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Abstract 
 
Analytical solutions of the wave equation exist only for a few waveguide structures. Direct numeric solution of 
the wave equation is possible for many structures, although this usually involves iteration to find the approximate 
eigenvalue. This paper studies the modes of structures, otherwise not amenable to analytic or approximate solu-
tion, by integrating Fourier decomposition of the transverse field with the Beam propagation method (BPM). 
Numerical simulations of special structures such as waveguides with bends or reflective mirrors, split Y-couplers 
and coupled adjacent waveguides have been carried out. We also examine the operation of a coupled waveguide 
and apply its theory to calculate its performance to compare it with simulation. 
 
Keywords: Beam propagation method, Fast Fourier transform, waveguide structures, beam diffraction, wave-
guide coupler. 
 
1. Introduction 

A Y-coupler, shown in Fig. 1(a), is a simple device that connects one waveguide to two 
waveguides [1–4]. Since the mode dynamically changes as it enters the structure, it is diffi-
cult to calculate the loss the mode encounters and the optimum angle to split the waveguide. 
Numerical simulation methods allow us to determine these answers. 

 BPM is numerical simulation of the field in a guide, in contrast to the numerical solution 
of the exact wave equation [5–8]. Simulations are often the only way to determine the mode 
profile in an unusual waveguide and to map out the behavior of a mode as the index profile 
changes along z. This latter effect is very common in practical devices, such as waveguide 
tapers or waveguide perturbed by a second nearby waveguide. BPM works by decomposing 
a spatial mode into a superposition of plane waves, each travelling in a slightly different di-
rection. After advancing each wave a certain distance through dielectric structure of inter-
est, the plane waves are added back together to reconstruct the spatial mode. This process 
requires the use of Fourier transforms to convert from the spatial mode to the superposition 
of plane waves and back again. BPM is a quite established numerical method, but is not a 
widely used Fourier decomposition technique. This paper presents a scalar BPM with 
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FIG. 1. (a) A Y-coupler is a simple device that couples 
one waveguide to two waveguides. (b) An infinite slab 
dielectric waveguide. The wave is presumed to travel 
in z-direction. 

 
Fourier decomposition of the transverse field for analyzing optical waveguides. This paper 
reviews the current literature and provides an introduction to vector beam propagation 
methods and other advanced techniques. 
 
2. Superposition of waves and fast Fourier transform 

Consider the planar slab waveguide, where the index profile varies only in the x-direction 
(Fig. 1(b)). Due to symmetry, the spatial field is functionally independent of y-direction. A 
guided field in such a source-free dielectric structure must be a solution to the wave equa-
tion  

 ∇2ψ + k2
0n2(x)ψ = 0, (1) 

where ψ(x, z, t) is a vector function describing the amplitude, polarization and direction of 
field propagation. If the waveguide consists of isotropic regions, i.e. the index does not 
have a gradient profile, the spatial solution to the scalar wave equation in each region of 
space is simply a plane wave, 

 ψi(x, z, t) = Aie–j(kxx+kzz)ejωt + c.c, (2) 

where Ai is the amplitude in the region i and the k vector (described in terms of its compo-
nents) depends on the frequency of the wave and the local index of refraction and can be 
real or imaginary. Boundary conditions connect the solutions at the interfaces separating 
different regions. Plane waves are the natural solution to wave equation. Since the wave eqn 
(1) is linear, any linear superposition of solutions will also constitute a valid solution. This 
important fact forms the foundation of the technique used to numerically analyze the fields 
in a waveguide. We used a superposition of plane waves, each with identical angular fre-
quency ω but different values of k to describe the general mode of a waveguide. The plane 
waves form a basis set for mode description. Describing a spatial function ψ(x), in terms of 
a superposition of plane waves ejkx, 

 ( ) ,ijk x
ix A eψ =∑  (3) 



FOURIER DECOMPOSITION OF THE TRANSVERSE FIELD 669 

should remind us of the Fourier transform. To illustrate, consider an one-dimensional elec-
tric field distribution with a Gaussian distribution. 

