ≤ t – 1 and x = max{1, 2, … , t – 1}), rg = py (for some t + 1 ≤ y ≤ a and y = min{t + 1, 
t + 2, … , a}), and path 〈px, px+1, … , py〉 and 〈rf, rf+1, … , rg〉 are node disjoint. Note, in the 
worst cases, rf = px = S and rg = py = D. Then σm+1 = {px+1, … , py–1} and B(σm+1) = 〈rf, 
rf+1, … , rg〉. Let Ω ← Ω ∪ {σm+1}. Then, unless σ1, σ2, … , σm, σm+1 are pairwise disjoint, 
we re-compute 

 for all i ← 1 to m 
  {σi ← σi – σm+1, 
   if σi = φ then {Ω ← Ω – {σi}, 
          B(Ω) ← B(Ω) – {B(σi)} 
        }//end of if-then// 
 }//end of for all// 

This completes the proof of sufficient condition. » 
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The significance of this result is that one is not forced to select either of the two node-
disjoint paths to be the primary path. The primary path may be selected based on consid-
erations other than fault tolerance against node/link failure. Further, the above suggests 
that if the topology of the network is rich enough, as determined by whether or not there ex-
ists two or more node-disjoint paths between node S and D, then there will be at least one 
complete set of segment-backup paths. Hopefully there will be many more such complete 
segment-backup paths. And at least one of such complete sets will satisfy the QoS con-
straints. 

 The condition stated in Theorem 1 is more relevant in context of wireline networks [16] 
where network topology, and therefore the existence of two node-disjoint paths is known. 
On the other hand, in the context of MANETs the network topology, and therefore exis-
tence of two node-disjoint is not known a priori. 

 It is found that the converse of this result is also true. That is, for a given primary path, if 
there exists a corresponding complete set of segment-backup paths, then there exists a pair 
of node-disjoint paths between the source and destination nodes. It is more formally stated 
in Theorem 2. 

 Before stating Theorem 2, below we define a few operations and the notion of a coa-
lesced bridge. This is required to prove the theorem below. 

 Let N(p) = {x1, x2, … , xu} denote the ordered set of nodes corresponding to a path 
p = 〈x1, x2, … , xu〉. Similarly, let P(X) = 〈x1, x2, … , xu〉 denote the path corresponding to the 
ordered set X = {x1, x2, … , xu}. In other words, N(P(X)) = X, and P(N(p)) = p. Further, let 
p(xi, xj) = 〈xi, xi+1, … , xj〉 denote the subpath of p that extends from xi to xj. 

 We now define ⊕ operation which joins two loop-free paths having at least one node in 
common. 

 Let A = 〈a1, a2, … , am〉, and B = 〈b1, b2, … , bn〉 be two loop-free non-disjoint paths such 
that N(A) ∩ N(B) ≠ φ. Then A ⊕ B is defined as: 

 A ⊕ B = 〈a1, a2, … , ai, bk+1, … , bn〉, where i is such that ai = bk, 1 ≤ i ≤ m, 1 ≤ k ≤ n and 
ax ≠ by, ∀ x = 1, 2, … , i – 1, y = 1, 2, … , n. Note, path A ⊕ B is also loop-free (it is be-
cause portions of the paths of A and B in A ⊕ B are node disjoint except for ai = bk). 

 Further, let (•) operation “appends” two loop-free paths P1 = 〈a1, a2, … , am〉 and P2 = 〈am, 
am+1, … , an〉 resulting in a new loop-free path P1⋅P2 = 〈a1, a2, … , am, am+1, … , an〉 provided 
∀ i, j, i ≠ j, ai ≠ aj. 

 The notion of coalesced bridge is now defined below. 
 
Definition: Let a primary path π0 = 〈S, p2, … , pn–1, D〉 and a corresponding complete set of 
segments Ω = {σ1, σ2, … , σm}. Further, let corresponding to two segments σi and σj there 
exist two bridges, viz. Bi, and Bj such that they have at least one common intermediate node 
(note the common node is not on the primary path π0). Then a coalesced bridge of Bi and Bj 
is defined as Bij = Bi ⊕ Bj. 
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FIG. 14. An example network with three bridges, viz. 
B(σ1) = 〈S, A, B, 4〉, B(σ2) = 〈3, C, E, F, G, 7〉 and 
B(σ3) = 〈6, G, F, H, I, D〉 wherein last two bridges 
have two nodes F and G in common. 

