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Abstract 
 
The shape from shading (SfS) problem in computer vision requires complete knowledge of the image conditions 
under which an image is created to produce surface descriptions. Almost all the methods rely on modeling the im-
age formation process view and invert it mathematically which in turn places constraints on imaging conditions. 
These methods make constraining assumptions on camera model (orthographic projections), light source (single-
point source at infinity) and reflectance model (Lambertian). In this paper, we present a general framework for 
solving the SfS problem under general imaging conditions by using powerful image synthesis techniques from 
computer graphics and thus moving the complexity of producing surface descriptions from analysis to the synthe-
sis side. The technique relies on iterative synthesis of images from object descriptions in order to minimize an er-
ror function. The technique is illustrated in detail for quadric surfaces, with the ellipsoid as the specific example. 
To extend the method to general surfaces, the surfaces are modeled under the Bézier framework. The proposed 
framework is found to be very general with the capability to accommodate widely varying reflectance models and 
light source types. 
 
Keywords: Computer vision, Analysis by synthesis, Bézier surfaces. 
 
1. Introduction 

Shape from shading (SfS) is one of the earliest problems in computer vision [1]. The prob-
lem can be stated as follows: Given the image of an object, extract the 3D information of 
the object, the object’s surface profile by analyzing the shading on the image. The term 
shading is used to denote the variations in the intensity values of the object’s image occur-
ring due to variations in the object’s surface profile. The recovered 3D shape is expressed 
in one of the many ways like (i) the relative depth z(x, y) of the surface points with respect 
to a reference x–y plane, (ii) the normals about the various points on the surface, (iii) the 
surface gradient, representing the rate of change in depth along the x and y directions, etc. 

 Traditionally, the SfS problem is approached by first modeling the image formation 
process. The resulting image irradiance equation is a partial differential equation, which is 
then either explicitly solved [1] or used in a constrained optimization process [2] to obtain 
shape information. These methods solve the problem under very restrictive constraints and 
assumptions: the surface reflection process is typically Lambertian; the light is usually a 
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single-point source at infinity, and in one specific case [3] a uniform hemispheric source; 
the camera is almost always orthographic, and in rare instances perspective [4]. There have 
been very few attempts to solve the general SfS problem, even for a simple surface like the 
sphere. The SfS problem under general imaging conditions is solved in [5] where shape in-
formation at a known point on the surface is propagated across the entire surface to get the 
surface shape. To constrain the surface propagation method to give a unique solution, the 
author makes use of multiple images of the same scene. 

 In this paper, we attempt to address the SfS problem, first for a specific class of surfaces 
called implicit surfaces, and then for general surfaces, given auxiliary information like the 
type and position of the object, the number, type and distribution of light sources, the model 
for light reflectance on the surface along with the associated parameter values, etc. Image 
synthesis techniques from computer graphics are used for estimating an object’s shape from 
its image.  

 In Section 2, a description of implicit surfaces with specific emphasis on their analysis is 
presented. Quadric surfaces are an important class of implicit surfaces. In Section 3, we 
present the analysis by synthesis framework and illustrate it for quadric surfaces. This 
framework is extended in Section 4 for general surfaces using Bézier techniques to model 
the surface as linear combinations of Bernstein polynomials. Finally, conclusions are pre-
sented in Section 5. 
 
2. Analysis of implicit surfaces 

Implicit surfaces are one of the most commonly occurring surfaces in computer graphics. 
An implicit surface in 3D space is defined by a real-valued function F over the variables x, 
y and z. With the function F(x, y, z) defined, the various level sets of the function are sur-
faces in the 3D space. In particular, the set of all points at which F constitutes a surface in 
the 3D space is given as  

 F(x, y, z) = 0. (1) 

As an example, if F(x, y, z) ≡ x2 + y2 + z2 – r2, then (1) is a sphere of radius r centered at the 
origin. Representing objects and their surfaces in the implicit form using a mathematical 
function has a number of advantages. The representation being compact, the surface can be 
enumerated to any degree of precision, unlike the mesh representations, for example. Tan-
gents and normals to the surface have analytical representations from the gradient of the 
function F. As a result, the synthesis of the image of an implicit object is very straight-
forward. The general procedure is to send ‘eye rays’ from the camera to the scene. Then test 
for intersection is carried out between each ray and the object. If there is an intersection, in-
formation around the point of intersection like the surface normal is used to calculate the 
brightness on the image. The test for ray-object intersections is greatly simplified in the im-
plicit surface case because of the closed form representation. 

 Some of the commonly used implicit surfaces for object modeling include the quadrics, 
blobby molecules, meta balls [6], etc. Given the image of an implicit surface, we attempt to 
extract the ‘characteristic parameters’ corresponding to the surface. For example, when the 
image of a sphere is given, we are interested in determining the radius of the sphere, which 
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is the characteristic parameter. This is in contrast to the traditional approaches where the 
goal is to directly evaluate the surface gradients. The detailed discussion of the analysis 
process is given in [7] and described here briefly. 