 
2 2

0/
0( ) .x xx E eψ −=  (4) 

The Gaussian profile describes the lowest order mode in a parabolic index profile 
waveguide. Also, we are familiar that the modes of laser beams in free space would recog-
nize this profile as the fundamental TEM00 mode of a Hermite–Gaussian beam. To describe 
this transverse spatial mode in terms of a superposition of plane waves ejkx, we employ the 
Fourier transform pair, 

 1( ) ( ) ,
2

xjk x
x xx A k e dkψ

π

∞

−∞

= ∫  (5) 

 ( ) ( ) ,xjk x
xA k x e dxψ

∞
−

−∞

= ∫  (6) 

where kx is the x component of the wavevector k. The transform of ψ(x) yields A(kx), which 
is a complex number that contains information about the amplitude and phase of each plane 
wave component. Equation (6) can be readily evaluated to give amplitudes for Gaussian in-
put pulse eqn (4) 

 
2 2 2

0

2
0

1( ) .xx k
xA k e

x
π

π
−=  (7) 

Recall that the magnitude of k is identical for all components in a mode, only kx and kz 
components vary. Simple trigonometry provides the value of the z-component of the wave 
vector 2 2 .z xk k k= −  The largest kz-vector has kx = 0, corresponding to a plane wave travel-
ling along the z-axis. As the kx component increases, the amplitude of the plane wave de-
crease (eqn (7)). The Fourier transform pair in eqns (5), and (6) allows us to readily convert 
a wave described in the spatial domain ψ(x) to a wave described in phase space domain 
ψ(k). In the BPM method, propagation effects are calculated using the phase space repre-
sentation and phase shifts caused by the waveguide structure and are introduced using the 
spatial representation of a mode. We use both these transforms to alternately convert a spa-
tial field into a superposition of plane waves and back again. To take advantage of numeri-
cal computers for calculating FFT, we use discrete Fourier transforms based on what is 
generically called fast Fourier transform. FFT algorithms are widely available in literature 
[9] and are common features in engineering and mathematical numerical software packages 
for work stations and personal computers. Application of FFT to optical propagation problems 
is discussed in Buckman [10]. FFT is closer in operation to a Fourier series than to a Fou-
rier transform. Recall that a Fourier series is used to describe a periodic function in terms of 
a discrete set of sinusoidal basis states. FFT describes a distribution in terms of a large but 
finite number of discrete sinusoidal waves with appropriate amplitude. The effect of dis-
crete sampling can lead to the creation of aliases of the waveform. This fact introduces a 
complication in the BPM calculation. To find the FFT of a spatial profile, the profile must 
first be represented as a numeric array. The sampling resolution must be fine enough to 
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FIG. 2. (a) The sampled profile of a Gaussian mode, (b) The FFT of the Gaussian profile is plotted as a function 
of the array index, and (c) The phase (radians) of the DFT of the Gaussian wave is shown in Fig. 2(a). 
 
resolve all spatial features of the amplitude profile, yet at the same time be sparse enough to 
allow reasonable processing speed on a computer. In the calculations that follow, an array 
with 100 points proved adequate to see the desired behavior. Let’s begin a demonstration of 
the BPM using Gaussian mode profile. Since the evanescent amplitudes follow an exponen-
tial decay, they never truly go to zero. Theoretically there will be some error introduced 
when we restrict the spatial domain to something less than infinity. If we extend the sam-
pling domain out to three or four characteristic decay lengths, we can usually get satisfac-
tory results. In this example, we sampled the profile in Fig. 2(a) at 100 equally spaced 
discrete points ranging from x = –25 μm to x = 24.5 μm. Since the profile is assumed to be 
periodic in an FFT (this means that the algorithm assumes that if it looked at points 101 to 
200, it would find another Gaussian wave of the same shape and amplitude centered near 
point 150), the data point at x = –25 μm is same as at x = 25 μm, so it is important to not in-
clude this point twice in the array. That is why the domain is selected as shown in Fig. 2(a), 
which shows the resulting array. The abscissa is the array index, not the position. 

