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Abstract 
 
Most liquids, under suitable conditions, are capable of transforming into glass, which is a microscopically disor-
dered, solid form of matter. Glass formation occurs in the laboratory because the viscosity of the liquid becomes 
very high, causing the liquid to fall out of equilibrium on experimental time scales. Whether a true thermody-
namic transition underlies the laboratory transformation is among the questions that remains to be answered. An-
other major theme of research activity is directed towards understanding the microscopic mechanisms leading to 
the dramatic growth of viscosity of liquids at low temperatures. Significant progress has recently been made by 
focusing attention on quantitative aspects of the energy landscape of glass-forming liquids. An outline of the ap-
proach is presented here, along with applications of the approach to studying thermodynamic and dynamic phe-
nomena that take place when a liquid is cooled towards the glass transition, including: (i) The onset of slow 
dynamics; (ii) The crossover in dynamics to a regime of ‘activated dynamics’; (iii) The relationship between fra-
gility (which quantifies the rapidity of change of dynamics as the glass transition is approached) and quantifiable 
features of the energy landscape; and (iv) The relationship between the ultimate boundaries of the liquid state, the 
liquid–gas spinodal (at which liquid becomes thermodynamically unstable) and the glass transition line (at which 
liquid transforms into an amorphous solid). 
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1. Introduction 

A wide variety of materials can exist at low temperatures in the form of a glass, which is 
amorphous, i.e. a form of matter lacking in any long-range structural order, but possessing 
mechanical properties of a solid [1–7]. For many materials, the glass state is a metastable 
state, and the state of the material in equilibrium is a crystalline solid. For some, notably 
polymers [8], the equilibrium crystalline structure, if it exists, is never attained and the 
glass is, for practical purposes, the state of the material at low temperatures. Examples of 
glasses are abundant both in nature and among man-made materials. Most of the water in 
the universe is expected to be in the glassy form, in cometary tails [9]. A part of the earth’s 
crust, in the form of amorphous silica formed during volcanic activity, is in the glassy state 
[10]. Window glass, whose dominant component is silica, is a man-made variant of the 
same material. A significant fraction of industrial plastics are glasses. Even among the met-
als, which are almost exclusively crystalline solids, metallic glasses have been of interest of 
late for their unusual and desirable material properties [11]. 
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 While amorphous solids can be prepared in many ways (e.g. depositing vapour on a cold 
substrate, or by application of pressure to a crystalline solid), the conventional method of 
preparing a glass is to cool a liquid in a fashion that prevents crystallisation (in cases where 
the crystal forms the equilibrium state at low temperatures). Correspondingly, the term 
‘glass transition’ is used to designate the transformation of a liquid upon cooling to low 
temperatures into an amorphous solid. As described later, many interesting phenomena de-
velop as a liquid is cooled towards the glass-transition temperature, which bear directly on 
the glass state. While understanding glasses as materials, with specific properties, require 
analysis of the synthesis, the chemical and physical properties of these amorphous solids at 
temperatures below the glass transition, general understanding of the nature of the glass 
state is also to be sought by studying materials in the liquid state, close to the glass transi-
tion. The work outlined in this article falls in the category of studies which approach the 
glass transition from the ‘liquid state’; the object of study is the glass-forming liquid at low 
temperatures, approaching the glass transition temperature from above. 

 The next three sections of this article describe briefly some salient aspects of the phe-
nomenology of the glass transition, Section 3 the approach to analysing dynamic and ther-
modynamic aspects of glass formation by studying the properties of local potential energy 
minima sampled by the liquid, and Section 4 computer simulation methods employed in 
performing these analyses. Theoretical approaches to studying the glass transition, other 
than the energy landscape approach, are not specifically dealt, although reference is made 
to some, where appropriate. The subsequent sections describe the results of investigations 
on specific aspects of the phenomenology of liquids approaching the glass transition. The 
final section describes some related questions not discussed in detail, as well as future di-
rections of investigation. 
 
2. Phenomenology of glass formation 

A brief overview of the phenomenology of glass formation is described in this section. Fur-
ther details may be found in various recent reviews on the subject [1–7]. The purpose here 
is simply to introduce some aspects that will be referred to later on. 