 Objects from the same class of implicit surfaces differ from each other in their character-
istic parameters. For example, two sphere objects are different if they have different radii. 
We modify (1) to explicitly include this dependence. 

 F(x, y, z; c) = 0 (2) 

The vector c represents the characteristic parameters. Under identical imaging conditions, 
the images I1 and I2 respectively of objects O1 and O2 belonging to the same class will be 
identical if and only if their characteristic parameter vectors are the same (c1 = c2). Con-
versely, if O1 and O2 are different (c1 ≠ c2), there will be an ‘error’ between I1 and I2. The 
error will depend on the deviation of c2 from c1. The error can be defined as the sum of the 
squares of the differences between the pixel values in images I1 and I2. 

 2
1 2

,
[ ( , ) ( , )] .

i j
E i j i j= −∑ I I  (3) 

Given an image I, the goal is to extract the characteristic parameter vector c of the object 
represented by its image. It is equivalent to determining the c* for which the error between 
the original image and the image synthesized from c becomes the minimum. Hence, the task 
of determining the shape of the object becomes one of searching for the specific c* which 
minimizes the error between the original and synthesized images. 

 The general procedure for finding the vector c* for the object, given its image I, is for-
mulated as—Start with an initial c and synthesize the corresponding image I′, progressively 
refine the parameter vector c such that the error E between I and I′ approaches the mini-
mum value 0. The characteristic vector c* when the error becomes 0 will be the one corre-
sponding to the object in the original image. 

 The error as function for a simple object like sphere of radius r is shown in Fig. 1. The 
error is a function of c* = r* when c = r is the desired characteristic parameter. The error 
being quadratic function of r has a minimum as seen in Fig. 1. In general, c will be an n-D 
vector and therefore has a global minimum. 

 The synthesis process can be explicitly modeled for the simple implicit surfaces like 
spheres and ellipsoid, etc. The error has a closed form expression and hence gradient-based 
optimization methods can be used to minimize the error. 

 Our ability to carry out this analysis successfully is dependent on the closeness to reality 
of the original synthesis process. Realistic image synthesis processes incorporate complex 
camera models, accurate reflectance models involving a large number of parameters, and 
complicated light source distributions which invariably precludes analytical equations for 
the synthesis process. Consequently, there is only a ‘process’ and no ‘equation’ to model 
this process. As a result, the traditional analytical gradient-based optimization methods 
cannot be used. Therefore, we need to resort to optimization methods that involve only the 
function values and not the derivatives. It must be noted that since we are not constrained 
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FIG. 1. Squared error between sphere of radius r = 25 
and synthesized sphere for different radii. 

 
 
FIG. 2. Elliptic geometry. 

 
by the requirement of explicit model for the realistic synthesis processes, we can allow the 
synthesis process to be as complex as needed to achieve added realism.  
 In such situations, the case of a single-point light source with Lambertian surface reflec-
tion has been studied extensively [1, 2] for recovering the shape from shading. An impor-
tant class of implicit surfaces commonly occurring in computer graphics and vision are the 
quadrics [8]. For simple objects like the quadrics, image synthesis under Lambertian reflec-
tance and single-point light source is analytically deducible. Quadric analysis under these 
simplistic assumptions is demonstrated in the following section. We shall resort to numeri-
cal optimization techniques when an analytical model cannot be derived, or, when derived, 
is too cumbersome to work with. In this work, we use the polytope method [9] for minimiz-
ing the error in the simulations. We illustrate the framework for shape recovery from shad-
ing for the quadric surfaces in the following section. 
 
3. Quadric surfaces 

If the implicit function F characterizing a surface is a polynomial, then the surface is called 
an algebraic surface. A quadratic surface or quadric is defined by a second-degree algebraic 
surface, and is given by the general equation as follows. 

 2 2 2 2( ) 2( ) 0.ax by cz fyz gzx hxy px qy rz d+ + + + + + + + + =  (4) 

Sphere, ellipsoid, paraboloid and hyperboloid are examples of quadrics. Quadrics and its 
generalization called ‘super-quadrics’ are popular models for object representation in com-
puter vision [8]. 
 The equation of an ellipsoid centered at (x0, y0, z0) is given by 

 
2 2 2

0 0 0
2 2 2

( ) ( ) ( )
1,

x x y y z z
a b c
− − −

+ + =  (5) 

where a, b and c are the half-lengths of the ellipsoid. When the image of an ellipsoid with a known 
origin is given, we would like to determine its characteristic parameter vector c = [a, b, c]. 

 Given the θ and φ at a point on the ellipsoid centered at origin, the (x, y, z) coordinates 
and vice versa can be obtained from the following equations 
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 cos cos , cos sin , sinx a y b z cθ φ θ φ θ= = =  

 1 1sin , tanz a y
c b x

θ φ− −⎛ ⎞ ⎛ ⎞= = ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (6) 

The next subsection presents the analysis of the image of an ellipsoid object to recover its 
characteristic parameters. The other quadrics and super-quadrics can be analyzed similar to 
the ellipsoid. 
 
