
J. Indian Inst. Sci., Nov.–Dec. 2006, 86, 569–598 
© Indian Institute of Science. 

*Author for correspondence. 

 
 

A survey of routing algorithms for wireless sensor networks 
 
 
 
N. NARASIMHA DATTA* AND K. GOPINATH 
Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India. 
email: ndatta@gmail.com, gopi@csa.iisc.ernet.in 
 
Received on May 14, 2005; Revised on May 5, 2006. 
 
Abstract 
 
Distributed wireless sensor networks consist of a large number of small, low-cost and low-power nodes (called 
motes) that coordinate with one another for environmental sensing. The sensor nodes are severely restricted in 
power, memory and computational resources. The nodes can be densely deployed in close proximity to the phe-
nomenon to be observed. They can be deployed in hostile environments where the nodes may not be physically 
accessible and are subject to tampering. Nodes can be added to and deleted from the network at any time, result-
ing in unpredictable changes to the topology of the network. This presents new challenges in the design of  
routing protocols for sensor networks. In this paper, the constituent building blocks of sensor network routing 
protocols are identified and analyzed. The routing protocols are broadly classified into two categories: flat and 
hierarchical, and further into subcategories based on the centrality of their theme. Several routing algorithms be-
longing to each category that have been proposed in the literature are explored. The techniques used to achieve 
convergence and to eliminate routing loops are highlighted. Further the open problems in each algorithm are men-
tioned briefly. The paper concludes with a comprehensive comparison of the protocols based on several parame-
ters. 
 
Keywords: Power nodes, wireless sensor networks, routing protocols. 
 
1. Introduction 

Sensor networks are made up of a large number of sensor nodes which possess self-
organizing capabilities. The core of a sensor node is a small, low-cost, low-power micro-
processor. The microprocessor monitors one or more sensors and connects to the outside 
world with a radio link. Many popular radio transceivers allow a mote to transmit to a dis-
tance of a few hundred meters. The typical power consumption is about 10 milliamps when 
the mote is running, and about 10 microamps in sleep mode. Each sensor node is driven by 
one or two 1.5 V cells. The microprocessor, sensors, antenna and batteries are all packaged 
in small containers, typically a few millimeters thick [1–3]. 

 Sensor networks may consist of many different types of sensors such as seismic, thermal, 
electrical, visual, acoustic, radar and so on. Sensor networks are finding a wide variety of 
applications in a number of domains. Some common applications of sensor networks are: 

• Military applications such as battlefield surveillance, nuclear, biological and chemical 
(NBC) attack detection, and reconnaissance over enemy territory. 



N. NARASIMHA DATTA AND K. GOPINATH 570 

• Environmental applications such as wild animal tracking, air and water pollution level 
monitoring, forest fire detection and precision agriculture. 

• Health applications such as heart rate monitoring, telemedicine and drug administration. 
• Commercial applications such as highway traffic analysis, building security, structural 

fault detection, and power consumption measurement. 
 
 Sensor networks resemble embedded wireless networks in a variety of ways. Both types 
of networks consist of a collection of sensor nodes with limited computation and communi-
cation capabilities. Both have limited memory and communicate intermittently using radio 
links. Moreover, both have data collection nodes that sense and process data, and control 
nodes that monitor the network and transmit simple commands to the data collection nodes. 

 In spite of these similarities, sensor networks differ from traditional embedded wireless 
networks in many ways [4], some of them being: 
 
• The scale of sensor networks is often orders of magnitude larger than that of traditional 

wireless networks. There may be tens of thousands of nodes in a sensor network, as 
compared to a few tens of nodes in a normal wireless network. 

• Sensor networks are often densely and redundantly deployed, i.e. the number of nodes 
deployed per unit area is much greater than traditional wireless networks. 

• Sensor networks are dynamic in the sense that nodes can get added to and deleted from 
the network without manual intervention, resulting in the expansion and contraction of 
the network after deployment. 

• Sensor networks can be deployed in hostile territory, where they can be subject to com-
munication surveillance and node capture and compromise by adversaries. 

• Sensor nodes mainly use broadcast communication paradigms whereas traditional wire-
less networks mostly use point-to-point communication. The motivation for this para-
digm shift is that in sensor networks, the focus is on the retrieval of data by attributes, 
and hence the individual nodes do not matter and are redundantly deployed. 

 Sensor network nodes may be deployed over a wide geographical region, say over a field 
of a few square kilometers. Typically there are one or more sink nodes or base stations 
which serve as collection points and connect the wireless nodes to a wired infrastructural 
network, for example, the Internet. Since the radio range of sensor nodes is of the order of a 
few hundred meters, the farthest nodes may not be able to reach the sink node in a single 
hop transmission. Moreover, the nodes may be deployed over uneven terrain in a non-
uniform manner (as would be the case for example when several sensor nodes are air-
dropped over a mountainous region). These factors combined with the resource limitations 
of sensor nodes make the problem of routing highly nontrivial. The obvious solution to this 
problem is to resort to multi-hop routing, wherein sensor nodes communicate with the sink 
node via multiple hops through other intermediate nodes. Each sensor node serves as a 
router in addition to sensing its environment. Conventional link state routing algorithms 
consume a lot of expensive memory space for maintaining their tables and are hence un-
suitable for the sensor network scenario. 



A SURVEY OF ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS 571 

 The lifetime of a fully active sensor node is of the order of a few days. The most energy-
intensive operations for a node are those of radio transmission and reception. It is found 
that the energy consumed is proportional to the number of packets sent or received [5]. To 
maximize the network lifetime, therefore, the amount of network traffic should be mini-
mized. One way of accomplishing this is for certain network nodes to collect raw sensor 
readings from a number of sensor nodes and combine them into a single composite signal 
which is then forwarded towards the sink node. This process is called data aggregation. 
Data aggregation can greatly reduce the number of packets transmitted, which can result in 
large energy savings. 

 The routing protocols that have been proposed for sensor networks can be broadly classi-
fied as flat and hierarchical protocols. Hierarchical protocols organize the network nodes 
into several logical levels. This is typically implemented by a process called cluster forma-
tion. A cluster consists of a set of geographically proximal sensor nodes; one of the nodes 
serves as a cluster head. The cluster heads can be organized into further hierarchical levels. 
The key advantage of hierarchical routing protocols is that the clusterheads can perform ef-
ficient in-network data aggregation. Routing proceeds by forwarding packets up the hierar-
chy until the sink node is reached. Flat routing protocols, on the other hand, attempt to find 
good-quality routes from source nodes to sink nodes by some form of flooding. Since flood-
ing is a very costly operation in resource starved networks, smart routing algorithms restrict 
the flooding to localized regions. Some algorithms use probabilistic techniques based on 
certain heuristics to establish routing paths. 

 Flat routing protocols can be further classified according to the centrality of their theme. 
Flooding-based protocols rely primarily on flooding for route discovery. Many protocols 
couple query routing with data routing, i.e. source nodes transmit their observed data read-
ings directly in response to queries from sink nodes. Such protocols can be classified as 
query-driven protocols. On the other hand, data-driven protocols assume that there is a 
separate query propagation phase by which some sensor nodes realize that their data should 
be sent to a sink. This phase is generally also responsible for setting up routes. Source 
nodes transmit their readings along these routes either periodically or whenever they ob-
serve some interesting events during the subsequent data transfer phase. Multipath routing 
protocols attempt to construct several completely or partially disjoint paths from the source 
to the sink. This increases the resilience of the network to node failures. Geographic rout-
ing algorithms route queries towards geographically defined regions. They are particularly 
suitable for sensor networks since user queries for physical phenomena such as movement 
are typically directed towards specific geographic regions. Probabilistic algorithms take 
packet-forwarding decisions probabilistically based on several parameters such as node 
reputation and link reliability. The classification of the surveyed routing algorithms is pre-
sented in Table I. 

 In the following sections, several routing algorithms that have been proposed over the 
last few years are surveyed. The operation of each algorithm is explained in a simplified 
manner in Section 2. The merits and demerits of each algorithm are discussed. The paper 
concludes with a summary of the routing protocols in Section 3. 



N. NARASIMHA DATTA AND K. GOPINATH 572 

Table I 
Classification of sensor network routing protocols. 
The first seven categories are specific instances of 
flat routing protocols 

Routing protocol Example routing protocols 
category 
 

Flooding-based TinyOS Beaconing, Pulse 
Query-driven Directed Discussion, Rumor Rout- 
  ing, Braided Path Routing, 
  GEAR 
Data-driven SPIN, GRAB, INSENS, SAR, 
 ARRIVE 
Multipath Braided Path Routing, GRAB, 
  INSENS, SAR 
Geographic GEAR 
Probabilistic ARRIVE 
Other flat ASCENT, Deng et al. [20], TBF, 
 Data Mules 
Hierarchical/ SWE/MWE, LEACH, SRPSN 
Cluster-based  

 
 
 
 
FIG. 1. Depends-on hierarchy for flat sensor network 
routing protocols. The function at the tail of an arrow 
depends on the function at the head of the arrow.

 
2. Routing protocols 

A number of routing protocols for sensor networks have been proposed in the literature 
over the last few years. Many of the protocols draw inspiration from similar protocols for 
wireless ad-hoc networks. Since the challenges for sensor networks are different from those 
of ad-hoc networks, several interesting variations are introduced. In addition, many novel 
routing mechanisms have been proposed specially for sensor networks. The following sub-
sections survey many of the sensor network routing algorithms. 
 
2.1. Flat routing protocols 

Flat routing protocols are similar to the conventional multihop ad-hoc routing protocols. 
Each sensor node determines its parent node(s) to forward data packets. The nodes are not 
organized into hierarchical clusters as is done in the hierarchical protocols. The advantage 
of this approach is that all the nodes can reach the base station irrespective of their position. 