 
 
FIG. 15. Bis of Fig. 14 are made pairwise disjoint. Fi-
nally, two Bis, viz. 〈S, A, B〉 and 〈3, C, E, F, H, I, D〉 
are obtained (shown bold). 

 
 Figure 15 shows two bridges, viz. B1 = 〈S, A, Bi〉 and B2 = 〈3, C, E, F, H, I, D〉 where 
bridge B2 is a coalesced bridge of two bridges B2 = 〈3, C, E, F, G, 7〉 and B3 = 〈6, G, F, H, I, 
D〉 shown in Fig. 14. 
 Theorem 2 and its proof is given below. 

Theorem 2. If intermediate nodes on a given loop-free path π0 from source node S to desti-
nation node D can be broken into segments, Ω = {σ1, σ2, … , σk}, for some k ≥ 1, such that 
corresponding to each σi, i = 1, … , k, ∃ a segment-backup path πi, then ∃ two loop-free 
node-disjoint paths, say, Q and R from S to D. 

Proof: Case 1: |Ω| = 1: Since there is only one segment, the segment-backup path π1 and π0 
are node disjoint. Therefore, Q = π0 and R = π1. 

Case 2: |Ω| > 1: Let π0 = 〈p1, p2, … , pa〉 be the given loop-free path from node S to node D, 
where p1 = S and pa = D. Since each segment-backup path πi differs from the primary path 
π0 in respect of a bridge B(σi) (or Bi, for short), we may, equivalently, consider the set of 
bridges, B(Ω) = {B1, … , Bk} corresponding to the set of paths π = {p1, p2, … , πk}. 

Step 1: Select minimum number of bridges 

Re-label all nodes on the path π0 such that they are numbered 1 to a, S = 1, D = a. Now use 
Algorithm 1 to obtain a minimal set of segment-backup paths. Let SMR(Bi) denote the last 
node of the bridge Bi while SSR(Bi) denote the first node of Bi. 
 

Algorithm 1: Computation of a minimal set of segment-backup paths corresponding to the 
path π0. 
 1: i ← 1 
 2: while (SMR(Bi) < D) do 
 3:  Select Bj, j > i, such that SSR(Bi) < SSR(Bj) < SMR(Bi) < SMR(Bj), and j is the maximum. 
 4:  σi = σi ∪ σi+1 ∪ … ∪σj–1 {size of σi is increased} 
 5:  Ω = Ω – {σi+1, σi+2, … , σj–1} {delete merged segments} 
 6:  B(Ω) = B(Ω) – {Bi+1, Bi+2, … , Bj–1} {delete corresponding bridges} 
 7:  Π = Π – {πi+1, πi+2, … , πj–1} {delete corresponding πis} 
 8:  i ← j 
 9: end while 
10: return, Ω, B(Ω),Π 
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 Note, now a segment-backup path of Π (whose corresponding segment size is increased) 
may or may not satisfy the required switch-over delay. However, the set Π still protects all 
nodes on π0 and, therefore, is complete. The segment-backup paths (or corresponding 
bridges) which have been deleted by Algorithm 1 are, in fact, redundant as regard to the 
construction of disjoint paths. 
 
Algorithm 2: Joining every pair of nondisjoint bridges 
 1: i ← 1 {initialize i} 
 2: while (i ≤ |B(Ω)| – 1) do 
 3:  j ← i+1 {initialize j} 
 4:  while (j ≤ |B(Ω)|) do 
 5:   if (N(Bi) ∩ N(Bj) – N(π0) ≠ φ) then 
 6:    Bi = Bi ⊕ Bj, B(Ω) = B(Ω) – {Bi+1, Bi+2, … , Bj} 
 7:    σi = σi ∪ σi+1 ∪ …σj, Ω = Ω – {σi+1, σi+2, … , σj} 
 8:    πi = π0(S,SSR(Bi))⋅Bi⋅π0(SMR(Bi), D) {Note: Bi has been updated above} 
 9:    Π = Π – {πi+1, πi+2, … , πj}. 
10:    Relabel Ω, B(Ω) and Π 
11:   end if 
12:   j ← j + 1 
13:  end while 
14:  i ← i + 1 
15: end while 
 
Step 2: Relabel the sets Ω, B(Ω) and Π 

 Let the size of the each set, viz. Ω, B(Ω) and Π be x. Clearly, x ≤ k. The sets Ω, B(Ω) and 
Π are relabeled such that they are numbered 1 to x. Now, if x = 1 then go to Case 1 above, 
else go to Step 3. 
 