3.1. Ellipsoid synthesis 

The synthesis of the object is done using ray tracing [10] by sending out rays from the ori-
gin to various points on the camera screen. The intersection of a ray with ellipsoid is calcu-
lated followed by surface normal at the point of intersection. The normal is used to 
calculate the radiance from the surface. Figure 2 shows the ellipsoid geometry with a ray 
originating from the origin intersecting the ellipsoid at point P and projected on the camera 
screen. 
 Let the point of intersection of the ray with ellipsoid be given by 

 r = o + td, (7) 

where o(xo, yo, zo) and d(xd, yd, zd) are the origin and the direction vectors of the ray, respec-
tively. The points on the ray can be obtained for t ≥ 0 extending to infinity by substituting 
the coordinates of the point in the ellipsoid equation. 

 
2 2 2

0 0 0
2 2 2

( . ) ( . ) ( . )
1.d d dx t x y t y z t z

a b c
− − −

+ + =  (8) 

Rearranging the terms in powers of t, we have 

 At2 + Bt + C = 0 

where  

 
2 2 2

2 2 2 ,d d dx y z
A

a b c
= + +  0 0 0

2 2 2
2 2 2

,d d dx x y y z z
B

a b c
= + +  and 

2 2 2
0 0 0
2 2 2 1.

x y z
C

a b c
= + + −  (9) 

Solving for t, the ray intersects the ellipsoid for real values and the value closest to origin is 
chosen. Let ti be the value of t at point Pi(xp, yp, zp) of intersection. We can get the values of 
θ and φ at the point using (6). The tangents to the surface at point P can be computed by 
taking the partial derivative with θ and φ and the normal by taking the cross product of the 
tangents as follows: 

 
sin cos sin sin cos

,
cos sin cos cos 0

a b c

a b

θ φ θ φ θθ

θ φ θ φ
φ

∂⎡ ⎤
⎢ ⎥ − −⎡ ⎤∂⎢ ⎥ = ⎢ ⎥⎢ ⎥∂ ⎢ ⎥−⎣ ⎦⎢ ⎥
∂⎢ ⎥⎣ ⎦

P

P
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  θ φ

θ φ

∂ ∂
×

∂ ∂
=

∂ ∂
×

∂ ∂

P P

N
P P

 (10) 

A local coordinate system can be defined about the point using (10).  
 
3.2. Ellipsoid analysis under Lambertian reflectance model 

The ellipsoid analysis for the analytically tractable case of Lambertian reflection under a 
single-point light source is presented in this section [11]. Minimization of the error in this 
case is done using gradient-based optimization methods. Under more realistic imaging con-
ditions, numerical methods are employed for performing the multiparameter optimization. 
First, we derive the necessary equations for performing optimization under the Lambertian 
reflectance and a single-point light source. 

 Given the x and y values at any point on the surface of ellipsoid, the corresponding value 
of z can be calculated from the ellipsoid equation (5) as 

 
2 2

0 0
0 2 2

( ) ( )
1 .

x x y y
z z c

a b
− −

= ± − −  (11) 

Hence a point P on the surface of the ellipsoid is given by (x, y, z) where z is given by (11) 
with positive sign for convenience. The tangents to the surface at point P can be computed 
by taking the partial derivative with x and y and the normal by taking the cross product of 
the tangents as follows: 

 

0

2 2
0 0

2 2

0

2 2
0 0

2 2

1 0
( ) ( )1

,

0 1
( ) ( )1

x xc
a a

x x y y
x a b

y yc
y b b

x x y y
a b

⎡ − ⎤⎛ ⎞− ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥∂ − −⎡ ⎤ − −⎢ ⎥⎢ ⎥∂ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥∂ −⎛ ⎞⎢ ⎥⎢ ⎥ − ⎜ ⎟⎢ ⎥∂⎢ ⎥⎣ ⎦ ⎝ ⎠⎢ ⎥

− −⎢ ⎥− −⎢ ⎥⎢ ⎥⎣ ⎦

P

P
 

 0 0 01 1 1x x y y z z
x y a a b b c c

⎡ − − − ⎤∂ ∂ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= × = ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

P PN  (12) 

If the single-point light source is situated at (xl, yl, zl) in the world, then the light-source di-
rection with respect to point P is 

 L=(xl – x, yl – y, zl – z). 