 Having established an array, we have computed the DFT of the spatial profile in order to 
determine the superposition of plane waves that comprise the mode. The FFT of the N point 
array is itself an N point array, found by approximating the integral in eqn (4) with a dis-
crete summation. The N complex numbers which describe the spatial amplitude are con-
verted into N complex numbers which correspond to the amplitude and the phase of each 
plane wave component with 2 ( 1) ,s

x Hk π −=  where H is the spatial size of the sample and s runs 
from 0 to N. The magnitude of these amplitudes for the Gaussian profile is plotted in Fig. 
2(b), where the abscissa is the s index. There are in fact 100 points in the FFT, exactly the 
same number as is in the amplitude array. The appearance of the FFT is a little strange at 
first glance. Instead of producing a smooth peak in k space, we find a distribution with non-
negligible values near s ≈ 0 and s ≈ 100, but very little magnitude at mid-range values. The 
strange structure of the FFT arises because the Fourier transform is calculated on a discrete 
array of samples from the actual waveform. The value of the FFT at s = 1 corresponds to 
the average value of the spatial profile, the kx = 0 term of the expansion. The next few terms 
describe the 2 ( 1)s

x Hk π −=  components of the transverse k vector, where H is the domain of the 
spatial wave. Each additional point corresponds to the next higher transverse component. In 
this example, we choose H = 50 μm. From the FFT, it is clear that there are not many 
higher-order transverse components needed to describe this mode. Now turning to terms 
near s = 100, the periodic sampling of the mode profile, those with s = 99 correspond to 
s = –1 or 2 .x Hk π= −  Similarly, s = 98 corresponds to s = –2 and so forth. Physically, these 
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correspond to plane waves traveling with slight downward inclination, while the plane 
waves with values such as s = 2 correspond to plane wave travelling with a slightly positive 
inclination. Figure 2(c) shows the plot of the phase of the FFT of the Gaussian beam. No-
tice that in the region where there is significant amplitude for FFT, the phase alternates be-
tween 0 and π. The phase tells us what the wavefront curvature of the beam is. In this case 
the field is everywhere real, indicating that it represents a plane wave. 
 
3. Beam diffraction 

A wavefront is a locus of points where the phase is constant. Complex numbers convey 
phase information in a wave. Since the equation which describes the Gaussian mode, eqn 
(4), is purely real, the phase is constant as a function of position vector, so the mode has a 
planar wavefront. If the phasefront of the mode had some curvature, the phase would 
change with distance from the axis and the proper description of this would involve using 
complex numbers. In general, the array used to describe the spatial waves and the Fourier 
amplitudes would be complex. By describing a real beam as a superposition of plane waves, 
we can develop an accurate method for simulating beam propagation which includes effects 
such as diffraction. In this section, we show how the previous analysis of plane wave su-
perposition can numerically determine the beam diffraction of a propagating field. This step 
incidentally is the first step in understanding the BPM. Let’s propagate a wave a distance L 
in the z direction using the plane wave method. We first decompose spatial profile into a 
superposition of plane waves and then advance each plane wave component forward to the 
plane z = L. Later, we superimpose these plane waves back together to form the new spatial 
mode. Since each plane wave travels in a different direction, each would accumulate a dif-
ferent amount of phase due to the path length difference incurred travelling to the plane at 
z = L. Figure 3(a) shows a geometric argument for the phase shift. Every plane wave com-
ponent of the expansion has a wavevector with magnitude k, that travels in a unique direc-
tion. A component travelling at an angle 1