 Each of the flat routing protocols can be decomposed into several constituent blocks as de-
picted in Fig. 1. The arrows in the figure depict the depends-on relation between functions. 
Multihop routing is an essential prerequisite for data aggregation; this is because there is no 
scope for aggregation if each node transmits directly to the base station. Similarly, reliable 
neighbour discovery depends on channel symmetry. If the radio links are not bidirectional 
(for example, as a consequence of the hidden terminal problem), then reliable communica-



A SURVEY OF ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS 573 

tion is not possible. Link layer broadcast is a fundamental requirement for sensor network 
routing, since radio channels are inherently broadcast in nature. 

 Multihop routing makes it possible to achieve load balancing by restricting the power 
level at which sensor nodes communicate. Since the sensor nodes have severely restricted 
power resources, this can greatly increase the lifetime of the network. Finally failure detec-
tion and recovery is possible if each node is aware of its surrounding network topology. 

 Most of the flat routing protocols that have been proposed for sensor networks incorpo-
rate distance vector routing algorithms. In distance vector routing [6], nodes maintain esti-
mates of their distances from the destination nodes. Each node transmits its distance 
estimates to its neighbours. Each node updates its distance vector so as to minimize the dis-
tance to each destination by examining the cost to that destination reported by each of its 
neighbours and then adding its distance to that neighbour. The problem with the straight-
forward distance vector algorithm is that it takes a long time to converge after a topological 
change. Several techniques are used to detect the counting to infinity problem [6] and has-
ten convergence in practice. For instance, some protocols use a time-to-live (TTL) field in 
their packets. When the TTL drops to zero, the packet is discarded. Other protocols use 
randomization techniques to avoid routing loops. Some other ways in which convergence is 
achieved are backpropagating learned costs to destinations, making route changes only at 
periodic intervals, eavesdropping on the broadcast medium, running centralized shortest 
path algorithms and so on. Table II summarizes these convergence techniques. 

 The following subsections describe the routing protocols that can be classified as flat 
routing protocols. 
 
2.1.1. TinyOS beaconing 

The TinyOS embedded sensor network platform [7] employs a very simple ad-hoc routing 
protocol. The base station periodically broadcasts a route update beacon message to the 
network. The beacon message is received by a few nodes that are in the vicinity of the base 
station. These nodes mark the base station as their parent and rebroadcast the beacon to 
their neighbours. The algorithm proceeds recursively with nodes progressively propagating 
the beacon to their neighbours; each node marks the first node that it hears from as its par-
ent. The beacon is thus flooded throughout the network, setting up a breadth-first spanning 
tree rooted at the base station. This process is repeated at periodic intervals known as ep-
ochs. 

 Each network node periodically reads its sensor data and transmits the data packet to its 
parent in the spanning tree. The parent node in turn forwards the packet to its parent and so 
on. This process is repeated until the data finally reaches the base station. 

 The attractive feature of TinyOS beaconing is its simplicity–nodes do not have to main-
tain large routing tables or other complicated data structures. Each node needs to remember 
only its parent node in the path to the base station. By combining the beaconing with a 
MAC layer scheduling scheme such as TDMA, the nodes can conserve power by keeping 
their radio off most of the time. In spite of its attractive features, the beaconing protocol 
suffers from one main disadvantage: it is not resilient to node failures. If a parent node



N. NARASIMHA DATTA AND K. GOPINATH 574 

Table II 
Techniques used to achieve convergence and loop elimination in distance vector-based flat sensor network 
routing protocols 

Protocol Techniques used to achieve convergence and loop elimination 
 

Directed diffusion Each node maintains an interest cache and a data cache. If a node receives a data 
message from its neighbour for which it does not have an entry in its interest cache, 
the packet is silently dropped. Similarly, if the data corresponding to an interest is  
already present in the data cache, the packet is silently dropped. This prevents the for-
mation of routing loops. 

Rumor routing Query packets maintain a list of recently traversed nodes, using which they avoid  
revisiting any node. Each node maintains a list of recently encountered queries; if a 
node receives the same query again, it forwards it in a random direction. Maintaining 
a TTL in each query also helps in eliminating routing loops. 

Braided multipath routing Multiple partially disjoint paths are constructed and maintained which increases the 
probability of packets reaching their destination. 

GRAB Only nodes that have lesser cost than the sender are allowed to forward packets. 
Routing loops are avoided since packets flow towards nodes whose costs decrease 
monotonically. The algorithm also employs event-driven refreshing of the cost field 
that can ensure that the information about link failures spreads throughout the  
network and thereby avoids the counting to infinity problem. 

INSENS The base station periodically collects global information from the network nodes and 
runs a centralized Dijkstra’s algorithm to compute optimal routes. 

SAR The counting to infinity is hastened by detecting rapid increase in the path metric  
using a threshold method. 

GEAR Each time a packet is successfully delivered to the destination, the correct value of 
the learned cost is propagated one hop backwards. Thus the learned cost will con-
verge at all the nodes along the path in a finite amount of time. 

Woo et al. [18] Route changes are made only at periodic intervals or when a cycle is detected. This 
can ensure that the information about link failures spreads throughout the network. 
Moreover nodes eavesdrop on the broadcast medium and quickly learn if a node does 
not have a route to the destination. These mechanisms avoid the counting to infinity 
problem. 

Deng et al. [20] The hop count (to the base station) of the nodes in a loop keeps increasing  
continually. After some limit, neighbouring nodes that have real paths to the base  
station attract some of the loop nodes and thus break the loop. 

 

fails, then its entire subtree is cut off from the base station during the current epoch. More-
over, the protocol results in uneven power consumption across network nodes. The nodes 
nearer to the base station consume a lot of power in forwarding packets from all the nodes 
in their subtree, whereas the leaf nodes in the spanning tree do not have to perform any 
forwarding at all and consume the least power. 
 
2.1.2. Pulse 

The Pulse protocol [8] addresses the three topics of routing, energy consumption and time 
synchronization in sensor networks. It uses a periodic pulse signal generated and flooded by 
a pulse source to provide routing paths and synchronization to the network. As the pulse 
propagates through the network nodes, a spanning tree rooted at the pulse source is con-



A SURVEY OF ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS 575 

structed. Node traffic follows the paths along this spanning tree. A node that wants to com-
municate packets sends a reservation packet to the pulse source. The reservation packet 
contains the address of the node sending the packet and is used to set up reverse routes for 
data packets. Thus, active nodes need to keep sending reservation packets in response to the 
periodic pulse signals to keep the routes fresh. Idle nodes that do not have data to commu-
nicate and that are not needed for forwarding packets can switch off their radios till the next 
pulse signal arrives and thereby save energy. 

 To further reduce energy consumption, the Pulse protocol is modified to incorporate in-
termediate wake-up periods. The motivation behind this modification is that the routes in 
the network are established by the flooding of the pulse signal, which is an expensive proc-
ess. Instead, nodes are permitted to send reservation packets during intermediate wake-up 
periods which can occur several times between two pulse floods. This enables faster path 
activations with lesser energy expenditure. 

 The Pulse protocol is similar to the beaconing protocol if the pulse source is considered 
to be the base station. Thus it has similar merits and demerits as the beaconing protocol. 
One area of improvement in the Pulse protocol is to provide a path deactivation feature. 
This feature would allow nodes to deactivate paths and conserve energy even if the inter-
vals between wake-up periods are arbitrarily long. This would of course trade off the fast 
path activation for power efficiency. 
 
2.1.3. Directed diffusion 

A data-centric communication protocol for sensor networks has been proposed in [9]. All 
sensor data are characterized by attribute-value pairs. A node that requires data sends out 
interests for named data; interests are diffused through the network towards the nodes that 
are capable of responding. Data are in turn drawn towards the requesting node via gradients 
established along the reverse path of interest propagation. This style of data-centric com-
munication is fundamentally different from the node-centric end-to-end communication 
mechanism of traditional IP networks. 

 An interest for data may contain several fields such as type, interval, duration, time 
stamp and the coordinates of the target region. The duration refers to the time period for 
which data is desired, and the interval refers to the data rate. The sink broadcasts interests 
to its neighbours; due to the unreliable nature of broadcast networks, interests are refreshed 
periodically with updated timestamp values. The initial interest specifies a large interval 
value; when the path to the event source is established, a higher data rate is requested. Each 
node maintains an interest cache that contains several fields. One of the fields is called a 
gradient that specifies the node’s downstream neighbour. The gradients in each node are 
used to set up the reverse path for information flow from the source to the sink. A gradient 
also specifies the data rate requested by the neighbouring node. 

 Whenever an interest is received, the node looks up its interest cache. If there is no 
matching entry in the cache, a new interest entry is created. If a matching entry exists al-
ready, its timestamp is updated. The node further broadcasts the interest to its neighbours, 
and thus the interest is flooded throughout the network, ultimately reaching the source. 



N. NARASIMHA DATTA AND K. GOPINATH 576 

 When the source node detects an event, it searches its interest cache for matching event 
entries. If a matching interest entry is found, the node starts relaying its readings at the 
highest requested data rate among all its outgoing gradients. Intermediate nodes that receive 
a data message from their neighbours also check their interest caches for matching entries. 
If no matching entry is found, the data packet is silently discarded. Otherwise, the node 
searches its data cache associated with the matching interest entry. If there is no recently 
seen data item corresponding to the interest, a new entry is created and the data is for-
warded to the neighbouring nodes; if the data is already present in the cache, the data 
packet is silently dropped. This mechanism helps in preventing the formation of loops in 
data dissemination. 
 The sink may finally receive low-rate event data from several paths. It reinforces one of 
its neighbours to draw high-rate events. Reinforcement is done by sending out an interest 
with a higher data rate (smaller interval). The same procedure is adopted by all the up-
stream nodes to reinforce one or more paths that deliver high-quality event data. This fi-
nally results in an empirically low-delay path between the source and the sink. In case 
multiple paths are created and some paths are found to perform consistently better, an op-
tion is available to negatively reinforce the other paths. The reinforcement rules can also be 
applied by intermediate nodes along previously reinforced paths to enable local repair of 
failed or degraded paths. Figure 2 illustrates the working of the directed diffusion algo-
rithm. 
 Directed diffusion has been a pioneering work in the area of data-centric routing in sen-
sor networks. It has introduced several new features such as path reinforcement, caching 
and in-network data aggregation. There is adequate scope for further research in each of 
these areas. Several routing protocols such as rumor routing [10] and highly resilient multi-
path routing [11] have drawn inspiration from directed diffusion. 
 