Step 3: Join all pairs of non-disjoint bridges into a coalesced bridge 

Algorithm 2 joins every pair of Bi and Bj, i.e. Bi ⊕ Bj, i > j provided Bi and Bj have at least 
one common intermediate node. Finally, it provides B(Ω), a set of (possibly coalesced) 
bridges which are pairwise-disjoint. 
 
Step 4: Construct two node-disjoint paths 

At the end of the Step 3, we have, say m, pairwise disjoint Bis, viz. B1, B2, … , Bm corre-
sponding to the segments σ1, σ2, … , σm. Then, 
 
if m (number of Bis) is odd, let 
 Q = 〈S, p2〉⋅P(σ1)⋅B2⋅P(σ3)⋅B4 … P(σm)⋅〈pa–1, D〉, 
 and 
 R = B1⋅P(σ2).B3⋅P(σ4) … Bm. 
else let 
 Q = 〈S, p2〉⋅P(σ1)⋅B2⋅P(σ3)⋅B4 … Bm, 
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FIG. 16. Existence of two node disjoint backup paths 
(one shown as dotted and other as bold). 

 
and 

 R = B1⋅P(σ2)⋅B3⋅P(σ4) … P(σm)⋅〈pa–1, D〉. 

Now we claim that the paths Q and R, thus formed, are node disjoint. 

 Note, 
1. Bi is node disjoint to P(σi) (by definition of bridges), 
2. P(σi) is node disjoint to P(σj) (by definition of segments), and 
3. Bi is node disjoint to Bj (since Bis are pairwise disjoint) 

where i ≠ j, i = 1, … , m, and j = 1, … , m. 

 Since both paths Q and R have either Bi or P(σi), ∀ i = 1, 2, … , m, then from the above 
three conditions, it can be inferred that Q and R are two node disjoint paths from S to D. 
 This completes the proof of necessary condition.    » 

 Corresponding to the minimal set of coalesced bridges shown in Fig. 15, Fig. 16 shows 
the two disjoint paths. 

 The significance of Theorem 2 is that if there exists a complete set of segment-backup 
paths for a given primary path then there exists one or more complete sets of segment-
backup paths for any primary path that one chooses. This is so since Theorem 2 implies 
that there exists two node-disjoint paths between S and D, and from Theorem 1, irrespec-
tive of what the specified primary path is, there exists a complete set of segment-backup 
paths. 

 This result is more significant in the context of MANETs where network topology and, 
therefore, existence of two node disjoint paths is not known a priori. 

 The second consequence of Theorems 1 and 2 is given in Corollary 1 and Corollary 2. 

 Corollary 1: In an undirected graph G, if a given loop-free path π0 from S to D can be 
broken into segments, Ω = {σ1, σ2, … , σk}, k ≥ 0, each of which is of size one, such that 
corresponding to each σi, i = 1, … , k, ∃ a node bypass, then ∃ two loop-free node-disjoint 
paths from node S to node D. 

 The significance of this corollary is that if there exists a re-routing scheme based on  
using subpaths that bypass individual nodes on the primary path then the existence of two 
node-disjoint paths is assured. The latter in turn (from Theorem 1) implies the existence of 
a complete set of segment-backup paths for any primary path irrespective of the basis used 
to obtain the primary path. However, the converse is not true. That is, if there exists a 
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FIG. 17. A network where there 
does not exist a node bypass for 
every node on the primary path 
π0 = 〈S, A, B, C, D〉. However, a 
complete set of segment-backup 
paths exists. 

 
 
FIG. 18. A network where there 
does not exist a remaining-links by-
pass for every node on the primary 
path π0 = 〈S, A, C, E, D〉. However, 
there exists a complete set of seg-
ment-backup paths. 