 The dynamical and transport behaviour of a liquid may be characterised in various ways, 
such as by studying the diffusion of individual atoms or molecules, the manner in which 
fluctuations in local density decay (which allows estimation of a relaxation time), measur-
ing rotational diffusion and relaxation if one considers molecular liquids, and measuring the 
viscosity. Viscosity, microscopic relaxation times and diffusivity in liquids are closely re-
lated. Similarly, the equilibrium, thermodynamic state is characterised by measuring quanti-
ties such as the heat capacity and bulk density. 

 A prerequisite for glass formation is that crystallisation is averted, which is typically 
achieved by cooling the liquid faster than a rate that may be estimated based on the tem-
perature variation of viscosity and rates of nucleation of the crystal. For many glass form-
ers, viscosity displays a strong temperature dependence, which deviates substantially from 
the Arrhenius temperature dependence, η = η0 exp (E/kBT) which is used to describe the 
temperature dependence of many dynamical quantities in a variety of systems. The most 
familiar ‘glass’, silica, however exhibits close to Arrhenius temperature dependence. A ge-
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neric functional form that appears more suitable is the Vogel–Fulcher–Tammann–Hesse 
(VFT) form, 

  0
0

exp .
A

T T
η η

 
=  − 

 (1) 

Such a form predicts the viscosity to become arbitrarily large, and diverge at a finite tem-
perature T0. However, when the viscosity reaches a value of around 1013 poise (which 
roughly corresponds to relaxation times of hundreds of seconds), liquids no longer achieve 
equilibrium under standard experimental conditions and time scales. Such falling out of 
equilibrium is also manifested in pronounced (but not discontinuous) changes in the tem-
perature dependence of thermodynamic quantities such as the heat capacity and bulk den-
sity. Since the heat capacity of a liquid is generally higher than that of the corresponding 
crystal, the entropy of the liquid decrease with temperature faster than that of the crystal. 
Consequently, the excess entropy of the liquid (relative to the crystal), by extrapolation, ap-
pears to vanish at a finite temperature, as pointed out by Kauzmann [12], and referred to as 
the Kauzmann paradox. Resolution of this paradox, among other possibilities, involves the 
existence of an ideal glass transition, where the entropy associated with the degeneracy of 
configurations a liquid can assume vanishes. However, the slow down of dynamics and the 
existence of a thermodynamic transition are in principle two independent issues, as empha-
sised by various authors (see, e.g., [13]). 

 A second aspect of slow dynamics that becomes manifest as the glass transition tempera-
ture is approached is the time evolution of various relaxation processes. A convenient, and 
commonly used, probe is the relaxation of density fluctuations, measured by, for example, 
the van Hove self correlation function  
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which describes the probability of finding at time t a particle at distance r from its location 
at t = 0. The time evolution of the Fourier transform of Gs(r, t), the self intermediate scatter-
ing function Fs(k, t) is exponential decay at high temperatures, while at lower temperatures, 
the Kohlrausch–Williams–Watts stretched exponential form, 
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provides a good fit to the long-time behaviour. Values of β < 1, which are obtained at low 
temperatures, imply that the relaxation cannot be viewed as being characterised by a single 
exponential process (or time scale), but is slower. 

 At temperatures close to the glass transition, a breakdown of the Stokes–Einstein relation 
between the diffusion coefficient D and the viscosity η is observed. The Stokes–Einstein re-
lation predicts an inverse relationship, D/kBT η, between D and η [6, 14–17]. The measured 
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diffusivities are considerably larger than the predictions based on measured viscosities. At 
the same time, rotational diffusion continues to be well correlated with viscosity, implying 
a decoupling of rotational and translational diffusion. These and related observations are 
currently seen as manifestations of heterogeneous dynamics [6, 18, 19]. The distribution of 
relaxation times becomes sufficiently wide that quantities (such as viscosity and diffusion 
coefficient) which involve different averages over these relaxation times will begin to dis-
play qualitative differences with respect to temperature regimes where the relaxation times 
are narrowly distributed [20–22]. In particular, the picture is that the dynamics becomes 
spatially heterogeneous at low temperatures. Aspects of such spatially heterogeneous dy-
namics have also been studied by computer simulations, although at considerably higher 
temperatures than in experiments [23, 24]. Among the observations of the simulation stud-
ies is the identification of a growing dynamical correlation length scale [25–27]. 