In the simplified case of Lambertian reflectance, the brightness from point P is independent 
of the viewing direction and is dependent only on the N and L directions. Assuming Lam-
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bertian reflection with a single-point light source at infinity, the brightness due to a point on 
the object surface is 

 R = αcosθ, (13) 

where θ is the angle between the surface normal vector N and the light source vector L, and 
α is the scaling factor. In the case of the ellipsoid, R is dependent on the characteristic pa-
rameters by virtue of the fact that N on the surface of the ellipsoid at any point (x, y, z) is 
dependent on a, b and c values. The expression for R can be written as 

 ( , , )
( , , ) ( , , )

a b cR
a b c x y z

=
f

h g
 

where 

 0 0 01 1 1( , , ) ( ) ( ) ( ),l l l
x x y y z z

a b c x x y y z z
a a b b c c

− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

f  

 
2 2 2

0 0 0
2 2 2

1 1 1( , , ) ,
x x y y z z

a b c
a b ca b c
− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
h  

 2 2 2( , , ) ( ) ( ) ( )l l lx y z x x y y z z= − + − + −g  (14) 

The expression for R can be used to compute the characteristic parameter vector c = [a, b, c] 
of an ellipsoid represented by its image I. The error between the image I and a synthesized 
image R(a, b, c) will be a function of a, b, and c and is given in the mean square sense by 

 2

,
( , , ) [ ( , , ) ] .i, j i, j

i j
E a b c a b c= −∑ R I  (15) 

Because of the simple form of Lambertian reflection, we get a closed form expression for E. 
E is minimized by employing any of the widely used techniques for multivariable optimiza-
tion which involve the partial derivatives ∂E/∂a, ∂E/∂b, and ∂E/∂c. Gauss–Newton method 
is an optimization method well suited for minimizing functions of the form 

 21 1( ) ( ) ( ) ( ),
2 2

T
i

i

E e e e= =∑w w w w  (16) 

where 1 2[ ]Tnw w w= ⋅⋅ ⋅w  is n-dimentional vector. 

 The Gauss–Newton iteration procedure [12] in the case of ellipsoid is presented as fol-
lows. The error term ei(w) in (16) can be expanded in the Taylor series around a point wn, 
and e(w) can written in matrix form 

 ( ) ( ) ( )( ),n n n= + −e w e w J w w w  

where  1 2( ) [ ( ) ( ) ( )] ,T
n n n m ne e e= ⋅⋅ ⋅e w w w w  
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1 1 1

2 2 2

( ) ,

n

n

m m m

e e e
a b c

e e e
a b c

e e e
a b c =

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥
∂ ∂ ∂⎢ ⎥=

⎢ ⎥
⎢ ⎥
⎢ ⎥
∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦w w

J w  (17) 

J(wn) is the Jacobian of the error vector e(w) at w = wn. The mean square error in (16) is it-
eratively minimized. The update equation for the wn is obtained by differentiating E(w) with 
respect to w and setting it to zero, and solving the resulting equation. 

 1
1 [ ( ) ( )] ( ).T T

n n n n n
−

+ = −w w J w J w J e w  (18) 

In order to employ the Gauss–Newton method, the matrix product JT(w)J(w) must be non-
singular at each intermediate point wn during the iteration. It is a symmetric matrix and 
hence positive semidefinite. To ensure that it is nonsingular, it is customary to add a diago-
nal matrix δI to JT(w)J(w), where δ is a small positive constant. The resulting matrix is 
positive definite and hence always invertible. In practice, we start with a δ value and pro-
gressively decrease it as the number of iterations increases. 

 To apply the Gauss–Newton method for ellipsoid analysis, we have to obtain the deriva-
tive of R with respect to a, b, and c, which in turn requires evaluation of partial derivatives 
of f, h, and g with respect to ellipsoid parameters (a, b, and c). These partial derivatives in-
volve partial derivatives of z with respect to a, b, and c with x and y in the ellipsoid equa-
tion being fixed. These partial derivatives can be obtained using (14). 

 For more complex imaging scenarios (for example, ‘copper’ ellipsoid under two-point 
light sources), the expression for R will not be as simple as in (13). Ideally, we would like 
to work with natural images, where this simplified assumption will not suffice. In the gen-
eral case of realistic reflectance models and more general lighting conditions, the absence 
of an explicit image irradiance equation constrains us to work only with pixel values in syn-
thesized images. Therefore, in the absence of an error function, we have to resort to nu-
merical optimization techniques for minimizing the error between two images to find the 
characteristic parameter. In the case of the ellipsoid, the error is a function of the three vari-
ables a, b and c. Consequently, numerical techniques for multivariable function optimiza-
tion must be employed. 

 The Nelder–Mead Downhill Simplex Method [8], otherwise called the polytope method, 
is a well-known numerical algorithm for optimizing functions defined over multiple vari-
ables. The method proceeds by moving a simplex, which is a polygon of n + 1 sides when 
minimization is done over n variables, in a specific manner in order to bracket the minimum 
error point. The search is continued by progressively reducing the size of the simplex till 
the minimum error point is attained within an acceptable tolerance. This simple algorithm is 
time consuming but is robust. An elaborate discussion of this algorithm can be found in [9]. 



SHAPE FROM SHADING 607 

 
FIG. 3. Sphere generated under one light source with different reflectance models. 
 