2.1.4. Rumor routing algorithm 

Braginsky and Estrin [10] propose an algorithm to route user queries to nodes that have ob-
served certain events. Events are assumed to be localized phenomena, occurring in a fixed 
region of space. Queries can be requests for information or commands to initiate collection 
of more data. If the number of observed interesting events is high and the number of queries 
for the events is low, it is better to flood the queries through the network. On the other 
hand, if the number of user queries is very high compared to the number of interesting 
events, it makes sense to flood event information. The rumor routing algorithm tries to fit in 
between query flooding and event flooding. 

 
FIG. 2. Directed diffusion. 



A SURVEY OF ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS 577 

 Rumor routing aims to create paths leading to events; whenever a query is issued for an 
event, it is sent on a random walk through the network until it intersects one of the event 
paths. If the random query path fails to intersect any event path, the application resubmits 
the query, or in the worst case, floods the query throughout the network. 

 Each node maintains a neighbour table and an event table. The event table contains a list 
of events that the node has observed. The neighbour table can be maintained by actively ini-
tiating hello messages or passively eavesdropping on network broadcasts. 

 The algorithm employs a set of long-lived packets called agents that traverse the net-
work, record interesting events that they observe and disseminate this event information to 
network nodes. Agents are generated by nodes randomly with a tunable probability based 
on whether the nodes have observed an event in the recent past. Agents also contain event 
tables similar to nodes, which include the number of hops to each event. When an agent 
crosses a node that has information about some event that the agent has not yet seen, it up-
dates its event table to include the event. Agents travel for a specified number of hops and 
then die. Nodes can update their routing tables when they encounter agents that have 
cheaper paths to certain events. 

 Any network node may generate a query; if a node has a route to the desired event, it is 
forwarded along the route. If there is no route, the query is forwarded in a random direction. 
The query packet maintains a list of recently traversed nodes, and avoids revisiting any of 
them. Similarly each node maintains a list of recently encountered queries; when it receives 
the same query again, it forwards the query in a random direction instead of along the route 
to the event. This mechanism along with maintaining a TTL in each query can eliminate 
routing loops. 

 There are several problems that need further exploration in rumor routing. The path fol-
lowed by agents is determined randomly in the algorithm. Instead it may be possible to find 
interesting events faster by exploiting localization information. Another alternative could be 
to resort to limited flooding hoping that paths may be found quickly. The probabilistic pa-
rameters can be tuned for optimal performance either by nodes using local information or at 
the system level by observing the event patterns over a period of time. 
 
2.1.5. SPIN 

Classic flooding-based routing protocols suffer from three basic deficiencies: 
 
1. Implosion: Flooding delivers packets to nodes regardless of whether they have already 

received a copy of the packets from another location. This is the case in diamond-shaped 
topologies as illustrated in Fig. 3. 

2. Overlap: The region sensed by two neighbouring nodes may overlap in area. This is par-
ticularly true in densely deployed sensor networks where nodes are located close to one 
another. Thus an upstream node may receive packets representing identical information 
from two or more different sensors. 

3. Resource blindness: Flooding-based protocols do not distinguish between energy-rich 
and energy-depleted nodes. 



N. NARASIMHA DATTA AND K. GOPINATH 578 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 3. Implosion of packets in classical flooding. 
Node A floods the packet marked (a) to its neighbours 
B and C. Thus node D receives two copies of the same 
packet, one from each of its neighbours B and C. 

 
 To rectify these deficiencies of classic flooding, a set of protocols called SPIN (sensor 
protocols for in formation via negotiation) [12] have been proposed. Nodes name their data 
using high-level descriptors called metadata. The problems of implosion and overlap are 
eliminated by avoiding transmitting redundant copies of the same data using the metadata 
descriptors. Since metadata is so crucial, it must be the case that the metadata representing a 
piece of data should be considerably shorter than the actual data itself. Moreover, each node 
has a component called the resource manager that tracks energy consumption and is con-
sulted whenever applications transmit or process data. This eliminates the problem of re-
source blindness. 

 SPIN comprises a family of protocols: SPIN-PP and SPIN-EC for point-to-point commu-
nication networks and SPIN-BC and SPIN-RL for broadcast networks. SPIN-PP assumes 
that each node can communicate with another node without interfering with any other 
nodes. When a node has data to communicate, it begins by sending out a new data adver-
tisement (ADV) message to its neighbours. This message includes the metadata correspond-
ing to its data. Each neighbour first checks to see if it has already received or requested for 
the advertised data. If not, it responds with a data request (REQ) message to the sender. Fi-
nally, the sender transmits the requested data in a DATA message. SPIN-EC is the energy 
conserving version of the basic SPIN-PP protocol. It uses the same ADV, REQ and DATA 
messages as SPIN-PP. However, if a node observes that its energy reserves are approaching 
a low threshold, it stops participating in the protocol unless it determines that it can com-
plete all the three protocol steps without running out of energy. 

 The broadcast protocols SPIN-BC and SPIN-RL exploit the one-to-many transmission 
phenomenon of broadcast networks, i.e. a broadcast message sent by one node is received 
by all its neighbours. Thus the multiple unicast messages addressed separately to individual 
neighbours in SPIN-PP are combined into a single broadcast ADV message that reaches all 
neighbours. If all neighbours respond immediately to the data advertisement broadcast, 
there will be a lot of MAC layer collisions. To circumvent this, nodes wait for random in-
tervals before transmitting their REQ messages, with the original advertiser specified in the 



A SURVEY OF ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS 579 

header of the REQ message. As soon as the first REQ message is heard, the other 
neighbours cancel their (now redundant) REQ messages. Moreover, the advertiser responds 
to the REQ with a single broadcast DATA message that reaches all the neighbours simulta-
neously. SPIN-RL is a reliable version of SPIN-BC in which nodes keep track of which 
node sent the ADV message. If they do not get a DATA message within a timeout period, 
they resend their requests. Also the rate at which DATA messages are sent is limited—a 
node waits for a specified amount of time before responding to a request for the same piece 
of data more than once. 
 The SPIN family of protocols effectively solves the problems inherent to classic flooding 
with lesser energy consumption using metadata descriptors. Moreover, the protocols main-
tain only local information about their neighbouring nodes which is an attractive feature for 
mobile networks. Further work remains to be done in the case of networks that use both 
unicast and broadcast paradigms. 
 
2.1.6. Highly resilient energy-efficient multipath routing 

Ganesan et al. [11] present a multipath routing technique to improve the resilience of a sen-
sor network to node failure. Constructing k disjoint paths from the source to the sink en-
sures that the network does not get disconnected even if k nodes fail. However, finding 
completely disjoint paths tends to be very energy-inefficient. To overcome this problem, an 
algorithm to construct partially disjoint paths (called braided paths) with some common 
nodes between paths is presented. 

 The algorithm aims to extend the concept of directed diffusion [8] to eliminate the energy-
intensive flooding used to discover alternate paths. The basic idea of the algorithm is to set 
up multiple paths along which data is disseminated at low data rates at the same time when 
the primary path is established. If there is any node or link failure on the primary path, 
nodes can quickly reinforce one of the alternate paths without resorting to expensive flood-
ing. Nodes have to fall back on flooding only if all the multiple paths fail simultaneously. 
 A mechanism to discover strictly disjoint multipaths is presented first. Following the di-
rected diffusion algorithm, the sink reinforces the link with its most preferred neighbour. At 
the same time, it sends an alternate reinforcement message to its next most preferred 
neighbour, say A. A propagates this reinforcement to its most preferred neighbour, say B, in 
the direction of the source. If B already happens to lie on the primary path between the 
source and the sink, it sends a negative reinforcement message back to A; A then tries its 
next most preferred neighbour and so on. Otherwise B continues to propagate the alternate 
reinforcement to its neighbours. This procedure can be extended to discover k disjoint mul-
tipaths between the source and the sink. 

 The problem of finding braided multipaths can be defined as finding the best path from 
the source to the sink that does not contain one of the nodes on the primary path. This re-
sults in finding an alternate path that is expected to be physically close to the primary path, 
and hence dissipates energy proportional to the primary path. Braided paths are constructed 
using a procedure similar to that of the disjoint multipaths. Each node on the primary path 
sends reinforcement messages to its first and second most preferred neighbours, thus trying 
to route around its immediate neighbour on the primary path. A node not on the primary 



N. NARASIMHA DATTA AND K. GOPINATH 580 

path that receives a reinforcement message from a primary node propagates the message to 
its most preferred neighbour. If this neighbour happens to lie on the primary path, then the 
reinforcement is not propagated any further (since a braided path has already been found). 

 Constructing strictly disjoint multipaths ensures that any number of failures on the pri-
mary path does not affect any of the alternate paths. In contrast, in the case of the braided 
multipaths, failure of a certain set of nodes on the primary path can disrupt all the multi-
paths. However, the advantage of braided multipaths stems from the fact that the total num-
ber of distinct alternate paths through a braid is much higher than the number of nodes 
along the primary path, thus greatly increasing the resilience of the braid. It will be interest-
ing to study the extension of the braided multipath algorithm to multiple sources and sinks 
with respect to complexity, resilience to isolated and patterned failures, and maintenance 
overhead. 
 