 Another manifestation of the slow down of dynamics, which occurs both above and be-
low the laboratory glass transition, is the phenomenon of aging–the glass-forming liquid or 
glass continues to anneal on experimental times scales, and consequently, static as well as 
dynamic properties of the system continue to change over long time scales. The time trans-
lational invariance seen in systems in equilibrium is not observed. While this feature has 
been studied in the past [28], there has been considerable recent activity aimed at under-
standing such out of equilibrium behaviour [29]. 
 
3. The energy landscape approach 

The disordered structure of a liquid has the implication that the energies of interaction between 
particles will generally be very complicated, and that the part of configuration space ex-
plored by the material in the liquid state is characterised by the presence of many local min-
ima of the potential energy. Such is the case also, for example, in a crystalline solid if one 
allows for the presence of defects. The use of the phrase ‘energy landscape’ to describe the 
complicated interactions in a glass-forming liquid (and other disordered systems) therefore 
contains in addition the expectation that the complicated potential energy topography plays 
an essential role in determining the properties of the system. If such is the case, it is desir-
able to attempt a description of glass-forming liquids in terms of quantities that define the 
nature of the potential energy landscape. In the inherent structure approach [30], one con-
siders the decomposition of the 3N dimensional (for an atomic liquid) configuration space 
of the liquid into basins of individual local potential energy minima, termed inherent struc-
tures (IS). A basin of a given minimum is defined as the set of points in the configuration 
space (or configurations) which map to that minimum under a local energy minimisation. 
The canonical partition function of the liquid can then be expressed as a sum over IS basins, 
the summand being partial partition functions defined for individual basins. In the follow-
ing, the equations are written for a two-component atomic liquid, since the model liquids 
discussed in subsequent sections are such liquids. In turn, the sum over basins is written in 
terms of (a) a distribution of minima in energy, and (b) the free energies of basins, as follows: 
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where Φ is the total potential energy of the system, α indexes individual IS, Φα is the 
potential energy at the minimum, Ω(Φ) is the number density of IS with energy Φ, and the 
configurational entropy density +c ≡ kBlnΩ. The basin free energy Fvib(Φα, T) is obtained by 
a restricted partition function sum over a given IS basin, Vα. Λ is the de Broglie wave-
length, NA and NB are the number of A and B type atoms in the two-component liquid, T is 
the temperature, and ρ the density of the liquid. In the following, the dependence on ρ is 
not explicitly stated always since the interest is in T dependent behaviour at constant den-
sity. The configurational entropy of the liquid arises from the multiplicity of local potential 
energy minima sampled by the liquid at temperature T, and is related to the configurational 
entropy density above by 

 ( ) d ( ) ( , ),c cS T P T= Φ Φ Φ∫ +  (5) 

where 
 ( , ) ( )exp[ ( ( , ))] / ( , , ),vibP T F T Q N Tβ ρΦ = Ω Φ − Φ + Φ  (6) 

 exp[ ( ( , ) ( ))] / ( , , ),vib cF T T Q N Tβ ρ= − Φ + Φ − Φ+  

is the probability density that IS of energy Φ are sampled at temperature T. In the above ex-
pression for the partition function, an assumption has been made that the basin free energy 
does not differ for different basins of the same IS energy. Without reference to the distribu-
tion of minima, the configurational entropy can be defined as the difference of the total en-
tropy of the liquid and the vibrational entropy of typical minima sampled at a given 
temperature: 

 ( , ) ( , ) ( , ).c total vibS T S T S Tρ ρ ρ= −  (7) 

The ‘entropy theory’ of Gibbs coworkers [31, 32] defines the ideal glass transition, underly-
ing the laboratory transition, as an ‘entropy vanishing’ transition where the configurational 
entropy vanishes (the configurational entropy is not, however, defined in precisely the same 
way in [31, 32]). A similar picture also emerges from the study of mean field spin glass 
models and calculations motivated by them [33–35]. Whether such a transition exists for 
real materials is still a matter of debate [36, 37]. The calculations below produce such an 
entropy vanishing transition but it must be kept in mind that they result from extrapolations 
which may not be valid.  