 
 
FIG. 19. A network where neither a 
node bypass nor there exist a re-
maining-links bypass for every 
node on the primary path π0 = 〈S, A, 
B, C, D〉. However, a complete set 
of segment-backup paths exists. 

 
complete set of segment-backup paths then there is no guarantee that there will exist a set 
of subpaths that bypass individual nodes on the primary path. The same can also be said 
about the re-routing scheme based on ‘remaining-links bypass’ (see corollary 2 below). In 
Fig. 17, for example, a network is shown where there does not exist a set of subpaths that 
bypass individual nodes on the primary path π0 = 〈S, A, B, C, D〉. However, a complete set 
of segment-backup paths, viz. Π = {〈S, E, D〉} corresponding to π0 exists. Similarly, in net-
work (shown in Fig. 18) there does not exist a set of subpaths that bypass the remaining-
links on the primary path π0 = 〈S, A, C, E, D〉. However, a complete set of segment-backup 
paths viz., Π = {〈S, B, C, E, D〉, 〈S, A, E, D〉, 〈S, A, C, F, D〉} corresponding to π0 exists. 
Moreover, another network, shown in Fig. 19 depicts a situation where there does not exist 
a set of subpaths that bypass individual nodes or that bypass the remaining-links on the primary 
path π0 = 〈S, A, B, C, D〉. However, a complete set of segment-backup paths, viz. Π = {〈S, E, F, 
G, B, C, D〉, 〈S, A, H, I, J, D〉} corresponding to π0 still exists. It is because, in all the three 
cases, the network is such that there exists two node-disjoint paths between S and D. 
 
Corollary 2: In an undirected graph G, if a given loop-free path π0 from S to D can be bro-
ken into segments, Ω = {σ1, σ2, … , σk}, k ≥ 0, each of which is of size one, such that corre-
sponding to each σi, i = 1, … , k, ∃ remaining-links bypass then ∃ two loop-free node-
disjoint paths from node S to node D. 

 To that extent the proposed scheme based on segment bypass provides greater flexibility 
in choosing the primary path as well as the corresponding segment-backup paths. Alterna-
tively, one may view the proposed scheme based on segment bypass to be a generalization 
of the two schemes based respectively on (a) node bypass and (b) complete path bypass. 
This is so since the size of individual segment is a priori not constrained to be 1 (as in node 
bypass) or n – 2 (as in complete-path bypass). 

 Below we argue that the proposed scheme based on segment-backup paths is capable of 
addressing QoS constraints in a comprehensive manner. 
 
4. QoS-Constraints on alternate paths 

Let π0 = 〈S, p2, p3, … , pn–1, D〉 be the primary path with n – 2 intermediate nodes, viz. p2, 
p3, … , pn – 1. It is important to note that the n – 2 intermediate nodes on the path π0 can be
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FIG. 20. Improved QoS guarantees. 

 
partitioned into a complete set of segments in 2n–3 distinct ways. (The number of different 
complete sets of segments that can be formed using m = n – 2 intermediate nodes is given 
by T(m) = ∑m

k =1T(m – k); T(0) = T(1) = 1, whose solution is T(m) = 2m–1; T(0) = T(1) = 1.) 
For instance, if there are 11 intermediate nodes, we can have 1024 different complete sets 
of segments. 

 Based on the network topology, a given complete set of segments may or may not satisfy 
the following properties: 

(1) corresponding to each segment, there exists a segment-backup path, 
(2) each segment meets specified switch-over delay, and 
(3) each segment-backup path also meets specified QoS-constraints. 

 Since there are 2n–3 different ways to form the complete set of segments, there is greater 
probability of the above three constraints being met. This is not so when one is limited to 
working with schemes based on link or node bypass or complete route bypass. 

 Consider, for instance, the network given in Fig. 20, wherein we have also indicated the 
delay for each link. There are two node-disjoint paths π1 = 〈S, 2, 3, 4, 5, 6, e, f , g, h, D〉 and 
π2 = 〈S, i, j, k, l, m, n, o, 7, 8, D〉, and the corresponding delays are δ(π1) = δ(π2) = 18. If the 
stated QoS constraint on end-to-end delay is 17 then clearly both π1 and π2 do not meet the 
requirement. If, however, the primary path is chosen to be π0 = 〈S, 2, 3, 4, 5, 6, 7, 8, D〉 then 
there is no other path which is node-disjoint from this primary path, π0. However, there may 
still be ways to identify and construct a complete set of segment-backup paths. For instance, 
if σ1 = {2}, σ2 = {3, 4}, σ3 = {5, 6}, σ4 = {7} and σ5 = {8}, then one set of the correspond-
ing segment-backup paths are: 

 π(σ1) = 〈S, i, j, k, 3, 4, 5, 6, 7, 8, D〉, 
 π(σ2) = 〈S, 2, a, b, c, d, 5, 6, 7, 8, D〉, 
 π(σ3) = 〈S, 2, 3, 4, l, m, n, o, 7, 8, D〉, 
 π(σ4) = 〈S, 2, 3, 4, 5, 6, e, f, g, 8, D〉, and 
 π(σ5) = 〈S, 2, 3, 4, 5, 6, 7, f, g, h, D〉. 