2.1.7. GRAB 

GRAdient Broadcast (GRAB), a robust data delivery protocol for large-scale sensor net-
works has been proposed by Ye et al. [13]. This algorithm constructs and maintains a cost 
field that specifies the cost incurred by a packet at each node to reach the sink. Sensor data 
is forwarded along an interleaved mesh from the source to the sink. Nodes do not maintain 
state about their next hop parents, instead, all data packets are routed by broadcasting. Only 
lower cost nodes are permitted to forward the packets. The resulting multiple interleaved 
paths greatly improve network reliability. The width of the mesh can be controlled by a 
credit carried in each data message to achieve any desired trade-off between robustness and 
energy consumption. 

 The protocol begins with the sink broadcasting advertisement (ADV) packets with a cost 
of zero to initiate the construction of the cost field. Each sensor node starts out with a cost 
of infinity. When a new ADV packet is received from a neighbour, a node updates its cost 
to the minimum of its original cost and the sum of the advertised cost and the cost of trans-
mitting a packet to the neighbour. The ADV packet is rebroadcast if it reduces the node’s 
cost. Thus the algorithm greedily builds gradients directed towards the sink, nodes nearer 
the sink have a low cost, whereas those farther away have a higher cost. Packets flow along 
the gradients from higher cost nodes towards lower ones and ultimately reach the sink. The 
cost field can be reconstructed as and when the sink observes significant variations in the 
packet reception characteristics. 

 The physical or environmental phenomenon to be sensed is observed by many nodes in 
the vicinity. The nodes exchange their received signal strength among themselves. The 
node that has the largest signal strength is elected as the Center of Stimulus (CoS) and is re-
sponsible for transmitting the sensor reading to the sink. At each hop, only the nodes that 
have lesser cost than the sending node are allowed to forward the packet further. This 
mechanism implicitly avoids the creation of routing loops, since packets flow towards 
nodes whose costs decrease monotonically. The routing mesh is illustrated in Fig. 4. 

 In the above scheme, packets tend to take diverging paths many of which lead away from 
the direction of the sink. Considerable amount of energy is spent before all the diverging



A SURVEY OF ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS 581 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 4. Routing of packets along the GRAB forward-
ing mesh. Some of the unshaded nodes receive packets 
but do not forward them since they have a higher cost 
to the sink. 

 
packets are discarded. To control the width of the forwarding mesh, the source node in-
cludes a parameter called the credit in each data packet. The credit represents the amount of 
extra budget that can be used to forward packets along multiple interleaved paths. The dif-
ference between the costs of the minimum cost path and any other path should not exceed 
the credit specified by the source. Each data packet includes the credit, the cost of the 
source, the cost of sending the node and the cumulative amount of power consumed for for-
warding the packet from the source to the current node. Using these fields, the receiving 
node can determine whether it has sufficient credit; if so, it can increase its transmission 
power to forward the packet to many nearer neighbours. Otherwise, the node does not have 
adequate credit and broadcasts the packet at a power level that is just sufficient to reach its 
next hop neighbour on the minimum cost path. Nodes wait for random amounts of time be-
fore transmitting to minimize the chances of collisions. 

 The credit assignment in the GRAB packets can be made adaptive to the local network 
conditions. This can be driven by the sink node which can indicate the quality of recently 
received packets. Nodes facing higher losses and failures in their neighbourhood can use 
greater shares of their credits. Another problem that needs to be addressed relates to multi-
ple sources and sinks. This may require building multiple cost fields which may turn out  
to be prohibitively expensive. Similar issues may be encountered in the case of a mobile 
sink wherein the cost field needs to be reconstructed periodically as and when the sink 
moves. 
 
2.1.8. INSENS 

INSENS (INtrusion-tolerant routing protocol for SEnsor NetworkS) [14] is a routing proto-
col that ensures that a single compromised node can only affect a limited portion of the 
network without disrupting the functioning of the rest of the network. This is accomplished 
by maintaining multiple disjoint paths from sensor nodes to the base station. It forbids indi-
vidual sensor nodes from broadcasting to the entire network. This succeeds in preventing 



N. NARASIMHA DATTA AND K. GOPINATH 582 

denial of service type of attacks. Control information such as routing protocol messages is 
necessarily authenticated so that the base station always receives a correct, albeit possibly 
incomplete, picture of the network topology. Since sensor nodes are severely limited in 
terms of computation power, memory and energy levels, the expensive job of computing 
and distributing routing tables is delegated to the resource-rich base station. Moreover, 
symmetric key cryptography is used for confidentiality and authentication operations rather 
than resource-intensive public key cryptography. 

 The routing protocol involves two phases: the route discovery phase and the data for-
warding phase. The route discovery phase is divided into three rounds: route request, route 
feedback and computation and propagation of multipath routing tables. 

 The route request round is initiated by the base station which broadcasts a request mes-
sage to its immediate neighbours. Each of the immediate neighbours of the base station in 
turn broadcasts a message to their neighbours. In general, the message broadcasts by any 
node includes a path from the base station to that node. The process of recursive broadcasts 
continues until all the nodes receive the route request. 

 The messages from the base station are authenticated by the sensor nodes using a one-
way cryptographic function F as follows. Each node is preprogrammed with a secret key 
shared with the base station along with an initial sequence number K0. The base station 
generates the sequence of numbers K0, K1, ... , Kn, such that Ki = F(Ki + 1), 0 ≤ i < n. During 
each route discovery phase, the base station includes the next number from this sequence in 
the request message that it sends. Sensor nodes can authenticate each message by verifying 
the relation between the current and previous sequence number. Since the sequence num-
bers get revealed in the reverse order from which they were generated, it is impossible for a 
malicious node to guess the next sequence number and thereby spoof the base station. 

 In the second round, each node sends a list of its neighbouring nodes in the form of a 
feedback message to the base station. This feedback message follows the reverse route as 
the one followed during the route request phase. A MAC of the message contents generated 
using the secret key shared with the base station is appended to the message and used for 
node authentication. To prevent DoS attacks, the outgoing rate of messages at each node is 
limited below a fixed maximum value irrespective of the incoming message rate. In the 
third round, the base station waits for a timeout period before it receives all the feedback 
messages. Then it constructs multiple redundant paths between sensor nodes and the base 
station as follows. For a given node A, the shortest path to the base station is determined 
using Dijkstra’s algorithm. To construct a node-disjoint secondary path, the nodes along the 
primary path along with their one- and two-hop neighbours are removed and a shortest path 
from A to the base station is found. If such a path does not exist, the procedure is succes-
sively repeated by removing the primary path nodes and their one-hop neighbours, and fi-
nally only the primary path nodes. If a shortest path from A to the base station is not found 
after any of these steps, only a single shortest path to the base station is maintained. The 
computed routing tables are disseminated among all the sensor nodes hierarchically by the 
base station starting from its immediate neighbours. 

 Once the route discovery phase completes, sensor data can be forwarded by nodes to the 
base station at periodic intervals. Each sensor node maintains a forwarding table that has 



A SURVEY OF ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS 583 

several entries of the form <destination, source, immediate sender>, where destination and 
source are the destination and source nodes of a packet and immediate sender is the node 
that just forwarded the packet. When a node receives a packet from its neighbour that 
matches an entry in its forwarding table, it sets the immediate sender field of the packet to 
itself and forwards (broadcasts) the packet. 

 INSENS is a simple routing protocol in that the routing computations are performed by 
the central base station rather than the resource-constrained sensor nodes. While this may 
be energy efficient for the sensor nodes, the dependence on the base station makes it unsuit-
able for highly dynamic sensor networks. For instance, topology changes keep happening 
frequently in mobile or lossy networks. To maintain network connectivity, INSENS would 
have to run the route discovery phase frequently which may not be feasible in practice. 
 
2.1.9. SAR 

A table-driven multipath routing algorithm, Sequential Assignment Routing (SAR) [15] is 
proposed to improve the resilience of the network to node failures. Finding strictly disjoint 
multiple paths complicates localized recovery schemes. Generating a k-disjoint structure 
requires approximately k times the overhead complexity of a shortest path algorithm. Hence 
the disjointness property is not strictly required for nodes away from a 1-hop neighbour-
hood of the sink. 

 To create multiple paths to the sink, multiple routing trees rooted at different 1-hop 
neighbours of the sink are constructed. The trees proceed to grow away from the sink by 
successive branching, avoiding nodes with low QoS and energy reserves. Most of the sen-
sor nodes in the network end up belonging to more than one routing tree. Packets are also 
assigned priorities, and higher-priority packets are provided higher QoS. The objective of 
the SAR algorithm is to optimize the average weighted QoS metric in the network.  

 Failure recovery is enforced by a local handshaking procedure that ensures routing table 
consistency between the upstream and downstream neighbours of the failed nodes. This is 
accomplished by triggering a local route recomputation procedure whenever a node fails. 
The counting to infinity problem is avoided by hastening the convergence to infinity when-
ever the path metric reaches an upper threshold. 
 
2.1.10. GEAR 

Yu et al. [16] present GEAR (Geographical and Energy Aware Routing), a geographic rout-
ing algorithm, i.e. an algorithm that routes queries towards a certain geographically defined 
region. User queries for physical phenomena such as temperature or movement in the real 
world are typically directed towards specific geographic areas. This makes geographic algo-
rithms very attractive for sensor network routing. The GEAR algorithm uses heuristics 
based on energy levels to route packets, instead of flooding. Once the query reaches the 
boundary of the desired region, it is disseminated within the region using a recursive for-
warding technique. It is assumed that each node can determine its own position using some 
localization system such as GPS. Further, nodes exchange their position and remaining en-
ergy level information with their neighbours using a simple hello protocol. 