 Further, Adam and Gibbs theory [32] relates the configurational entropy to relaxation 
times in the liquid: 
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where A0 is a material specific constant. The validity of this relation has been verified by 
numerous experimental studies (which typically use the excess entropy of the liquid over 
the crystal in place of Sc) and computer simulation studies [38–41] (where configurational 
entropy is evaluated). Further, if Sc has the form TSc = KAG(T/TK–1), the Adam–Gibbs rela-
tion results in the VFT form (1), which may be written as 
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0

1
exp ,
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 (9) 

where T0 is the temperature of apparent divergence of viscosity. KVFT is a material specific 
parameter quantifying the kinetic fragility. Fragility is a measure of how rapidly the viscos-
ity, relaxation times, etc. of a liquid changes as the glassy state is approached [42]. Small 
values of KVFT yield temperature dependence close to the Arrhenius form, while large values 
yield super-Arrhenius behaviour. 

 That the basin-free energy Fvib arises from ‘vibrational’ motion within individual basins 
is emphasised by the suffix vib. If this motion is sufficiently localised around the minima, a 
suitable procedure would be to approximate the basins as harmonic wells, and to evaluate 
the basin-free energy within this approximation. The validity of such a procedure has been 
tested recently in various studies [34, 40, 41, 43–45]. It is found that below the temperature 
where the liquid begins to exhibit aspects of slow dynamics (non-Arrhenius behaviour of re-
laxation times, and stretched exponential relaxation)[43, 45, 46], a harmonic approximation 
of the basins is reasonable. However, this is not to be expected generally [39, 47], nor is it a 
requirement for calculating basin entropies. With a suitable criterion for defining inherent 
structure basins, one may also use constrained ensemble methods to evaluate the basin en-
tropy [48, 49]. One must also consider whether results for classical systems typically stud-
ied in theoretical and computational studies hold for real systems. 

 In the harmonic approximation, the basin free energy is given simply in terms of the 3N 
vibrational frequencies that may be evaluated by diagonalizing the matrix of second deriva-
tives, at a given local energy minimum, of the potential energy: 
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or equivalently, the basin entropy, 
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where νi are the vibrational frequencies of the given basin, and h is Plank’s constant. From 
the form of Svib it is apparent that the entropy difference between two basins arises solely 
due to the difference in their frequencies. Thus, such entropy differences remain finite as 
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T → 0 which is unphysical as the basin entropy of each basin and therefore their difference 
must go to zero for T = 0. An estimation of the effect of a quantum mechanical, as opposed 
to classical, treatment indicates that the effect of this artefact is not severe, if one considers 
deviations of the classical result at the glass transition temperature [50]. 

 Calculations based on eqn. (11), where the vibrational frequencies are obtained numeri-
cally for energy minima generated in simulations, indicate [41] (see also [47, 51]) that the 
difference in Svib, between basins is roughly linear in the basin energy. Thus one can write 

 0 0( ) ( , ) ( , ) ( ),vib vib vibS S T S T Sδ∆ Φ ≡ Φ − Φ = Φ − Φ  (12) 

and correspondingly, 

 0 0( , ) ( , ) ( ),vib vibF T F T T SδΦ = Φ − Φ − Φ  (13) 

where Φ0 is a reference basin energy. The latter expression follows since the internal energy 
Uvib = 3NkBT  for all basins.  

 In addition to the basin free energy, the partition function in eqn (4) requires knowledge 
of the configurational entropy density +c. Various recent studies have explored methods for 
estimating +c from computer simulations [41, 43, 44, 49, 52, 53]. It has been observed that 
the distribution Ω(Φ) is well described by a Gaussian [41, 52, 54] (equivalently, +c(Φ) an 
inverted parabola). The arguments [52, 54] may not apply to low energy minima, nor are 
expected to be valid for all systems; indeed, a recent computational study of a model of sil-
ica [55] reveals a nonGaussian Ω(Φ), but this is related to a transition in silica from fragile 
to strong behaviour. Nevertheless, a Gaussian form for Ω(Φ) allows for a straightforward 
evaluation of the partition function eqn (4), and whose validity has been tested in the range 
of temperatures where simulations are performed [41, 45]. 