 The corresponding delay for these segmented backup paths are δ(π(σ1)) = 15, δ(π(σ2)) = 
15, δ(π(σ3)) = 16, δ(π(σ4)) = 16, δ(π(σ5)) = 16. Clearly, all of these meet the required delay 
constraint. Alternatively, if we select σ1 = {2, 3}, σ2 = {4, 5, 6}, σ3 = {7}, σ4 = {8}, to-
gether with corresponding segmented backup paths π(σ1) = 〈S, i, j, k, l, 4, 5, 6, 7, 8, D〉, 
π(σ2) = 〈S, 2, 3, k, l, m, n, o, 7, 8, D〉, π(σ3) = 〈S, 2, 3, 4, 5, 6, e, f, g, 8, D〉, π(r4) = 〈S, 2, 3, 
4, 5, 6, 7, f, g, h, D〉, then the delay for these segmented backup paths is δ(π(σ1)) = 15, 
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δ(π(σ2)) = 16, δ(π(σ3)) = 16, δ(π(σ4)) = 16. These backup paths again meet the delay con-
straint. 

 An interesting and important point that needs to be made is that one can be sure that for 
any given primary path, π0, between a source S and a destination D one will be able to iden-
tify at least one set of segments and corresponding a complete set of segment-backup paths. 
This is so if and only if the network is such that there are two or more node-disjoint paths 
between S and D. As a consequence, one is free to identify and use any route as the primary 
path, and then identify a complete set of alternate paths to address fault tolerance. 
 
5. Computation of QoS-aware segment-backup paths 

In this section, we illustrate a possible centralized algorithm to compute a primary path and 
the corresponding complete set of segment-backup paths that satisfy QoS constraints. But 
before we do so we describe below (a) model of the network (particularly from the view of 
performance parameters), and (b) the formal problem for which an algorithm is sought. (See 
also [17] for a distributed version of the algorithm.) 

 We represent the network as an undirected graph G = (N, L), where N is the finite set of 
nodes and L, the finite set of links. We denote by |N| and |L| the number of network nodes 
and links, respectively. A path from a node S to D is a finite sequence of distinct nodes 
π = 〈p1, p2, … , pn〉, where p1 = S, pn = D, (pi, pi+1) ∈ L for all 1 ≤ i ≤ n – 1 (Fig. 21). Since 
the QoS constraints we consider are all related to (a) an end-to-end path π = 〈p1, p2, … , pn〉, 
and (b) the network layer performance, we have identified two points X and Y in Fig. 21. 
All parameters related to the performance over the path are, therefore, specified or meas-
ured between points X and Y. Thus, and for instance, 

• the end-to-end delay over π, 

 δ(π) = 1
1,..., 1

(( , )),i i
i n

p pδ +
= −
∑  (10) 

where δ((pi, pi+1)) is the network layer delay over the link (pi, pi+1), represents end-to-end 
delay over path π, 

• the bottleneck capacity, 

 β(π) = 11,..., 1
min { (( , ))},i ii n

p pβ +
= −

 (11) 

where β((pi, pi+1)) is the installed capacity of the link (pi, pi+1) along π, and 

• the path reliability, 

 ρ(π) = 1
1,..., 1

(( , )),i i
i n

p pρ +
= −
∏  (12) 

where ρ((pi, pi+1)) is the reliability of the link (pi, pi+1) along π. 

 Note, we have to consider different types of cumulative QoS constraints, viz. additive 
(end-to-end delay), bottleneck (bandwidth) and multiplicative (end-to-end reliability). 
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FIG. 21. End-to-end delay is the total delay occurred between X and Y. 
 
 The delay switching over from the primary path π0 to any of the segment-backup path πk, 
Δ(π0, σk), is the delay in detecting, locating a fault in corresponding segment σk and in 
switching traffic from π0 to πk. 