N. NARASIMHA DATTA AND K. GOPINATH 584 

 Each query packet specifies the target region in some way, for example, by specifying the 
coordinates of a rectangular region. Each node maintains a learned cost to target regions. 
The learned costs of nodes are exchanged with their neighbours occasionally. In case the 
learned cost of a neighbour is not available, the node computes an estimated cost for that 
neighbour. The estimated cost of a neighbour is calculated as an exponential mean of the 
distance of the neighbour from the target region (determined using the position information) 
and its remaining energy level. The exponential mean value can be controlled by a tunable 
parameter which can alter between pure geographic mode and pure energy conserving 
mode. To route queries to the target region in an energy-efficient manner, a node greedily 
forwards the query to the neighbour that has the minimum learned cost. Moreover, the node 
updates its learned cost for the target region to be the sum of the learned cost of the next-
hop neighbour and the cost of transmitting a packet to the next-hop neighbour. 

 The proposed algorithm works even if a node is in a hole, i.e. all its neighbours are fur-
ther away from the target region. This is because the query packet is routed around the hole 
by picking the lowest cost neighbour as the next-hop at each step. Each time a packet is 
successfully delivered to the destination, the correct value of the learned cost is propagated 
one hop backwards. Thus the learned cost will converge at all the nodes along the path in a 
finite amount of time. 

 Routing continues as described in the previous paragraphs until the packet arrives at the 
target region. A naive way of distributing the packet in the target region is to flood it within 
the entire region. However, flooding is an expensive operation especially in densely de-
ployed sensor networks. Instead a recursive geographic forwarding algorithm is followed 
wherein the first node within the target region that receives an incoming packet divides the 
region into four rectangular sub-regions and transmits four copies of the packet to each of 
the four subregions. This process of subdividing and forwarding packets continues until ei-
ther there is only one node in a subregion or the packet reaches an empty subregion at 
which point it is dropped. A node determines that it is the only one in a subregion if its 
transmission range encompasses the subregion but none of its neighbours lies within the 
boundaries of the subregion. It can determine if a subregion is empty in a similar manner. 
The process of recursive geographic forwarding is illustrated in Fig. 5. 

 The recursive geographic forwarding algorithm suffers from two pathological conditions. 
Firstly, it unicasts packets four times to the subregions which results in large energy con-
sumption. Secondly, it may not terminate if the farthest point of an empty subregion is out-
side the radio range of a node. This typically happens when the network density is low. 
Thus the node does not know that the target subregion is empty and the packet keeps trying 
to find routes to the empty subregion (until it times out). Both of the above conditions can 
be avoided by resorting to restricted flooding within the target region when the network 
density is below a threshold value (as indicated by the node degree of the boundary node in 
the target region). 
 
2.1.11. ARRIVE 

Karlof et al. [17] propose ARRIVE (Algorithm for Robust Routing In Volatile Environ-
ments), a probabilistic algorithm that avoids packet loss by sending multiple packets corre- 



A SURVEY OF ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS 585 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 5. Recursive geographic forwarding. Circles de-
pict nodes and rectangles depict packets. Ni is the first 
node in the target region that receives the incoming 
packet. It divides the region into four rectangular sub-
regions and forwards four copies of the packet to each 
of the subregions. The process continues recursively 
until all nodes receive the packet. 

 
sponding to a single sensor reading. It ensures that different links are chosen for each of the 
packets by selecting outgoing links probabilistically based on link reliability and node repu-
tation. To mitigate the effects of malicious nodes, nodes listen in promiscuous mode to the 
transmission of their neighbours; if a node E detects that a packet sent from node A to node 
B is not being forwarded by B, then E itself forwards the packet to the next-hop neighbour 
of B. This is called passive participation. The existence of unidirectional links in the net-
work as well as the hidden terminal problem may result in increased traffic since the listen-
ing node may not be able to perceive actually forwarded packets from B. 

 Each node in the network is assigned a level during an initial breadth first search beacon-
ing procedure. Nodes closer to the root (which could be the base station) have lower-
numbered levels, whereas those farther have higher-numbered levels. The algorithm decides 
whether to forward an incoming packet to a parent or a peer neighbour based on a forward-
ing probability. The probability with which packets are forwarded to parents (as opposed to 
peer neighbours) increases as the nodes get closer to the root of the tree. 

 As a security measure, a kind of peer-ranking system is followed, wherein each node 
maintains a reputation history for each of its neighbours. The reputation of a node P with 
respect to a node N is defined to be the ratio of the number of packets sent by N to P to the 
number of packets actually forwarded by P. The reputation is periodically updated using an 
exponential average function, with recent information getting more weightage. When a 
node receives a packet, it first checks if the packet is addressed to itself. If so, it filters out 
all the nodes whose reputation falls below a certain threshold value from being considered 
for the next hop. 

 To promote diversity of the paths followed by packets, each node maintains a conver-
gence history of all events. The convergence history maintained by a node for an event is 
defined to be the set of all the nodes to which the node has forwarded packets representing 
the event. When choosing the next hop for a packet addressed to itself, a node excludes all 
the members of the convergence history corresponding to the event represented by the 



N. NARASIMHA DATTA AND K. GOPINATH 586 

packet. This ensures that packets corresponding to the same event follow different paths 
and thereby increase the chance of arriving at their final destination. 

 The ARRIVE algorithm does not require sensor nodes to maintain large routing tables 
nor does it assume specialized localization mechanisms. Its limitation however is that there 
may not be multiple alternate routes between the source and the sink in sparse sensor net-
works, and hence path diversity may not be feasible. Also the paths followed by packets are 
not optimal due to the probabilistic nature of the algorithm. The algorithm could also bene-
fit from MAC layer scheduling schemes such as TDMA. 
 
2.1.12. Taming the underlying challenges of reliable multihop routing 

Woo et al. [18] propose that the link characteristics should be taken into consideration by 
the routing protocol. Radio links are highly lossy and unreliable; the loss rate may change 
dynamically due to environmental factors and high contention for the broadcast medium. 
The routing protocol should take such statistics into account for reliable routing. 

 The authors test a number of link estimation techniques and conclude that the 
WMEWMA (Window Mean with Exponentially Weighted Moving Average) estimator per-
forms best with constant memory overhead and small settling time. This estimator measures 
the ratio of packets received to the number of expected packets over a time interval. These 
periodic ratios are smoothened using an exponential mean with a tunable parameter. 

 A neighbourhood management scheme that attempts to retain the maximum number of 
good neighbours within each node using constant memory is also proposed. Neighbours are 
inserted in the neighbourhood table of a node until it becomes full, at which point existing 
neighbour entries have to be evicted from the table. Several candidate eviction policies such 
as round robin, FIFO (First In First Out), LRH (Least Recently Heard) and CLOCK ap-
proximation to LRH are considered. Upon hearing from a neighbour that already exists in 
the neighbourhood table, its entry is reinforced. A frequency count is maintained for each 
neighbour; if a neighbour has to be reinforced, its count is incremented by one. The eviction 
policy selects one of the entries whose count has dropped to zero. 

 A distributed distance vector routing algorithm is implemented using the neighbourhood 
tables. A parent selection process runs periodically and identifies the next hop neighbour 
using a cost metric that may be the number of hops, the expected number of transmissions 
or some other parameter that represents the energy required to reach the sink. The link es-
timation process allows the selection of new parents over time. To minimize the cascading 
effect of changing parents, route changes are made only at periodic intervals. The counting 
to infinity problem associated with distance vector routing is solved by having nodes eaves-
drop on the broadcast medium and quickly learn if a node does not have a route to the 
destination. 
 
2.1.13. ASCENT 

The ASCENT (Adaptive Self-Configuring sEnsor Networks Topologies) system [19] builds 
on the observation that only a subset of the nodes is actually required to establish connec-
tivity in a dense sensor network. Each node determines its connectivity and decides whether 



A SURVEY OF ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS 587 

or not to participate in the routing mechanism. ASCENT is not a routing protocol per se; it 
operates in between the MAC and network layers and only determines which nodes join the 
routing infrastructure. It does not utilize or modify state maintained by the routing protocol. 

 Nodes in ASCENT can be in one of four states: active, passive, test or sleep. Active and 
test nodes are involved in the forwarding of data and routing control messages. Sleeping 
nodes keep their radios turned off to save power, whereas passive nodes only listen to the 
network traffic in promiscuous mode. Initially nodes start in the test state which is used to 
determine if the addition of a new node is likely to improve the connectivity of the network. 
When a node enters the test state, it initializes a timer Tt and transmits neighbour an-
nouncement messages to other nodes. The node upgrades itself to the active state as soon as 
the timer expires. Before the timer goes off, however, if the number of active neighbours is 
above a certain threshold or the data loss rate is higher than before, the node falls back to 
the passive state. A passive timer Tp is started when the node enters the passive state. As 
soon as this timer expires, the node turns its radio off and enters the sleep state. Before this 
timer goes off, however, if the number of active neighbours is less than a threshold, or the 
node hears a help message (described below) from an active neighbour, it transitions back 
to the test state. Nodes in the sleep state wake up and move to the passive state after a time-
out interval, Ts. Figure 6 shows the various state transitions. 

 The source transmits packets towards the sink via the active nodes. Since there are only a 
few active nodes to start with, many losses are encountered. This prompts the active nodes 
to broadcast help messages, asking for more active nodes to join the network. Some of the 
nodes in the passive state react to the help messages and become active nodes. This process 
continues until a sufficient number of active nodes is available for reliable data transmission. 

 The ASCENT system follows a reactive algorithm that responds to changes in the net-
work characteristics. This results in some latency before the network stabilizes. The per-
formance of the system needs to be carefully studied in highly dynamic sensor networks 
with constantly changing topologies. The algorithm does not detect network partitions nor 
does it attempt to repair them. This is another issue that may be worth exploring. Finally it 
may be interesting to compare the behaviour of ASCENT using different routing strategies 
and MAC layer scheduling algorithms. 