 The configurational entropy density is written as 
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where α is the height of the parabola and determines the total number of configurational 
states, i.e. energy minima (the total number is proportional to exp(αN)), Φ0 and σ2, respec-
tively, define the mean and the variance of the distribution. The parameters α, Φ0 and σ 
have been estimated from simulation data [41]. With the above form for +c(Φ) and eqn (13) 
for the vibrational free energy, the partition function can be evaluated, from which the fol-
lowing temperature dependence of the configurational entropy, the ideal glass transition 
temperature TK (defined by +c(TK) = 0 and the IS energies are obtained: 
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and 

 1(2 ) .k BT Nk Sσ α σδ −= +  (17) 

These equations constitute relations that express quantities relevant to the thermodynamics 
of glass-forming liquids, the configurational entropy and the ideal glass transition tempera-
ture, in terms of parameters that describe the ‘energy landscape’ of the liquid, namely the 
distribution of local energy minima, and the topography of individual minima in the form of 
vibrational frequencies. In particular, the expressions for TSc shows that the fragility of the 
liquid can be expressed in terms of parameters that quantify the ‘energy landscape’ of the 
liquid. In particular, they show that when variations in basin entropy (with the energy of the 
minima) are unimportant, the spread in energy of the distribution of minima determines the 
fragility. When such variation is significant, it contributes to the fragility; if basin entropies 
(at the same temperature) are bigger for higher energy minima (which is the situation ex-
pected in the experimental, constant pressure conditions), there results a decrease in the fra-
gility, as well as a decrease in the ideal glass transition temperature. The results here show 
that the use of excess entropy as a surrogate for the configurational entropy can be mislead-
ing. In view of the broad experimental test of the Adam–Gibbs relation, it has been sug-
gested recently [56] that excess entropy and configurational entropy may vary 
proportionally. If one defines the excess entropy, not with respect to the crystal as is nor-
mally done, but with respect to the ‘ideal glass’ (i.e., the lowest energy minimum), then one 
obtains an expression for the excess entropy as 

 ( ) ( )( / 1),PEL
ex ex KTS T K T T T= −  (18) 

where Kex is the fragility index based on the excess entropy, given by, 
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Comparison of the expressions for PEL
exK  and PEL

exK (T) show that indeed they are closely 
related, but there is no proportionality in a strict sense. However, there are in principle sub-
tle issues (e.g. in the analysis above TK is used as a scaling temperature, but the existence of 
a Kauzmann temperature is itself an open question) that remain to be sorted out in how fra-
gility is measured. 
 
4. Computer simulations 

The results presented in the subsequent sections are obtained from computer simulations of 
two model atomic liquids. Since the study of dynamics is an objective, with some excep-
tions so noted, the molecular dynamics (MD) simulations are used to generate equilibrium 
trajectories of a few hundred particles, employing conventional methods (see e.g. [57]). 
Since the dynamics slows down considerably at the lowest temperatures studied, run 
lengths of up to 0.4 µs (in Argon units) are used. From such trajectories, a sample of con-
figurations is used to perform local energy minimizations (using the conjugate gradient 
method[58]) to obtain inherent structures. In evaluating basin free energies, the matrix of 
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second derivatives of the potential energy (Hessian) is diagonalized for the inherent struc-
tures, to obtain normal mode frequencies. All the simulations are done at constant density. 

 Except when noted (Sec.s) the results are for a (‘80:20’) binary mixture of 204 type A 
and 52 type B particles, interacting via the Lennard–Jones (LJ) potential, with parameters 
εAB/εAA = 1.5, εBB/εAA = 0.5, σAB/σAA = 0.8, and σBB/σAA = 0.88, and mB/mA = 1. This system 
has been extensively studied as a model glass former [59]. A quadratic cutoff [60] is im-
posed on the potential at distance 2.5σα,β. The second (‘50:50’) model liquid contains 251 
particles of type A and 249 particles of type B interacting via a binary Lennard–Jones po-
tential with parameters σBB/σAA = 5/6, σAB = (σAA + σBB)/2, and εAA = εAB = εBB. The masses 
are given by mB/mA = 1/2. The length of the sample is L = 7.28 σAA and the potential was cut 
and shifted at 2.5σαβ. All quantities are reported in reduced units: T in units of εAA/kB, 
lengths in units of σAA, densities in units of 3

0 AAρ σ −=  and time in units of 2 1/ 2
0 ( / )AA AAmτ σ ε≡  

in the first case, and 2 1/ 2
0 ( / 48 )B AAmτ σ ε≡  in the second. Argon units for the A type parti-

cles are used to represent some of the data. Further details about the simulations can be 
found in [40, 41, 46, 61]. 
 