 In what follows, we formally describe the problem. 

 Given: 

• the source S, and the destination D, 
• a list of all possible loop-free paths P from S to D (most of the ad hoc routing protocols 

essentially discover end-to-end loop-free paths by propagating control packets from 
source S to destination D), 

• δ(pi, pj), β(pi, pj), and ρ(pi, pj) on the paths from S to D, 
• the periodicity of liveness massages τp, 
• the maximum permissible one way end-to-end delay d, 
• the minimum required bandwidth b, 
• the minimum required reliability r, and 
• the maximum permissible switch-over delay Tso,  
  discover a primary path π0 from S to D and a corresponding complete set of segment-

backup paths {πi} that satisfy the following constraints: 

 δ(π0) ≤ d, (13a) 

 β(π0) ≥ b, (13b) 

 ρ(π0) ≥ r, (13c) 

 δ(πi) ≤ d, ∀i = 1, 2, … , k, (14a) 

 β(πi) ≥ b, ∀i = 1, 2, … , k, (14b) 

 ρ(πi) ≥ r, ∀i = 1, 2, … , k, (14c) 

 Δ(π0, σi) ≤ Tso, ∀i = 1, 2, … , k (15) 

where 
d = maximum permissible one way end-to-end delay, b = minimum required bandwidth, 
r = minimum required reliability, and Tso = maximum permissible switch-over delay. 
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1. Π ← φ; Ω ← φ; 

2. Select a suitable π0 ∈ P that satisfies QoS constraints (13). If π0 = 〈S, D〉 then return {SUCCESS, 
Π, Ω} else compute n = |π0| + 1 and re-label all nodes in G such that nodes on π0 are numbered 
in increasing order 1 to n, S = 1, D = n. 

3. Corresponding to each Pi ∈ P – {π0} compute a set B of all possible bridges. 

4. Compute P wherein each Pi ∈ P is a potential segment bypass from S to D corresponding to 
each Bi ∈ B capable of protecting nodes in the segment σi = N(π0) – N(π0) ∩ N(Pi). 

5. For each Pi, compute δ(Pi), β(Pi) and ρ(Pi) (see eqs (10)–(12)). Delete Pi from P if it does not 
satisfy any one of QoS-constraints in (14). 

6. Compute a complete set of segments Ω and the corresponding complete set of segment-backup 
paths Π using Algorithm 3. If unsuccessful select another primary path π0 and repeat steps 3 
through 7. 

 
Note: |π| is the number of links over the path π. 

 
FIG. 22. An algorithm to compute a complete set of segments Ω and a corresponding complete set of segment-
backup paths Π for a given network. 
 
 
 For a given list of all possible paths P = {P1, P2, … , Pr} and the pair of source-
destination nodes, S and D, steps 1 through 6 of the procedure given in Fig. 22 help com-
pute a complete set of segments Ω and a corresponding complete set of segment-backup 
paths Π. Together, the primary path and the corresponding segment-backup paths satisfy 
QoS constraints. The notation N(p) = {x1, x2, … , xu} denote the ordered set of nodes  
corresponding to a path p = 〈x1, x2, … , xu〉. This algorithm guarantees a solution if one  
exists. 

 Consider, for example, the directed network given in Fig. 23. 
 
(1) Initialize Π = φ, and Ω = φ. 

(2) The possible paths from S to D are P = {〈1, 2, 6, 8, 12〉, 〈1, 2, 6, 9, 12〉, 〈1, 2, 7, 9, 12〉, 
〈1, 3, 7, 9, 12〉, 〈1, 3, 6, 8, 12〉, 〈1, 3, 6, 9, 12〉, 〈1, 4, 5, 8, 12〉, 〈1, 4, 6, 8, 12〉, 〈1, 4, 6, 
9,12〉, 〈1, 2, 5, 8, 12〉, 〈1, 2, 5, 10, 11, 12〉, 〈1, 4, 5, 10, 11, 12〉}. 

(3) Let the selected primary path π0 = 〈1, 2, 6, 8, 12〉. This is acceptable if π0 satisfies con-
straints (13). 