 
FIG. 6. ASCENT state transitions. 



N. NARASIMHA DATTA AND K. GOPINATH 588 

2.1.14. A robust and light-weight routing mechanism 

Deng et al. [20] describe a mechanism to discover alternate routes from a node to the base 
station when a single node or a set of nodes along the original path to the base station fails. 
It assumes that the initial route from each node to the base station has already been set up 
using some other routing protocol such as TinyOS beaconing [6]. 

 The path repair algorithm works in four stages. In first stage called failure detection, a 
node tries to detect if its parent has failed by sending out probe messages. If the parent is 
alive, it replies with a message that indicates whether it is connected to the base station and 
if so, the number of hops to the base station. In the second stage called failure information 
propagation, the node informs its children (when they issue probe messages) if its parent is 
connected to the base station or not. If there is no response from the parent within a timeout 
period, the node sends a RQST message to its neighbours to adopt a new parent. A 
neighbour that is connected to the base station replies back with a RPLY message that in-
cludes its parent node ID and hop count to the base station. This step is called new parent 
detection. When the disconnected node receives replies from all its neighbours, it picks the 
one that has the smallest hop count to the base station as its new parent. This is the final 
step and is known as new parent selection. The metric used for new parent selection can be 
based on other parameters; for example, if many nodes have failed in a certain area, then a 
node may not be willing to choose a parent nearer to the area of failure. In this case, the lo-
cation of nodes (determined using localization systems such as GPS or directional anten-
nae) also influences the choice of parent. 

 The algorithm works when nodes fail randomly in the network as well as when a certain 
portion of the network fails entirely (area failure). When nodes fail in a network, it takes 
some time for the failures to be detected by all the active nodes. This results in routing in-
consistencies such as loops. The path-repair algorithm is capable of eliminating loops re-
sulting from such inconsistencies. The central idea in loop elimination is that the hop count 
(to the base station) of the nodes in the loop keeps increasing continually. After some limit, 
neighbouring nodes that have real paths to the base station will attract some of the loop 
nodes and thus break the loop. 

 The failure detection stage requires each node to keep its radio receiver on to be able to 
respond to the keep alive probe messages from its children. This results in unnecessary ex-
penditure of energy. This can be alleviated in conjunction with TDMA-style MAC layer 
scheduling strategies. The performance of the path repair algorithm needs to be studied with 
different routing protocols by means of simulations. 
 
2.1.15. Energy-efficient routing 

Schurgers et al. [21] propose a set of techniques to improve the routing in sensor networks. 
They argue that uniform utilization of resources such as power can be obtained by shaping 
the traffic flow. For instance, the routing paths for several data streams are likely to share 
many common nodes. These common nodes burn out faster owing to the heavy load and 
thereby limit the system lifetime. A traffic flow that spreads the energy utilization over all 
the nodes uniformly is highly desirable to maximize the lifetime of the network. 



A SURVEY OF ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS 589 

 Three techniques for spreading the network traffic uniformly are proposed. In the first 
scheme, a stochastic model is used by any node to select the next hop. The randomly cho-
sen links tend to distribute the traffic load across the network. In the energy-based scheme, 
a node that has depleted its energy reserves below a certain threshold discourages 
neighbouring nodes from forwarding packets to it. This is done by appropriate advertise-
ments to neighbours. In the stream-based scheme, a node on the path of one data stream 
tries to divert traffic from other streams away from it. 
 
2.1.16. Trajectory-based forwarding 

Conventional routing algorithms treat a route as a discrete set of points bounded by the 
source and the destination. However, Trajectory-Based Forwarding (TBF) [22] views a 
route as a continuous function. This approach is motivated by the high density of nodes in a 
sensor network. The essential idea is to come up with a route trajectory that closely approxi-
mates the shape of the physical phenomenon being measured. The trajectory is embedded in 
each outbound packet that is routed by intermediate nodes along a path that follows the tra-
jectory. The chief advantage of this method is that the actual intermediate nodes are not ex-
plicitly named by the path. The redundant distribution of sensor nodes makes it possible for 
the route trajectory to be followed even when several nodes move or fail. 
 Trajectory-based forwarding is basically a greedy algorithm wherein each intermediate 
node attempts to forward packets along an optimal path with respect to the intended trajec-
tory. It is assumed that the nodes are positioned relative to an absolute or relative coordi-
nate system. Nodes determine their position using specialized equipment such as GPS 
receivers or approximate positioning algorithms. Trajectories are commonly expressed in 
parametric form. For instance, a straight line with slope α and passing through the point 
with coordinates (x1, y1) is represented using the parameter t as X(t) = x1 + tcosα, and 
Y(t) = y1 + tsinα. 
 There can be several possible metrics for choosing the next hop along a path. An imple-
mentation may select the node that is closest to the trajectory or the node that makes the 
most progress along the path. Other possibilities include choosing the node at the centroid 
of the feasible set, or one with the greatest remaining battery power. 
 The TBF paradigm has been applied as a low-cost solution to many applications includ-
ing unicast routing, resource and topology discovery, broadcasting, multicasting and multi-
path routing. It is shown to behave quite well in adverse scenarios such as sparse networks 
and imprecise positioning systems. There are several open problems with trajectory-based 
forwarding. The main issue is with specifying and modifying the trajectory, whether to use 
curve fitting techniques or simply a list of points. Generally the source node determines and 
specifies the trajectory. However, it may be possible for the destination node to discover 
better trajectories in certain scenarios. Finally a number of interesting problems arise if the 
target node becomes mobile. 
 
2.1.17. Data mules 

Wireless sensor nodes are severely constrained in terms of available memory and power re-
sources. The Data Mules [23] approach aims to address this problem by exploiting mobile 



N. NARASIMHA DATTA AND K. GOPINATH 590 

agents, termed MULEs (Mobile Ubiquitous LAN Extensions) in the environment. For in-
stance, in a vehicular traffic monitoring application, the vehicles can serve as mobile 
agents, whereas in a wildlife tracking application, the animals can be used as mobile agents. 
The MULEs are fitted with transceivers that are capable of short-range wireless communi-
cation. They can exchange data with sensors and access points when they move into their 
vicinity. The advantage of such a scheme in sparse networks is immediately obvious—the 
sensor nodes do not have to expend large amounts of energy in transmitting their readings 
to distant base stations. Instead they can do short-range transmissions to nearby agents. 
 The MULE architecture is organized in three tiers. The bottom tier comprises the fixed 
wireless sensor nodes, the top tier is made up of wired access points and the intermediate 
tier consists of MULEs. The MULEs are characterized by large memory reserves and re-
newable battery power, both of which are not feasible for sensor nodes. Further, MULEs 
can communicate with one another to improve network connectivity. A sensor node is not 
dependent on a single MULE, and so the network remains connected even if some MULEs 
fail. Since the sensor nodes do not participate in multihop routing, there is minimal over-
head for the sensors; this feature can be contrasted with traditional ad-hoc networks, 
wherein each node expends substantial energy in routing packets to and from other nodes. 
 The main disadvantage of the Data Mules scheme is its high latency. Each sensor node 
needs to wait for a MULE to come within its transmission radius before it can transfer its 
readings. Further, it has to reach the access point before the node readings can be delivered. 
This can be mitigated to some extent by equipping MULEs with long-haul communication 
equipment such as satellite phones. Another disadvantage is that the system assumes the ex-
istence of mobile agents in the target environment, which may not always be present. 
 Improving the reliability of the system by incorporating acknowledgments in lossy envi-
ronments remains an important research issue. Two levels of acknowledgments have to be 
taken into consideration: MULE to sensor node, and access point to MULE. The sensor 
nodes need to keep their radio receivers on continuously to be able to communicate with 
MULEs. It is well known that a radio in listening mode consumes a similar amount of en-
ergy as when it is actually receiving data. Thus another area of research is to come up with 
a mechanism in which the nodes can keep their radios off for long periods of time, and only 
awaken when MULEs approach them. 
 
2.1.18. Summary of flat routing protocols 

The preceding sections have described several flat routing protocols for sensor networks. 
Since the routing algorithms have to operate based only on local knowledge, some form of 
distance vector routing is adopted. However, as discussed previously, distance vector rout-
ing protocols converge very slowly. Table I summarizes the different methods adopted by 
flat sensor network routing protocols to achieve convergence and avoid routing loops. 

 Other flat routing protocols use some form of flooding to construct routes and achieve 
convergence. For instance, TinyOS beaconing and the Pulse protocol use flooding to build a 
spanning tree rooted at the base station. In the SPIN family of protocols, each node broad-
casts an advertisement message containing metadata to all its neighbours. However, flood-
ing is an expensive operation that is normally avoided by sensor network routing protocols. 



A SURVEY OF ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS 591 

Some routing protocols such as ARRIVE use probabilistic forwarding that ensures better 
traffic distribution. Geographic routing protocols such as GEAR route packets towards geo-
graphically defined target regions to model typical user queries. 
 
2.2. Hierarchical and cluster-based routing protocols 

Hiearchical routing protocols organize the network into groups called clusters. Each cluster 
selects a node that serves as the cluster-head. The cluster-head is responsible for collecting 
the sensor data from all the cluster members, aggregating them and transmitting a summary 
to the base station. This results in eliminating a large number of redundant messages from 
the nodes, thereby reducing the overall power consumption in the network. It also avoids 
many MAC layer collisions that waste the available bandwidth. This enables the sensor 
network to scale to a large number of nodes. 

 The disadvantage of cluster-based algorithms is that the base station should be reachable 
from all the cluster-heads. This drains the power reserves of the cluster-heads quickly, 
thereby disconnecting the corresponding clusters from the network. It is possible to avoid 
this problem by periodically rotating the cluster heads among the nodes to ensure uniform 
energy consumption. 