5. Onset of slow dynamics 

As noted earlier, the onset of super-Arrhenius temperature dependence of viscosity, diffu-
sivity, etc. and non-exponential decay of correlations are characteristic features of glass-
forming liquids. While the problem of slow dynamics had been discussed by many in ‘en-
ergy landscape’ terms, the general expectation was that its influence on liquid properties 
arose at temperatures close to the glass transition. However, it was shown in [46] that signa-
tures of the influence of the liquid’s energy landscape manifest in the same temperature 
range where one observes the onset of slow dynamics. 

 Figure 1(a) shows, in an Arrhenius plot (log τ vs 1/T), the relaxation times τ obtained 
from the self intermediate scattering function Fs(k, t) introduced earlier, for the ‘80:20’ bi-
nary mixture, for a range of densities. At each density, one may identify a ‘crossover’ or 
onset temperature Ts across which the T dependence of τ become non-Arrhenius. It was ob-
served in [46] that this onset temperature also marks a change in the manner the system ex-
plores the energy landscape. At higher T, the average potential energy of the IS is nearly 

  
FIG. 1. (a) Relaxation times for a range of densities for the ‘80:20’ binary mixture shown in an Arrhenius plot, 
indicating deviation from Arrhenius behaviour at low temperatures. (b) Scaled plot of inherent structure energies 
showing a 1/T temperature dependence at low temperatures, and deviations away from 1/T dependence at high 
temperatures. The crossover between these two regimes corresponds to the onset of non-Arrhenius T-
dependence of relaxation times. At low temperatures, the behaviour confirms the prediction in eqn (15). 
Adapted from [45]. 
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constant, while at lower T one sees considerable temperature dependence. In other words, 
the system begins to explore deeper energy minima below Ts. A more quantitative analysis 
was done in [45] where it is shown that below the onset temperature, the 1/T temperature 
dependence for the average IS energy (described in the previous section) holds, while it 
breaks down at higher temperatures. This is shown in Fig. 1(b) where the scaling form pre-
dicted in eqn (15) is used. Since the prediction is based on a harmonic approximation to the 
IS basins, this data may be seen as evidence that the nature of the energy landscape sampled 
by the liquid (and hence the basin structure) undergoes a change at Ts for which further evi-
dence is shown in [45]. 

 Figure 2 shows, for the ‘50:50’ binary mixture [62], the temperature dependence of the 
average IS energy, along with that of the KWW stretch exponent β (obtained from fits to 
self intermediate scattering function Fs(k, t)), which shows a remarkable coincidence in the 
manner of their deviations from the corresponding high temperature values. Very similar 
results are also obtained in the case of water [47, 63]. 

 Relatively little attention has been paid to the temperature range of the onset of slow dyna-
mics, with both theoretical and experimental work focused more on phenomena at lower 
temperatures. One approach that places emphasis on the onset regime is frustrated domain 
theory [64]. There have, however, been many recent studies [53, 65–68] where an onset 
temperature (or density) is discussed, which may be identified with the onset temperature 
discussed above, or which have explicitly been discussed in reference to the analysis in [45, 46]. 
 
6. Crossover to activated dynamics 

An early discussion of the importance of considering the role of potential energy barriers 
was by Goldstein [69] who proposed that there exists a crossover temperature Tx, where the 
shear relaxation time is ~10–9 s, below which relaxation is governed by thermally activated 
crossings of potential energy barriers. Subsequently, Tx has been identified [70] with the 
dynamical transition temperature described by mode coupling theory [71]. Till recently, 
however, no direct test of this correspondence was available. Recent work has to a substan-
tial degree clarified the meaning of this correspondence. 

 In [46], the structure of the basins of inherent structures obtained at temperatures strad-
dling the mode coupling temperature [59] were probed by generating trajectories starting 

 

FIG. 2. The temperature dependence of the inherent
structure (IS) energy and the KWW exponent β for
the ‘50:50’ binary mixture. Deviations in β away
from 1 closely track the deviations of the IS energy
from the high temperature plateau. Adapted from
[62]. Four independent samples for the energy, and
two different estimations for β. (from the MD trajec-
tory, and from ‘inherent dynamics’; see Section 6).
Adapted from [62]. 
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from these structures, at very low temperatures (far below the glass transition temperature). 
While for the lower T inherent structures, the distribution of displacements away from them 
is close to Gaussian, supporting the expectation that the basin structure is harmonic, for 
high T, distributions with multiple peaks are obtained, spanning much larger distances, in-
dicating that the inherent structures at the higher T are separated by negligible energy barri-
ers, and that the system can easily escape to neighbouring basins with very little excitation 
energy. This observation is both consistent with Goldstein’s observations, as well as simu-
lation results at temperatures above the mode coupling temperature for water [72, 73]. 