3.3. Simulations 

In the simulations, we consider the synthesis of sphere followed by the ellipsoid under dif-
ferent imaging conditions (light sources and reflectance models) in illustrating the analysis 
by synthesis of quadric surfaces. Reflectance models range from simple one-parameter 
models which are coarse approximations of reflection to more complex and accurate phys-
ics-based models incorporating almost every phenomenon affecting surface reflection. We 
consider the Lambertian, Oren–Nayar [13], Blinn-Phong [14] and Cook-Torrance [15] re-
flectance models for the simulations. The Lambertian and Oren–Nayar models explain the 
process of diffuse reflection exhibited by dull, matte surfaces. Surfaces exhibiting Lamber-
tian reflection appear equally bright from all viewing directions as they reflect light with 
equal intensity in all directions. Lambertian reflection is therefore independent of the view-
ing direction and is dependent only on the angle between the light-source direction and the 
surface normal. The Oren–Nayar model is a generalization of the Lambertian reflectance 
model and is able to account for complex geometric and radiometric phenomena such as 
masking, shadowing and interreflections. The Blinn–Phong model is an empirical model for 
specular reflection in which the specular highlight is modeled by an exponentiated cosine. 
The model due to Cook and Torrance is an example of a physics-based specular reflection 
model where the reflectance function is derived by analyzing the physical processes underlying 
reflection. An extensive discussion of the various reflectance models can be found in [10]. 

 Figure 3 show the synthesis of the sphere generated under single light source with  
Lambertian, Oren–Nayar [13] and Blinn–Phong [14] reflectance models. Figure 4 shows the 
sphere generated with two light sources for Blinn–Phong and Cook–Torrance [15] reflec-
tance models and Cook–Torrance reflectance model under three light sources. It may be 
noted that the treatment in sub-sections 3.1 and 3.2 can be easily reduced to the sphere 
where the characteristic vector is c = r, the radius of the sphere. 

 Figures 5 and 6 show the synthesis of an ellipsoid under the identical imaging conditions 
as in the case of sphere in Figs 3 and 4, respectively. It can be observed in both the cases 
that the fall in the brightness towards the edges is less pronounced in the case of Lamber-tain 
model compared to the Oren–Nayar model which is one of the characteristics of the Oren–
Nayar model for rough surfaces. In Figs 4 and 6, the objects have been synthesized under 
the presence of specular components. The specular model in Figs 4(a) and 6(a) is the em-

Synthesis of sphere under single light source 
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FIG. 4. Sphere generated under two and three light sources with different reflectance models. 
 
pirical Blinn–Phong model while the more accurate Cook–Torrance model has been em-
ployed for the specular component in Figs 4(b) and 6(b) as well as Figs 4(c) and 6(c). Thus, 
it is seen that under all these different imaging scenarios, the proposed method can be ap-
plied to extract the characteristic vector of any implicit surface accurately. 
 
4. Analysis by synthesis of general surfaces 
Modeling of surfaces is a major area of study in the field of geometric modeling. Computer 
graphics engineers have devised number of tools to model surfaces for computer-aided 
geometric design and efficient algorithms to render these general surfaces. The objective in 
this section is to demonstrate the utility of the proposed analysis by synthesis framework 
for determining the shape information from shading in images of general surfaces. As a first 
step, we need an efficient and ‘good’ representation scheme or model for the surfaces to 
synthesize the surface for visualization. Bézier surfaces are one of the most popular repre-
sentations for describing surfaces. These are formed by the linear combinations of Bern-
stein polynomials [16]. 
 
4.1. Bézier surfaces 
Bézier techniques provide a geometric-based method for describing and manipulating poly-
nomial curves and surfaces represented in parametric form. The power of Bézier techniques  
 

 
FIG. 5. Ellipsoid generated under one light source with different reflectance models. 

Synthesis of sphere under 
Two light sources Three light sources 

Synthesis of ellipsoid under single light source 
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FIG. 6. Ellipsoid generated under two and three light sources with different reflectance models. 
 
lies in their ability to provide a highly intuitive basis for understanding the curves and sur-
faces. Because of the twin advantages of the mathematical sophistication and intuitive form, 
Bézier methods are popular in computer graphics and computer-aided geometric design for 
dealing with curves and surfaces [16]. The Bézier curves are introduced first and extended 
to the Bézier surfaces.  
 Polynomial parametric curves are widely used for representing curves. A curve of degree 
n is represented with polynomial coordinates as 

 1
n 1 1 0( ) ,n nt t t t−
−= + + ⋅⋅ ⋅ + +nP p p p p  (19) 

where P(t) is the vector [x(t), y(t), z(t)]T and pi are control points. The monomial form of 
polynomial curves is not the only representation for polynomial curves. There are other rep-
resentations available which are more geometrically intuitive. The Bézier formulation built 
on Bernstein basis functions provides an intuitive framework for representing curves. A Bé-
zier curve of degree n is of the form 

 ,
0

( ) ( ) ,
n

i i n
i

t B t
=

= =∑ TP P P B  

where , ( )i nB t  are degree n Bernstein polynomials 

 ,
!( ) (1 ) and .