| |( sin ( ))kx
kθ θ −=  with respect to z-axis will travel a 

slightly longer distance, cos ,LL θ′ =  to reach the plane at Z = L, than a wave travelling paral-
lel to z-axis. Using the small-angle approximation for θ and the fact that in FFT, ( 1)2s

x Hk π−=  
and 2| | ,k π

λ=  the phase accumulated by each ray is given by, 

 
2 2

2
2 2 2

0

1 1 ( 1) ,
cos 2 2

x
s

kkL kL kL s
n k H

λφ
θ

⎡ ⎤ ⎡ ⎤
= = + = + −⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 (8) 

where H is the size of the spatial domain of the amplitude profile. The term s refers to the 
index of the (s – 1)th spatial frequency component of the plane wave superposition. For ex-
ample, s = 1 corresponds to kx = 0 of the Fourier expansion. Each Fourier component will 
accumulate a different amount of phase after traveling along the z-axis because they each of 
them traverse a slightly different path length. We are now ready to propagate the optical 
mode distance through space. We do this in two steps. First, we must determine the plane 
wave superposition that comprises the initial spatial field. This has been described above 
using the FFT of the spatial function E(x). Next we let each component of the wave propa-
gate up to the plane at z = L. Since nothing alters the magnitude of the individual plane 
waves as they propagate, the amplitude of each component remains the same. However, 
since they accumulate different amounts of phase based on the difference in path length, we



SANJEEV KUMAR RAGHUWANSHI et al. 672 

 
FIG. 3. (a) Geometrical picture of path a plane must follow to move the distance L along the z-axis. (b) Index pro-
file of two slab waveguides separated by only 4 μm. 
 
have to add a proper amount of phase to each component. Consider the Gaussian mode 
shown in Fig. 2(a). We assume that it represents a TEM00 laser beam with wavelength 
0.8 μm and furthermore we assume that the profile represents the beam at focus, so the 
wavefront is planar. We use the BPM to calculate how the beam spreads and develops 
wavefront curvature as it travels through free space. Since diffraction theory has well-
established analytic expressions for describing Gaussian beam diffraction, we can use these 
to confirm the operation of the BPM technique. We start with an expression for the beam at 
z = 0. The beam is a simple Gaussian profile with characteristic length of 8 μm, 

 E(x, 0) = A.e–x2/82, (9) 

where all dimensions are in μm and A is an arbitrary amplitude which we would have set to 
unit. Notice that the wave is everywhere real, showing that the field is a plane wave at 
z = 0. We must determine the FFT of this mode by first creating an array of equally spaced 
samples of the amplitude. Various situations are discussed in Fig. 4. Figure 4(f) shows the 
calculated amplitude at z = 0, z = 500 and z = 1000 μm. The amplitude decreases as the 
width increases, conserving total power. The amplitude ripple apparent in Fig. 4(f) for the 
profile at z = 1000 μm is an artifact of the FFT and is not a true representation of the pro-
file. Due to the periodic nature of the FFT, high spatial frequency components that travel 
out of the field on to the right side of the spatial domain reappear on the left-hand side and 
vice versa. One way to avoid this is to increase the domain size H, but this just delays the 
onset of the problem. A second method is to apodize the domain, effectively adding an at-
tenuation near the edge of the spatial domain. We have introduced the latter method to 
BPM to dissipate these waves before they reappear on the other side. 
 
4. Beam propagation method and numerical example 

We can apply the principles of beam propagation to guided wave problem. BPM is moti-
vated by two physical properties of electromagnetic waves. First, as we have just seen, a 
wave traveling through any region of space will diffract. Second, the phase shift accumu-
lated by the wave as it propagates in the forward direction depends on the local index of re-
fraction. In an inhomogeneous medium, a wave would accumulate phase depending on the 
distance travelled and on the local index of refraction. The effects of propagation and local 
index act continuously on the phase as the wave travels but we have numerically simulated
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FIG. 4. (a) The waveform described in eqn (9) is sampled at 100 discrete points. (b) The magnitude of the FFT of 
array is shown as a function of the array index. In this case, the array index corresponds to transverse momentum 
of 2 ( 1)