 A more direct analysis was performed in [61], where the MD trajectories of the ‘50:50’ 
binary mixture, for a range of temperatures, was mapped to the corresponding time series of 
inherent structures. For basins separated by significant energy barriers, it is reasonable to 
have a picture of the dynamics as a series of intra-basin ‘vibrations’ interrupted by periodic 
transitions between basins. If the two processes are clearly separated, the dynamics revealed 
by the time series of IS should contain no contribution from intra-basin vibrations. There-
fore, unlike the correlation functions from the MD trajectory which reveal both a short time 
decorrelation interpreted to be due to ‘vibrational’ motion (or ‘cage-rattling’), as well as 
long time structural relaxation, correlation functions obtained from the time series of inher-
ent structure should reveal only the long time relaxation. Figure 3(a) shows the self inter-
mediate scattering function Fs(k, t) obtained from the IS time series, from which it is seen 
that (a) at high temperatures, the IS dynamics still retains a substantial component of re-
laxation that is not part of the long-time relaxation, and (b) as temperature is lowered, such 
contribution due to short time relaxation decreases, and appears to disappear at the lowest 
studied temperature. This trend can be quantified by the coefficient f(k) in eqn (3), which is 
shown in Fig. 3(b). It is seen that f(k) approaches 1 as T → Tc (Tc is estimated from relaxa-
tion times [61]), thereby providing a clear characterisation of the crossover described by 
Goldstein, and associated with the mode coupling transition temperature Tc. Recently, for 
the Kob–Andersen binary Lennard–Jones system, it has been found that the diffusivities of 
the liquid display a crossover to Arrhenius behaviour around and below the mode coupling 
temperature [74], much like the crossover seen in silica [55]. The significance of this ob-
servation needs to be evaluated by further studies, including finite size analysis. 

 A further development along these lines has been the investigation recently of the proper-
ties of saddle points to which typical configurations of a liquid map, as a function of tem- 

  
FIG. 3. (a) The self intermediate scattering function of A particles, from the time series of inherent structures, 
along with fits to the KWW stretched exponential form in eqn (3). (b) Coefficients f(k) from the KWW fits 
above vs temperature. Adapted from [61]. 
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perature [75, 76]. These studies show that the order of the saddles (i.e. the number of nega-
tive curvature directions) approaches zero at the mode coupling temperature, so that at low 
temperatures, the typical configurations of the liquid are close to minima rather than to sad-
dles. These analyses also make contact with the instantaneous normal mode approach [77, 
78], which will be discussed further later. 
 
7. Thermodynamic analysis of fragility 

Fragilities are typically calculated and compared for substances which display many differ-
ences among them, which complicates a discussion of specific differences between them 
that might be responsible for their different fragilities. A simple way, used here, to vary fra-
gility while keeping other properties the same, is to vary the density of the same liquid. For 
the ‘80:20’ binary mixture, the kinetic fragilities (eqn (9)) are obtained by calculating the 
diffusivities for a number of temperatures at fixed density, at five different densities (Fig. 
4). The approach taken to perform a thermodynamic analysis of fragility is to (test the 
validity of and) use the Adam–Gibbs relation. The methods used for calculating the con-
figurational entropy are outlined in Section 6 and in [40, 41]. Figure 5 shows the (logarithm 
of) diffusivities plotted against (TSc)