!( )!
i n i

i n

n n nB t t t
i n ii i

−
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − =
⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠

 (20) 

The geometric intuition of the Bézier curve representation is due to the fact that the coeffi-
cients Pi of the Bernstein polynomials in (20) are themselves points in 3D space. Bernstein 
polynomials possess some important properties [16] which make them extremely useful in 
geometric modeling and computer graphics. 

 Among the Bézier curves, the cubic Bézier curves are more often used than any other de-
gree. These curves have a reasonably low degree of 3 and at the same time are flexible to a 
certain extent. Given the control points P0, P1, P2, P3, the cubic Bézier curve and the corre-
sponding Bernstein polynomials are defined by (20) for n = 3. The cubic Bézier curve can 
be written in matrix form by grouping together the terms in powers of t which is convenient 
for performing certain operations on the curve. 

Synthesis of ellipsoid under 
Two light sources Three light sources 
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 2 3
0 1 2 3( ) [1 ] [ ]Tt t t t ′=P B P P P P  (21) 

where the elements bi,j of matrix B′ are coefficients of power basis used to determine the re-
spective Bernstein polynomials. 
 Matrix B′ is the blending function for P(t) facilitating the operations on the curve. For 
example, it is often required to subdivide the curve into two parts, one where t ranges from 
0 to 1/2 and the other for t ranging from 1/2 to 1. This operation can be done under the ma-
trix representation as follows: 

  1 10, , 1
2 2

2 3
0 1 2 3( ) [1 ] ( )[ ] .Tt t t t ⎡ ⎤ ⎡ ⎤

⎣ ⎦ ⎣ ⎦
′= +P B S S P P P P  (22) 

Thus, by grouping the S matrix and the vector of points together and multiplying them, the 
subdivision process can be seen as one of defining a new curve by modifying the existing 
control points. The subdivision operation is very useful when finding the intersection of a 
line with the Bézier curve. To find the point of intersection, the curve is divided into two 
parts following the above discussion, and the half of the curve whose bounding box is inter-
sected by the line is again subdivided. This bounding box intersection and subdivision 
process can be carried to a desired level of resolution after which the mid-point of the 
smallest bounding box intersected by the line is taken to be the point of intersection. The 
subdivision procedure is used to render Bézier curves as well as Bézier patches. 
 
4.2. Bézier patches 

The extension of Bézier curves to surfaces is called the Bézier patch [16]. A parametric sur-
face is the result of a map of the real plane (domain) into the 3D space (co-domain). If a (u, 
v)-coordinate system is defined on this real plane, then P(u, v) is a point on a surface in 3D 
and its x, y, and z coordinates are functions of u and v. A Bézier patch is constructed from 
an m × n array of control points {Pi;j : 0 ≤ i ≤ m, 0 ≤ j ≤ n}. The collection of control points 
is called the control net. Given the control net, the Bézier patch is defined as 

 , , ,
0 0

( , ) ( ) ( )
n m

i j i m j n
j i

u v B u B v
= =

= ∑∑P P  

 0, 1, , 0, 1, ,[ ( ) ( ) ( )] [ ( ) ( ) ( )] .T T
m m m m n n n nB u B u B u B v B v B v= ⋅⋅⋅ ⋅ ⋅ ⋅P  (23) 

The Bézier patch has the same general form as the Bézier curve, with the summation done 
over a control matrix instead of a control vector. The bivariate Bernstein polynomials serve 
as the blending functions for the control points. They are simply the product of any two 
univariate Bernstein polynomials. The Bézier patch is shown in Fig. 7. 
 The cubic Bézier surfaces can be written in matrix form by grouping together the terms 
in powers of u and v for subdivision of patches as done in the case of Bézier curves. The re-
sulting matrix equation is 

 2 3 2 3( , ) [1 ] [1 ]Tu v u u u v v v′′ ′′=P B PB  (24) 

where B″ are coefficients of powers of u and v. 
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FIG. 7. Bézier patch. 

 
 Subdivision of a Bézier patch P(u, v) into subpatches is done much the same way as Bé-
zier curves. Both the u and v parameters can be split into two parts each, [0, 1/2] and [1/2,  
1], resulting in four Bézier subpatches. The control net of the four subpatches is obtained by  
operating S, in a similar way as in (22) on the original Bézier patch’s control net P. The  
control nets of the subpatches are 

 1 1 1 10, 0, 0, , 1
2 2 2 2

1 2, ,T T
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= =P S PS P S PS  

 1 1 1 1, 1 0, , 1 , 1
2 2 2 2

3 4, ,T T
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= =P S PS P S PS  (25) 

where Pi correspond to the control net of Bi. 