120
s

xk π −=  μm–1. (c) The phases of the Fourier components of the DFT of the spatial mode are shown as a 
function of array index. All phases are either 0 or 180°, implying that the wave has no curvature and is therefore a 
plane wave. (d) The amplitude of the Gaussian field after travelling 500 μm. (e) The phase of the mode after trav-
elling 500 μm has picked up considerable curvature. The phase shift increases quadratically with distance from 
the axis; however, the amplitude rapidly decreases, so the phase information is only significant near the axis. (f) 
The amplitude profile of the mode at z = 0 μm (ampl. = 1), z = 500 μm (ampl. = 0.6) and z = 1000 μm (ampl. = 
0.4). 
 

this process in a series of small steps. The local index is modeled as a sequence of lenses 
separated by short regions of homogeneous space index –n, which is the average of the re-
fractive index that the beam travels through between adjacent lenses. The beam propagation 
method uses a split step process. In the first step, the transverse electric field at position z, 
ψ(x, y, z) decomposes into a superposition of plane waves ψi(k) = Aiejki.r via fast Fourier 
transform and propagates a distance Δz as if it were travelling through an index n– . We have 
already discussed how to perform this step. Following the propagation step, an inverse FFT 
converts the superposition of plane waves back into a spatial field. The second step adds the 
phase correction needed to account for the spatial structure of the index profile. As the 
wave propagates from z to z + Δz, different part of the phase front will experience different 
amounts of phase shift depending on the local index of refraction n(x, y, z). We adjust the 
step size so that the accumulated phase corrections are small following each step. Typical 
step sizes are of the order of a μm. The spatial phase correction is added to the spatial wave. 
The resulting field is a reasonable representation of the actual field distribution at location 
z + Δz. The new field serves as the source field for the next propagation step. BPM repeats 
this two-step process until the wave has traveled the desired distance. Introducing the lens 
step is surprisingly easy. For a field traveling along the z-axis a distance Δz, the phase can 
be approximately described as 

 Φ(x, y, z) = ejk0n(x,y,z)Δz. (10) 
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The total phase accumulated in propagating from z1 to z2 depends on the index of the media 
along the path. Since the free space propagation step already includes a phase shift  
e–jk0n–Δz, the amount of phase shift due to the inhomogeneity is simply added to this 

 ΔΦ(x, y, z) = ejk0(n(x,y,z)–n–)Δz. (11) 

The influence of the local index distribution on the propagation of the wave is included by 
multiplying the spatial wave, ψ(x, y, Δz) by phase correction ΔΦ(x, y, z) after each free 
space propagation step. This process is then repeated using Φ(x, y, z + Δz) as the source 
field for the next propagation step. The first step is to propagate the spatial mode a distance 
Δz. This requires using an FFT to determine the plane wave expansion, Φ(kx), then advanc-
ing each plane wave a distance Δz and then reconverting the phase space superposition into 
a spatial field using an inverse FFT. Formally, using continuous variables to describe the 
step, the field at position z + Δz is 

 ψ(x, y, Δz) = ( )1 ( ) ,
2

x zj k x k z
x xk e dkψ

π

∞
− + Δ

−∞
∫  (12) 

where kz is the z-component of the k-vector for each ray. Each ray has a unique value of kz, 
given by 

 2 2
0 .z xk nk k= −  (13) 

Evaluating the integral in eqn (12) using FFT is straightforward; however, the large magni-
tude of kx makes the phase vary rapidly with Δz. Since the fast variation is of no interest to 
us, we usually separate it from the slow variation. This can be accomplished by writing kz as 
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0 2 2 2
0 0

.x
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x

k
k nk

nk n k k
= −

+ −
 (14) 

Note that this is a more exact version of eqn (13). In this form, the fast term (n– k0) is distinct 
from the slow terms. The wave, after propagating a distance Δz in the homogeneous region, 
can then be expressed as 
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− Δ