 Hierarchical routing protocols can be decomposed into several constituent blocks as de-
picted in Fig. 7. The dependencies are essentially similar to those for flat routing protocols 
with a few additions. Since hierarchical routing protocols depend on the formation of clus-
ters, a new Cluster formation block is introduced. Cluster formation involves not only the 
organization of nodes into groups, but also the election of cluster-heads. Clustering facili-
tates MAC layer scheduling of transmissions. The cluster-head computes and distributes the 
MAC schedule among its cluster nodes. Each node transmits only during its time slot; it can 
switch its radio off during all the other slots thereby conserving energy. Cluster mainte-
nance depends on failure detection and recovery to determine if the cluster-head is alive or 
not. If the cluster-head has failed, the cluster formation process can be reinitiated. Failure 
detection in turn can be implemented by techniques like hierarchical heartbeat that are well 
suited for cluster-based topologies. 

 The following subsections describe routing protocols that can be classified as hierarchical 
or cluster-based routing protocols. 
 
2.2.1. Protocols for self-organization of a wireless sensor network 

Sohrabi et al. [15] propose a number of protocols for the self-organization, mobility man-
agement, multihop routing and local cooperative information processing in sensor net-
works. The efficiency of a routing protocol can be improved in three different areas: route 
setup, route maintenance and service. Algorithms that find good routing paths usually in-
volve complex computations for their maintenance, which implies a heavy energy cost. For 
a robust, long-lasting, multihop network, it is worthwhile to expend energy initially to es-
tablish good paths, since it will pay off during network operation. On the other hand, reduc-
ing the initial route setup delay assumes more importance in networks with light data 
traffic. 



N. NARASIMHA DATTA AND K. GOPINATH 592 

 
 
FIG. 7. Depends-on hierarchy for cluster-based sensor network routing protocols. The function at the tail of an  
arrow depends on the function at the head of the arrow. 
 

 Cooperative signal processing techniques are classified into two categories: noncoherent 
and coherent processing. In noncoherent processing, data is preprocessed at each node be-
fore sending a summary to a central node for further processing. Thus the communication 
traffic in such networks is not very heavy. In coherent processing, however, raw sensor data 
with minimal preprocessing is uploaded to the central node for more intensive computa-
tions. This results in heavy network traffic which increases the significance of selecting op-
timal routing paths. 



A SURVEY OF ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS 593 

 A procedure for adaptive local routing for cooperative signal processing is presented. 
This applies to the sensor nodes that are in the vicinity of the sensed phenomenon. In a non-
coherent network, a single central node is elected using the Single Winner Election (SWE) 
and Spanning Tree algorithms. Nodes that wish to become central nodes broadcast Elect 
messages that contain a set of parameters such as available energy and computational 
power. The nodes that receive Elect messages compare them with the messages they have 
already received. If the current Elect message received by a node presents a better candi-
date, it is added to the node registry and rebroadcast to its neighbours; otherwise the mes-
sage is discarded. Finally the information about the winning candidate is diffused to all the 
nodes in the vicinity. Simultaneously a minimum-hop spanning tree rooted at the winning 
central node is constructed. If each candidate delays its Elect message depending on its 
likelihood of winning (i.e. the candidate that is most likely to win sends its Elect message 
first), then a lot of localized message exchange can be avoided. 

 In coherent networks, where the overhead of sending all the raw data to a central node is 
high, a simple variation of the SWE algorithm called the Multi-Winner Election (MWE) 
process is employed. Each node now records the first n winners instead of a single winner. 
The winners here represent the subset of source nodes that will provide the sensor data. The 
SWE algorithm can then be run on these source nodes to elect a central node that does co-
herent cooperative function processing. The election of a central node for coherent net-
works involves higher delay, higher overhead and lower scalability than for noncoherent 
networks. 
 
2.2.2. LEACH 

Heinzelman et al. [24] describe LEACH (Low Energy Adaptive Clustering Hierarchy), a 
cluster-based routing protocol. LEACH aims to uniformly distribute the energy consumed 
by sensor nodes across the network to extend system lifetime. This is accomplished by pe-
riodically rotating the cluster head nodes. The cluster heads collect the sensor readings from 
the other nodes in the cluster, perform local compression or aggregation on the data to re-
duce global communication and transmit a summary of the readings back to a central base 
station. Thus the cluster heads are the most critical nodes in the network since the entire 
cluster would be disconnected if the corresponding cluster-head were to run out of energy. 
A fundamental assumption of the LEACH algorithm is that nodes can adjust their transmis-
sion power to transmit signals to varying distances. 

 The LEACH algorithm runs in rounds, with each round beginning with a setup phase in 
which the cluster-heads are selected and the clusters are formed, and the steady-state phase, 
in which the sensor data transfer takes place. Each node determines by itself whether to 
serve as a cluster head or not during the current round, based on its remaining energy level 
and a predetermined desired percentage of cluster-heads in the network. The algorithm 
guarantees that each node will become a cluster-head eventually, after some fixed number 
of rounds. This contributes towards uniform energy dissipation of the nodes. 

 Once a node decides to act as a cluster-head for the current round, it broadcasts an adver-
tisement message to the rest of the nodes. Each of the non-cluster-head nodes affiliate 
themselves with the cluster-head from which they receive the advertisement message with 



N. NARASIMHA DATTA AND K. GOPINATH 594 

the highest signal strength, with ties being broken randomly. The cluster-head is informed 
about this affiliation by a message from each of the affiliating nodes. This process organ-
izes the entire network into clusters, with a single cluster-head for each cluster. 

 After a cluster-head receives affiliation messages from all the nodes in its cluster, it cre-
ates a TDMA schedule and broadcasts it to the nodes. The TDMA schedule divides time 
into a set of slots, the number of slots being equal to the number of nodes in the cluster. 
Each node is assigned a unique time slot during which it can transmit its readings to the 
cluster-head. The advantage of this approach is that a node can turn off its radio transceiver 
during all of the other time slots, leading to large energy savings. When the cluster-head re-
ceives the sensor readings from all of its cluster nodes, it compresses and aggregates them 
into a composite signal and transmits it to the base station. This transmission potentially re-
quires high energy since the cluster-head may be very distant from the base station. An ad-
ditional disadvantage of this scheme is that if there is any physical obstruction (such as a 
tree, a hill or a building) between the cluster-head and the base station, the entire cluster is 
cut off from the base station. 

 LEACH is one of the earliest cluster-based routing protocols for sensor networks. Our 
simulation experiments showed that its probabilistic cluster formation algorithm does not 
result in entirely uniform cluster sizes. Some clusters end up with only one or two nodes 
whereas others have a large number of nodes. Further, LEACH does not guarantee base sta-
tion reachability for all the network nodes. If some cluster-heads are farther from the base 
station than their maximum transmission range, then all the nodes in their cluster get cut off 
from the base station for the current round. A possible solution to this problem is to extend 
the LEACH cluster formation algorithm to multiple hierarchical levels, and ensure that the 
cluster-heads at the topmost level are always reachable from the base station. 
 
2.2.3. A secure hierarchical model 

Tubaishat et al. [25] propose an energy-efficient level-based hierarchical routing protocol. 
Additionally, it designs a Secure Routing Protocol for Sensor Networks (SRPSN) that pro-
vides protection against different kinds of attacks and guarantees that packets reach the sink 
from the source even in the presence of intermediate adversaries. 

 The protocol organizes the sensor nodes hierarchically into levels. This classification into 
levels is based on the number of neighbours of each node. If a node has a larger number of 
neighbours, then it will be assigned a higher level. A node discovers the identity and num-
ber of its neighbours (NBR) by broadcasting a hello message. This is followed by a round 
of exchange of node IDs and NBRs to build connected groups or clusters. Nodes which 
have the highest NBRs become cluster-heads. The cluster-heads are responsible for aggre-
gating and forwarding sensor data. A sensor that is connected to two or more cluster-heads 
increases its level further and becomes the root. The higher level nodes can get depleted of 
their energy fast since all the traffic is routed towards higher-level nodes. However, root 
nodes receive messages only from the few cluster-heads and hence increase their power ef-
ficiency. The cluster-heads filter and aggregate the sensor node data and forward the sum-
mary to the root nodes. Hence, the information available at the higher-level nodes not only 
encompasses a wide area but is also more meaningful than lower-level nodes. 



A SURVEY OF ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS 595 

 It is assumed that sensor nodes are equipped with a position-determining system such as 
GPS. However, to conserve power, only nodes at higher levels activate their GPS, deter-
mine their location and broadcast it to their children. This serves as a reasonable approxi-
mation for the locations of the children nodes since they must be located physically close to 
the cluster-head. 

 The routing table in each node consists of entries of the form <ID, Level, NBR>, where 
ID, Level and NBR are, respectively, the identifier, level and number of neighbours of each 
potential next hop neighbour. When a node receives a packet to forward, it chooses the 
neighbour that is closest to the location of the targeted sink or source node as the next hop 
node. The level and the number of neighbours (NBR) of each neighbour also help in deter-
mining the next hop. 

 In the SRPSN protocol, each sensor node shares a secret key with the sink node. The sink 
node maintains a table of (id, key) pairs for all nodes. The protocol runs in two phases: se-
cure route discovery and secure data forwarding. The secure route discovery phase is initi-
ated by the source node, which sends out a route request (RREQ) message to its neighbours. 
The RREQ message includes the IDs of the source and the sink, an encrypted nonce and a 
MAC generated using the key shared with the sink node. An intermediate node forwards the 
RREQ after including its ID and its previous hop ID. When the sink node receives the 
RREQ, it verifies the MAC using the shared key, constructs a route reply (RREP) message 
and broadcasts it. The RREP message consists of the IDs of source node, sink node, current 
node and predecessor node protected by a MAC generated using the shared key. As the 
RREP message is propagated towards the source node, the routing tables of all the interme-
diate nodes are updated. The source node verifies that the RREP message originated from 
the sink node using the MAC. If the source node does not receive the RREP message (pos-
sibly due to malicious intermediate nodes), it triggers another route discovery. 