4.3. Synthesis of Bézier surfaces 

The major task in image synthesis by ray tracing is to find the point of intersection of a ray  
from the camera and the object in the scene. The normal at the point of intersection will  
then be used to calculate the radiance from the surface point in the camera direction. Unlike  
the direct process of calculation of the intersection point due to closed form of the object  
equations in the case of implicit surfaces, there is no parallel procedure to calculate the in-
tersection point(s) in the case of parametric surfaces like the Bézier patches. Elaborate work  
has been carried out in the field of computer graphics to do efficient synthesis of parametric  
surfaces. Ray tracing techniques for parametric surfaces fall into two major categories,  
namely, subdivision of numerical methods. Subdivision methods rely on identifying regions  
in methods and the scene for performing ray–surface intersections in an efficient manner.  
The vocabulary in the subdivision-based methods therefore is similar to that of the physical  
entities in the system. The numerical methods on the other hand treat the intersection prob-
lem as one of optimizing a function of the ray and surface parameters. Early attempts at ray  
tracing on parametric surfaces were all subdivision based. In these methods, the ray is inter-
sected with the bounding volume of the surface by iteratively subdividing the surface patch  
into smaller subpatch till the ray intersection with the bounding volume of the subpatch is  
found. Some of the bounding volumes used in earlier works include spheres, axis-aligned  
bounding boxes and parallelepipeds. Toth [17] has proposed a numerical method for ray  
tracing Bézier surfaces. In this method, the multivariate Newton iteration has been em-
ployed to find ray–surface intersections. In this paper, we present a hybrid algorithm for the 
Bézier surface synthesis drawn from Toth [17]. 
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 Let H(u, v) = [x(u, v); y(u, v); z(u, v)]T be a parametric surface with parameters u and v 
taking values in [0; 1]. It is required to find the intersection of H(u, v) with a ray R(t)= 
o + td. The ray, parameterized by t, has origin o and direction d. An intersection between 
H(u, v) and R(t) occurs if and only if f(x) = H(u, v) + R(t) = 0, and x = [u, v, t]T. To solve 
these nonlinear equations in multiple variables, the Newton scheme is commonly employed. 
If Y is any 3 × 3 matrix, then the Newton iteration scheme is given by xk+1 = xk + Yf(xk). The 
vector Yf(xk) is referred to as the Newton step. When Y is the inverse Jacobian of f at xk, 
then geometrically it represents the coordinates of the intersection of the ray and the tangent 
plane at xk. Normally, matrix Y is updated in each iteration resulting in quadratic conver-
gence. When it is held constant, the resulting iteration scheme is called simple Newton it-
eration, and has linear convergence. 

 If the initial guess of the solution is ‘good’, then it suffices to perform the simple Newton 
scheme. The major focus of Toth’s work [17] is to arrive at such an initial value to start the 
iteration scheme. The apparatus of interval mathematics has been used in his work. Toth 
states and proves two theorems which give conditions for safely starting the Newton itera-
tion. This is done by defining an operator called the Krawczyk’s operator which is a box in 
parameter space. Let X be a box contained in an open set of interest in 3D Euclidean space. 
For any real vector y in X, and a nonsingular 3 × 3 matrix Y, K(X, y, Y), called the 
Krawczyk’s operator, is defined. Krawczyk’s operator constrains the movement of elements 
of X under a Newton step performed with Y : ∀x ∈ X, the value x – Yf (x) ∈ K(X, y, Y). In 
addition, all solutions to f (x) = 0 in X are in K(X, y, Y). Using the Krawczyk’s operator, two 
criteria for identifying ‘safe’ regions for starting the simple Newton iteration are defined by 
Toth. When a region X in parameter space satisfies one of these criteria, the simple Newton  
iteration is guaranteed to converge to a single solution for f (x) = 0 from any starting point in X. 

 The subdivision schemes as well as the numerical approaches have their own advantages 
and disadvantages. The main advantage of the subdivision methods is their simplicity. The 
intersection calculations for the bounding volumes are relatively less computation intensive. 
Also, the subdivision of a patch into subpatches is a standard procedure and, therefore, the 
hierarchy of subdivisions can be pre-computed before the actual synthesis process starts. 
But the disadvantage of these methods is that the intersection calculations typically have to 
be done for a large number of bounding volumes before the procedure ends. The numerical 
methods on the other hand typically converge in a few iterations, though convergence is-
sues are to be taken care of a priori. The disadvantages of the numerical methods include 
starting the procedure with a good initial estimate, numerical stability issues, etc. The obvi-
ous way to proceed is to combine these methods to improve the synthesis of parametric sur-
faces. Toth’s method discussed earlier has subdivision as part of its ray–surface intersection 
calculation. Lischinski and Gonczarowski [18] made a few modifications to Toth’s method 
to improve synthesis efficiency. We have made use of this method in our work for Bézier 
surface synthesis. 
 