>

⎡ ⎤Δ⎢ ⎥Δ = Φ
⎢ ⎥+ −⎣ ⎦

∫  (15) 

We changed the limits of integration to restrict the argument of the exponent to purely 
imaginary values, ensuring that no evanescent waves are included in the description of the 
wave propagation. Physically speaking, a complete description of a plane wave expansion 
requires evanescent waves, as they represent the loss mechanism to radiation modes. How-
ever, the lens step of the BPM technique assumes that the rays are travelling essentially 
parallel to z-axis. Evanescent waves are explicitly excluded from the expansion by restrict-
ing the possible values of kz to real values only. Restricting the plane wave expansion to 
beams with large area and to waveguides which are weakly guiding helps insure that the k-
vectors would be nearly parallel to the z-axis [11]. Finally, we add the contribution from the 
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lens by multiplying the propagated spatial field ψ(x, y, Δz) by Φ(x, y, z). The process re-
peats by advancing the field forward by one more Δz. First, we describe a simple triangular 
profile waveguide. We choose an array size of 512 data points to describe the index profile, 
the spatial mode and the phase correction. A smaller array would be proportionally faster in 
calculation of speed, but we found that this size provided tolerable throughput speed. We 
arbitrarily choose an index profile 150 μm wide, with a guiding region of 10 μm wide. The 
step size in the calculation is 4 μm. The film and substrate index are 1.5 and 1.499, respec-
tively. When an amplitude component moves off one side in the spatial FFT, it reappears on 
the other side of the spatial domain. This is in contrast to real waveguide, where we expect 
energy to continue travelling away from the core once it has been shed. There are several 
methods of apodizing. Signal processing algorithms often use triangular filters or hamming 
filters to proportionally attenuate the extreme spatial components. To reduce the reflections 
at analysis windows, we need some artificial boundary conditions. Since the simple trans-
parent boundary condition (TBC) that is normally used in the FD (finite difference)–BPM 
cannot be used in FFT–BPM, some other artificial boundary conditions using complex re-
fractive index materials or window functions have to be used to make the propagating fields 
decay properly near the edges of the analysis window. These artificial boundaries in FFT–
BPM usually require skilled people to optimize the parameters to minimize reflections. 
BPM does not provide for energy loss due to radiation, so artificial means must be added to 
dissipate such modes. For BPM we require a flat transmission for the central portion of the 
waveguide but wish to add attenuation in the cladding region to simulate radiation mode 
losses and to prevent energy from wrapping around and re-entering the waveguide structure 
from the other side of the data array. The exact form of the apodizer is up to the user. In this 
paper, we choose to add a small attenuation to the cladding far from the region of the 
guided mode. The term ‘aperture’ defines the percentage of the aperture where the core and 
cladding are loss less. Here, we define the clear aperture to be 40% of the total aperture. 
The aperture must be larger than the final spatial extent of the guided mode to prevent add-
ing unrealistic loss to the simulation. The magnitude of the attenuation is set through trial-
and-error method. In the region of loss, each of step amplitude is attenuated by exp(–atten 
Δz). Since in this simulation, Δz = 4 μm per step and atten = 1500 m–1, the effective at-
tenuation leads to a decrease of roughly 0.6% of the amplitude outside the aperture per step. 
This would add up to significant loss after hundreds of steps but does not act as a major 
perturbation to a field upon incident to the loss region. We found this value after trying 
several runs. Choosing the step length Δz depends on the guiding structure and  
wavelength. To stay within the region of validity for the BPM, Δz should satisfy [12], 

 Δz << 6k0(ke + kw)–2, (16) 

where ke is the largest transverse component of the wave vector describing the guided elec-
tric field and kw is the largest spatial frequency required to describe the index profile, if it 
were to be described as a Fourier superposition. To first order, the maximum spatial fre-
quencies needed to describe both the electric field and the index profile can be approxi-
mated as, 