(4) The set of all bridges B over π0 is B = {〈6, 9, 12〉, 〈2, 7, 9, 12〉, 〈1, 3, 7, 9, 12〉, 〈1, 3, 6〉, 
〈1, 4, 5, 8〉, 〈1, 4, 6〉, 〈2, 5, 8〉, 〈2, 5, 10, 11, 12〉, 〈1, 4, 5, 10, 11, 12〉}. 

(5) Correspondingly, the set of segment bypasses, P = {〈1, 2, 6, 9, 12〉, 〈1, 2, 7, 9, 12〉,  
〈1, 3, 7, 9, 12〉, 〈1, 3, 6, 8, 12〉, 〈1, 4, 5, 8, 12〉, 〈1, 4, 6, 8, 12〉, 〈1, 2, 5, 8, 12〉, 〈1, 2, 5, 
10, 11, 12〉, 〈1, 4, 5, 10, 11, 12〉}. 

(6) Let each segment bypass P in P also satisfy constraints (14). 
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FIG. 23. An example network. 

 
 

FIG. 24. A complete set of segments Ω = {{2}, {6, 8}} 
and a complete set of segment bypasses Π = {〈1, 4, 6, 
8, 12〉, 〈1, 2, 7, 9, 12〉} for a network given in Fig. 23. 

 
Algorithm 3: Computation of a complete set of segments Ω, and the corresponding com-
plete set of segment-backup paths Π, from a given set of potential QoS-constrained segment 
bypasses, P, corresponding to a given primary path π0 = 〈S, 2, … , n – 1, D〉 and S = 1, 
D = n = |π0| + 1. 
1: tbp = n – 1; {tbp ≡ node to be protected} 
2: while (tbp > S) do 
3:   Select P ∈ P such that 
   SSR(P) < tbp < SMR(P), SSR(P) is the smallest, and 
   Δ(π0, σ) ≤ Tso where σ = {SSR(P) + 1, … , tbp} 
4:   if (unsuccessful) then exit; endif 
5:   Ω ← Ω ∪ {σ}; Π ← Π ∪ {P}; 
6:   for all Pi such that SSR(Pi) ≥ SSR(P), P ← P – {Pi}; {clean up} 
7:   tbp ← SSR(P); 
8: end while 
9: return {π0, Π, Ω, tbp}; {tbp = 1 ⇒ “SUCCESS”} 
 

(7) If the delay on each link is 3 ms, periodicity of liveness messages is 1 ms, and specified 
Tso = 8 ms then a complete set of segment-backup paths Π and corresponding set of 
segments Ω using Algorithm 3 are shown in Fig. 24. 

 
6. Conclusion 
In this paper, we have considered the problem of together identifying (a) an optimal pri-
mary path which satisfies the required QoS constraints, and (b) a set of alternate paths that 
may be used in case a link or a node on the primary path fails. The alternate paths are also 
required to satisfy the same set of QoS constraints as is the case with primary path. Our ap-
proach is distinct from the ones that others have suggested. Others have suggested that traf-
fic be re-routed along a subpath that bypasses a failed link or node, or that it be re-routed 
along a path that is completely link-disjoint (or node-disjoint) from the primary path. We 
have, on the other hand, proposed that the traffic be re-routed along a subpath that bypasses 
a segment (or a portion) of the primary path that contains the failed link or node. The iden-
tification of the segments (and their size) is not fixed a priori but will be determined based 
on (a) availability of alternate paths, and (b) so that QoS constraints are met. This has sev-
eral implications, the most significant of which has to do with availability of alternate 
paths. It has been proved that: 
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Result: For a given (a) source-destination pair of nodes in a network, and (b) any primary 
path between them, the nodes on the primary path can be divided into a collection of seg-
ments such that for each segment there exists an alternate path which completely bypasses 
the segment if and only if there exist two or more node-disjoint paths between the source 
and destination nodes. 
 This ensures that if connectivity between a given pair of nodes is rich enough then for 
any primary path between them one can always find alternate paths so as to address the 
problem of link or node failure. This flexibility in identifying the segments (and thereby 
choosing their size) can also be used to ensure that the switch-over time, and the resulting 
packet loss, is within the prescribed bounds. This should be evident since the switch-over 
time is directly related to the one-way delay over a segment. We have described an algo-
rithm to identify (a) a primary path, (b) the collections of segments, and (c) the correspond-
ing set of alternate paths, one for each segment, each of which satisfies specified QoS 
constraints, and so that the delay in switching traffic over to an alternate path is bounded. 
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