4.4. Analysis of Bézier surfaces 

Bézier surfaces offer a better approximation to naturally occurring surfaces than implicit 
surfaces. A Bézier surface is completely determined by its control net. The control net in 
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the case of cubic Bézier surfaces has 16 control points in three dimensions. Therefore, the 
characteristic vector for a Bézier surface has 48 components. 
 Given the image of a Bézier surface, our task is to extract its characteristic vector. For an 
arbitrary characteristic vector c, the error E(c) is calculated by first synthesizing the image 
of the Bézier surface with characteristic vector c followed by a sum of squared differences 
between the pixels of the original and synthesized images. The Nelder–Mead Downhill 
Simplex method is employed for determining the true characteristic vector of the Bézier 
surface in the original image. The Downhill Simplex method as applied to Bézier surface 
analysis is as follows. 
Algorithm: Nelder–Mead Simplex method for Bézier surface analysis 

INITIALIZATION–Construct a simplex in ℜ48 represented by its vertices c0, c1, c2, …, 
c48. Choose a stop criterion ε > 0. 
Step 1. Reorder the vertices such that the errors are ordered as E(ci) ≥ E(ci+1), i = 0, 1, 2, 
…, 48. 
Step 2. Find the least i such that E(ci) > E(di) where di = 2 ċi – ci is the reflection of ci 
and 1

48 .i i
j ic c≠= ∑  If such i exists, replace ci with di and go to Step 1. 

Step 3. If the width of the current simplex is less than ε, then stop and report minimum 
error point of simplex. 
Step 4. Set ci =1/2(ci + cn). This step results in the shrinking of the simplex toward the 
minimum error vertex. Go to Step 1. 

 
4.5. Simulations 
We consider the synthesis of Bézier sheet under different imaging conditions (light sources 
and reflectance models) in illustrating the analysis by synthesis of general surfaces. The 
imaging conditions are the same as in Section 3. The surface reflectance parameter values 
used are those of copper. 

 Figure 8 shows a Bézier sheet rendered under single light source with simple Lambertian 
model, and more accurate Oren–Nayar and Blinn–Phong reflectance models. Figure 9 
shows the Bézier sheet rendered with two light sources for the Blinn–Phong and Cook–
Torrance specular reflectance models and the Cook–Torrance reflectance model under three 
light sources. Thus, the simulation shows that under all these different imaging scenarios, 
 

 
FIG. 8. Bézier sheet generated under one light source with different reflectance models. 

Synthesis of Bézier “Sheet” under single light source 



K. RAJGOPAL AND SRIRAM J. SATHISH 614 

 
FIG. 9. Bézier sheet generated under two and three light sources with different reflectance models. 
 
the proposed method can be applied to extract accurately the characteristic vector of any 
general surface. 
 
5. Conclusion 

In this paper, we have presented a novel framework for solving the shape-from-shading 
problem. The main aim was to develop a framework for the shape-from-shading problem 
under general imaging conditions. Almost all the earlier methods made three constraining 
assumptions, one each on the camera model (orthographic projection), the light source (sin-
gle-point source at infinity) and the reflectance model (Lambertian). Consequently, even 
with complete knowledge of the environment under which an image was created, the earlier 
methods were less satisfactory in producing surface descriptions. Invariably, these methods 
relied on modeling the image formation process view to invert it mathematically. The in-
vertibility condition places constraints on the imaging conditions. The proposed analysis-
by-synthesis framework moves the complexity from the analysis to synthesis side. 

 The basic idea behind our approach is to make use of repetitive synthesis of images. The 
parameters of the synthesis are guided at each step by the error between the original image 
and the currently synthesized image. The first stage is to decide on a model for representing 
surfaces. We have demonstrated the analysis-by-synthesis framework for two implicit sur-
face representations: sphere and ellipsoid. The characteristic vector has been introduced to 
distinguish surfaces within a class. For both these surfaces, an analytic formulation was de-
rived under the Lambertian reflectance and point-light source assumption. Due to the in-
adequacies of the analytic formulation, a gradient-free numerical formulation was 
subsequently introduced, first for the sphere, and then for the ellipsoid. 

 For including more general surfaces under this framework, the Bezier surfaces were used 
to model the surfaces. The analysis-by-synthesis for the Bezier surfaces was carried out us-
ing the Downhill Simplex method. For the Bezier surface, its control net was used to con-
struct the characteristic vector. The utility of the present framework lies in the fact that it 
lends itself to natural image descriptions. These image descriptions will be incorporated in 
the synthesis part, which is why the procedure is more tractable than the existing ap-
proaches. A potential application scenario for the proposed framework is in indexing of 

Synthesis of Bézier “Sheet” under  
Two light sources Three light sources 
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human faces for the purpose of recognition. To perform the task of recognition of human 
faces, the first step is to have a corpus of faces and create a ‘characteristic vector of the 
face’ for each face. This might be done by first segregating piecewise continuous regions of 
the face and creating a characteristic vector for each region. Then, given a new face image 
to be matched with the faces in the corpus, the problem becomes one of matching the char-
acteristic vectors. The same technique can be extended to the problem of matching other 
object categories too. A recent work on facial modeling makes use of shape-from-shading 
to recover the facial shape [19]. In this work, a statistical facial model is embedded within 
an SfS algorithm to recover facial shape with fine local surface details. 
 There is a growing convergence between the areas of computer graphics and vision. It is 
hoped that this paper will be a step in that direction. 
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