 
0

2 2 ,e wk k
x w
π π

≈ ≈  (17) 
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where x0 is the characteristic half width of the mode and w, the half width of the waveguide. 
If we apply this criterion to the waveguide in this paper, where x0 is approximately 10 μm 
for the eigenmode and w is approximately 5 μm, we find that Δz < 12 μm. Our choice of 
Δz = 4 μm satisfies this requirement. We used two examples to demonstrate the utility of 
BPM. First we used BPM to find the amplitude distribution in a graded index slab 
waveguide with triangular profile. Then we have simulated a mode propagating through a 
coupled waveguide. We set the trial mode characteristic width to 3 μm. We intentionally 
made the mode narrower than reasonably expected so the dynamics of the BPM process 
would be illustrated. Figure 5 shows a sample of the output as a function of the distance the 
simulated mode has travelled down the waveguide. The initial field distribution is a narrow 
Gaussian spike located at z = 0. This initial spatial mode can be described as a superposition 
of guided and radiation modes of this waveguide. As the initial amplitude propagates for-
ward, the nonguided components begin to travel away from the guiding layer. The eigen-
mode becomes distinguished after travelling about one millimeter. The broad pedestal that 
the eigenmode sits on represents unguided energy that is radiating away from the 
waveguide. The unguided energy extends beyond the clear aperture and suffers attenuation 
with each step of calculation. Eventually the nonguided energy is totally dissipated. We can 
see the artifact of the calculation in the ripples that form on the pedestal for the plots be-
tween z = 1 and z = 2 mm. These ripples arise from interference between the outward-bound 
waves and those that have wrapped around from the other side that were not totally attenu-
ated before reaching the boundary of the domains. After sufficient propagation, these inter-
ference features are damped out. The BPM successfully determines the shape of the mode 
for the triangular waveguide. The waveguide acts as a spatial filter to the input field distri-
bution, eliminating all energy except that in the waveguides fundamental mode. We could 
substitute any reasonable index profile into the program and use the same technique to find 
the eigenmode. 
 
5. Waveguide coupler 

The beam propagation method is often used to evaluate the performance of either a coupled 
waveguide, a Y-junction or some other complex structure. We know that the field of a con-
fined mode extends out beyond the core region. These evanescent tails can transfer energy 
from one waveguide to another if the dielectric structure is suitable. Here, we used BPM to 
‘experiment’ with a coupled waveguide structure. We examined the propagation of a mode 
on a waveguide which is located adjacent to an identical guide. The index profile for this 
structure is plotted in Fig. 3(b). The coupler consists of two identical step-index waveguides 
with core thickness of 10 μm situated approximately 4 μm from each other. The evanescent 
field of either guide extends into the other guide. To begin the analysis, we launched a 
mode which is close to being an eigenmode of one of the individual waveguides. We found 
by simple trial and error that a Gaussian profile with an initial pulse width of 7 μm, gave an 
excellent approximation to the actual mode of the waveguide for a 1 μm wavelength light. 
We presented the result to launch the initial mode into the right-hand waveguide at z = 0. 
Figure 6 shows the evolution of the mode profile as it propagates down the waveguides. 
Each snapshot of the mode is taken after the field has propagated 1 mm down the 
waveguide. We see an evolution of the mode energy as it propagates along the coupled 



FOURIER DECOMPOSITION OF THE TRANSVERSE FIELD 677 

 
 

FIG. 5. Results of a BPM run on a triangular index slab 
waveguide. A trial mode with a Gaussian profile is 
launched at z = 0. As it travels down the guide, the 
unguided energy radiates away, while a guided mode 
emerges after some distance. 