 Once the route discovery phase completes, the sink node transmits encrypted cluster 
group keys to nodes using the shared secret keys. The sensor nodes send encrypted data 
along with an MAC to their cluster-heads using the cluster group key. Secure inter-cluster 
communication works similar to the route discovery phase. 

 The routing protocol uses a naive clustering algorithm based on the number of 
neighbours as the metric. This can lead to nonuniform clusters depending on the distribu-
tion of the sensor nodes. Thus the nodes having the largest number of neighbours can burn 
out faster. A better clustering algorithm that can yield uniform clusters will be a useful im-
provement to the protocol. 
 
2.2.4. Summary of hierarchical and cluster-based routing protocols 

Hierarchical routing protocols greatly increase the scalability of a sensor network. The 
overall energy consumption of the nodes is reduced, leading to prolonged network lifetime. 
The organization of the network into clusters lends itself to efficient data aggregation which 
in turn results in better utilization of the channel bandwidth. Cluster-based routing holds 
great promise for many-to-one and one-to-many communication paradigms that are preva-
lent in sensor networks. 



N. NARASIMHA DATTA AND K. GOPINATH 596 

Table III 
Comparison of sensor network routing protocols 

 GPS Multi- MAC Mobility Event Energy Flooding Intrusion Failure 
 required path scheduling aware driven distribution involved tolerant recovery 
  routing (TDMA) 
 

TinyOS No No No No No Non- Yes No No 
beaconing      uniform 
Pulse No No Yes No No Non- Yes No Yes 
      uniform 
Directed Yes No No Yes No Non- Yes No Yes 
diffusion      uniform 
Rumor No No No Yes Yes Non- Partly No Yes 
Routing      uniform 
SPIN No No Yes No Yes Uniform Partly No Yes 
Braided No Yes No Yes No Non- No No Yes 
multipath      uniform 
routing  
GRAB No Yes Yes Yes Yes Non- No No Yes 
      uniform 
INSENS No Yes Yes No No Non- Yes Yes No 
      uniform 
SAR No Yes Yes Yes No Uniform Yes No Yes 
GEAR Yes No No No No Uniform Partly No Yes 
ARRIVE No Yes Yes No No Non- Partly Partly Yes 
       uniform 
ASCENT No No Yes No No Non- No No Yes 
      uniform 
Robust Optional No No No No Non- No No Yes 
routing      uniform 
TBF Yes Yes No Yes No Non- Partly in No Yes 
      uniform broadcasting 
Data MULEs No No No Yes No Uniform No No Yes 
SWE/MWE No No Yes Yes No Uniform Yes No No 
LEACH No No Yes No No Uniform No No Yes 
SRPSN Yes No No No No Uniform Yes Yes Yes 

 
3. Conclusions 

Wireless sensor networks are increasingly being used in military, environmental, health and 
commercial applications. The problem of relaying data from remote sensor nodes to a cen-
tral base station is of paramount importance in such applications. Severe resource con-
straints in the form of limited computation, memory and power make the problem of 
routing interesting and challenging. Sensor networks are inherently different from tradi-
tional wired networks as well as wireless ad-hoc networks. However, routing algorithms for 
sensor networks have borrowed liberally from the existing algorithms for ad-hoc networks. 
In this paper we have tried to explore the space of sensor network routing. An attempt has 
been made to summarize many of the proposed routing algorithms. The routing protocols 
have been classified into distinct categories and their advantages and disadvantages have 
been discussed. The routing protocols are compared in Table II and classified in Table III. 
This survey will hopefully motivate future researchers to come up with smarter and more 
robust routing techniques. 



A SURVEY OF ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS 597 

References 
1. J. M. Kahn, R. H. Katz, and K. S. J. Pister, Next century challenges: Mobile networking for smart dust, Proc. 

Fifth Annual ACM/IEEE Int. Conf. Mobile Computing and Networking (Mobicom 99), 1999, pp. 271–278. 
2. J. Rabaey, J. Ammer, J. L. da Silva Jr, and D. Patel, Pico-radio: ad-hoc wireless networking of ubiquitous 

low-energy sensor/monitor nodes, Proc. VLSI (WVLSI ‘00), Orlando, 2000. 
3. Anish Arora et al., ExScal: Elements of an extreme scale wireless sensor network, Proc. 11 IEEE Int. Conf. 

on Embedded and Real-Time Computing Systems and Applications (RTCSA ‘05), 2005, pp. 102–108. 
4. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks: a survey, Com-

puter Networks, 38, 393–422 (2002). 
5. Nachiketh R. Potlapally, Srivaths Ravi, Anand Raghunathan, and Niraj K. Jha, Analyzing the energy con-

sumption of security protocols, Proc 2003 Int. Symp. on Low Power Electronics and Design (ISLPED), 
2003, pp. 30–35. 

6. Radia Perlman, Interconnections: Bridges, Routers, Switches, and Internetworking protocols, Second edi-
tion, Addison-Wesley (2000). 

7. Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister, System architecture 
directions for networked sensors, Proc. ACM Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS IX), 2000. 

8. Baruch Awerbuch, David Holmer, Herbert Rubens, Kirk Chang, and I. J. Wang, The Pulse protocol: sensor 
network routing and power saving, Military Communications Conf. (MIL-COM 2004), 2004. 

9. Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin, Directed diffusion: A scalable and ro-
bust communication paradigm for sensor networks, Proc. Sixth Annual Int. Conf. Mobile Computing and 
Networking (Mobicom ‘00), Boston, 2000. 

10. David Braginsky, and Deborah Estrin, Rumor routing algorithm for sensor networks, First ACM Int. Work-
shop on Wireless Sensor Networks and Applications (WSNA), Atlanta, Sept. 28, 2002, pp. 22–31. 

11. Deepak Ganesan, Ramesh Govindan, Scott Shenker, and Deborah Estrin, Highly-resilient, energy-efficient 
multipath routing in wireless sensor networks, ACM SIGMOBILE, Mobile Computing Commun. Rev., 15, 
11–25 (2001). 

12. Joanna Kulik, Wendi Heinzelman, and Hari Balakrishnan, Negotiation-based protocols for disseminating in-
formation in wireless sensor networks, Wireless Networks, 8, 169–185 (2002). 

13. Fan Ye, Gary Zhong, Songwu Lu, and Lixia Zhang, GRAdient broadcast: A robust data delivery protocol for 
large scale sensor networks, ACM Wireless Networks J. (WINET), 11, 285–298 (2005). 

14. Jing Deng, Richard Han, and Shivakant Mishra, INSENS: Intrusion-tolerant routing in wireless sensor net-
works, Poster paper, 23rd IEEE Int. Conf. on Distributed Computing Systems (ICDCS 2003), Rhode Island, 
May 2003. 

15. Katayoun Sohrabi, Jay Gao, Vishal Ailawadhi, and Gregory J. Pottie, Protocols for self-organization of a 
wireless sensor network, IEEE Personal Commun., 7, 16–27 (2000). 

16. Yan Yu, Ramesh Govindan, and Deborah Estrin, Geographical and energy aware routing: A recursive data 
dissemination protocol for wireless sensor networks, Technical Report UCLA/CSD-TR-01-0023, Computer 
Science Department, University of California at Los Angeles (2001). 

17. Chris Karlof, Yaping Li, and Joseph Polastre, ARRIVE: Algorithm for robust routing in volatile environ-
ments, Technical Report, UCB/CSD-03-1233, Computer Science Department, University of California at 
Berkeley (2002). 

18. Alec Woo, Terence Tong, and David Culler, Taming the underlying challenges of reliable multihop routing 
in sensor networks, ACM Conf. on Embedded Networked Sensor Systems (SenSys ‘03), 2003. 

19. Alberto Cerpa, and Deborah Estrin, ASCENT: Adaptive self-configuring sEnsor networks topologies, IEEE 
Trans. on Mobile Computing, Special Issue on Mission-Oriented Sensor Networks, 3, 272–285 (2004). 

20. Jing Deng, Richard Han, and Shivakant Mishra, A robust and light-weight routing mechanism for wireless 
sensor networks, Proc. 1st Workshop on Dependability Issues in Wireless Ad Hoc Networks and Sensor Net-
works (DIWANS 2004), 2004. 



N. NARASIMHA DATTA AND K. GOPINATH 598 

21. Curt Schurgers, and Mani B. Srivastava, Energy efficient routing in wireless sensor networks, Military 
Commun. Conf. (MILCOM 2001), 2001. 

22. Dragos Niculescu, and Badri Nath, Trajectory based forwarding and its applications, Proc. Ninth Annual Int. 
Conf. on Mobile Computing and Networking (Mobicom ‘03), 2003. 

23. Rahul C. Shah, Sumit Roy, Sushant Jain, and Waylon Brunette, Data MULEs: Modeling a three-tier archi-
tecture for sparse sensor networks, Proc. First IEEE Int. Workshop on Sensor Network Protocols and Appli-
cations, 2003. 

24. Wendi Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan, Energy-efficient communication proto-
col for wireless microsensor networks, Proc. 33rd Hawaii Int. Conf. on System Sciences, 2000. 

25. Malik Tubaishat, Jian Yin, Biswajit Panja, and Sanjay Madria, A secure hierarchical model for sensor net-
work, ACM SIGMOD Record, 33, 7–13 (2004). 

26. Chris Karlof, and David Wagner, Secure routing in wireless sensor networks: Attacks and countermeasures, 
Ad Hoc Networks, 1, 293–315 (2003). 

27. Jamal N. Al-Karaki, and Ahmed E. Kamal, Routing techniques in wireless sensor networks: a survey, IEEE 
Wireless Commun., 11, 6–28 (2004). 

 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