 

FIG. 6. The power in a coupled waveguide transfers 
back and forth as it propagates along the guide. 

waveguide structure. After traveling approximately 4 mm down the waveguide, the energy 
has completely transferred over to the left-hand waveguide. As the beam continues to 
propagate, the energy transfers back to original guide. This process would continue indefi-
nitely so long as the waveguides do not change their relative position or dimension. This is 
an extremely useful effect which can be exploited to make many practical devices such as 
couplers, taps, interferometers and wavelength-selective filters. For example, if the 
waveguides were brought together for only 1 mm, approximately 10% of the power from 
the first waveguide could be tapped, while the remaining 90% of the energy would continue 
along the main channel. The BPM method can be used to explore the effect of waveguide 
separation or mismatch on the coupling rate and efficiency. Figure 7 shows that the transfer 
rate of energy decreases as the waveguide separation is increased. The BPM technique pro-
vides an excellent way to evaluate the spatial structure of a mode as it propagates through a 
waveguide. But if the waveguide has sharp changes in index that could result in a reflec-
tion, BPM fails to account for the reflected wave or for possible interference effects be-
tween the forward and backward waves. Other techniques are needed to simulate such 
structures. We have emphasized that BPM does not provide for energy loss due to radiation. 
Hence it would not be applicable to multimode waveguide; of course, this method can eas-
ily be extended to 2D waveguide problem. Till now, we have examined the operation of a 
coupled waveguide using BPM. Now we use coupled mode theory to calculate the perform-
ance and compare theory with simulation. To review, the coupled slab waveguide structure 
is the same as shown in Fig. 3(b). We assumed that initially the mode energy is completely 
contained in the right-hand waveguide, but since this is a degenerate one there would be 
strong coupling. 
 Figure 8 shows how the power couples back and forth between the waveguides. By 
inspection, we see that the spatial coupling period is approximately 0.4 cm, which is exactly 
what we have observed in the BPM example. We have explored the theoretical basis for this 
behavior elsewhere [13]. 
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FIG. 7. (a) Index profile of two slab waveguides separated by only 4 μm while the initial amplitude profile is off-
set to overlap the right-hand waveguide. (b) The power in a coupled waveguide during separation is 4 μm. (c) The 
power in a coupled waveguide during separation is 6 μm. (d) Comparison of the above two cases at simulation 
run length (z) of 5 mm. 
 
6. Conclusion 

We have used numeric techniques to evaluate difficult index profiles and to simulate the 
behavior of modes in a coupled waveguide. Using FFT, we have shown that a spatial wave 
can be described as a superposition of plane waves. With this, we can predict the wave 
propagation. We apply this knowledge to free space propagation and demonstrate how a 
wave with finite transverse dimension would diffract as it propagates. The local index of re-
fraction will modify the cumulative phase of a propagating wave. By adding a phase correc-
tion to the spatial waveform, the combined effect of diffraction and guiding is described. 
 This work finds application in the following areas: 
1. Our method successfully determines the shape of the mode for the triangular waveguide. 

One could substitute any reasonable index profile into our program and use the same 
technique to find the eigenmode. 

2. The method can be used to evaluate the performance of a coupled waveguide, a Y-
junction or some other complex structure. We know that the field of a confined mode
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FIG. 8. The power in the original waveguide couples 
back an forth between the two waveguides. The cou-
pling period for the power is approximately 0.4 cm. 

 
 extends out beyond the core region. These evanescent tails can transfer energy from one 

waveguide to another if the dielectric structure is suitable. We have explored the nu-
merical technique for mode coupling and energy transfer between coupled waveguides 
in this paper. As an example, we have examined the propagation of a mode on a 
waveguide, which is located adjacent to an identical guide. We have also shown that the 
transfer rate of energy decreases as the waveguide separation is increased. 

 This paper will help the researchers to explore the effect of waveguide separation or mis-
match on the coupling rate and efficiency. 
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Nomenclature 

BPM = Beam propagation method 
FFT = Fast Fourier transform 
DFT = Discrete Fourier transform 
FD-BPM = Finite difference beam propagation method 
TBC  = Transparent boundary condition 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