–1. The Adam–Gibbs relation predicts that the diffusivi-
ties in such a plot would fall on a straight line, which is indeed seen to be the case at each 
density. The slopes of the individual curves do not coincide, and this represents a limitation 
of the extent to which the Adam–Gibbs relation is predictive. This point will be discussed 
later. Results in Fig. 4 imply that it is reasonable to seek a connection between dynamical 
properties of a liquid and thermodynamic properties through the Adam-Gibbs relation. The 
thermodynamic fragility obtained from the average slope of TSc vs T/TK in the range where 
diffusivities are measured, is shown in Fig. 4. The thermodynamic fragilities agree with the 
kinetic fragilities (obtained from diffusivities) to quite a reasonable degree. Figure 6 shows 
the configurational entropy densities (log of the distribution Ω of minima) estimated in the 
process of calculating the configurational entropy, which shows that with increasing density 
of the liquid (a) the total number of energy minima present (quantified by (α; see eqn (14)) 
decreases, and (b) the width σ and the span of the distribution (2σα1/2) increase. From eqn 
(16), the span of the distribution is seen to be a key factor controlling the fragility of the 
liquid, which is borne out by the data in Fig. 6. In the case of the liquid studied, the contri-
bution from the variation of basin entropies is not substantial. However, previous analyses 
of experimental data indicate that basin entropies can vary substantially and have been  
incorporated in calculations [79–83]. Analysis of such cases where basin entropy changes 
play a significant role is desirable to substantiate results presented here. 

 

FIG. 4. Kinetic and thermodynamic fragilities calculated 
(a) from VFT fits to diffusivities, and (b) from the ex-
pression for the configurational entropy in eqn (16). 
Adapted from [41]. 
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8. The glass transition and the liquid–gas spinodal 

The glass transition represented an ultimate boundary to the liquid state, in the sense that 
while the liquid–crystal phase boundary may be ‘trespassed’ by the liquid remaining in a 
metastable state upon supercooling, such a retention of the liquid state is not possible below 
the glass transition temperature. Another such ultimate boundary is the liquid–gas spinodal, 
which is reached when a liquid is superheated or subjected to negative pressure. It is of in-
terest to understand the relationship between these two limits to the liquid state; the motiva-
tion for the analysis presented here comes from observations made in [84] where a 
threshold density was identified for a monoatomic model liquid across which the structure 
of typical IS sampled by the liquid undergoes a qualitative change, from compact structures 
at higher densities to spatially heterogeneous, ‘fissured’ structures (exhibiting system span-
ning voids) at lower densities. It is also observed that the pressure calculated for the IS dis-
plays a minimum at the threshold density identified geometrically [85]. Two speculations 
made in [84] arising from these observations were: (i) the threshold density closely ap-
proximates the T → 0 limit of the liquid–gas spinodal, and (ii) the same density also forms 
the lower density limit to glass formation. In the simplest scenario, the two loci (the glass 
transition curve in the temperature–density plane, and the liquid–gas spinodal line) repre-
senting ultimate boundaries to the liquid state approach T = 0 at the threshold density, and 
thus exhibit a complementarity in the range of densities in which they are operative. These 
ideas were tested in [40] for the ‘80:20’ binary mixture. The threshold density is located 
from the minimum of the pressure vs density curve. The liquid–gas spinodal curve is esti-
mated from (a) restricted ensemble Monte Carlo (REMC) simulations, (b) calculating the 
isothermal compressibility KT from constant temperature and volume simulations and ex- 
 

 

 

FIG. 5. The Adam–Gibbs plot of diffusivities against con-
figurational entropy. At each density, the data are well rep-
resented by straight lines, consistently with the Adam–
Gibbs prediction. Adapted from [41]. 

FIG. 6. The distribution of minima estimated from simu-
lation data following the method described in Section 7, 
represented by the configurational entropy density (see 
eqn (5)). The larger data points are averages of estimates 
from individual temperatures (shown in smaller sym-
bols). The continuous lines are Gaussian fits (eqn (14)). 
Adapted from [41]. 
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trapolating 1 0,Tk− →  (c) obtaining polynomial fits to isotherms and locating the minima of 
the curve at each temperature, and (d) from calculating the equation of state from an em-
pirical free energy function based on equilibrium simulation data (labelled ‘Therm. Int.’ in 
the figure). The details of these methods are described in [40]). The glass transition locus is 
obtained from (i) VFT fits to diffusivity data (thus a kinetic estimate) and from estimating 
the thermodynamic, ideal glass transition locus from the empirical free energy. The results 
are shown in Fig. 7, which demonstrate that the two curves intersect at a finite temperature, 
contrary the speculation in [84]. However, the density at which they intersect is indeed the 
threshold density. The simple scenario (where the two curves intersect at T = 0) has been 
obtained in a recent calculation [86], but it appears at present that such a scenario might be 
a special case. Whether the threshold density has a clearly definable significance in the gen-
eral case remains to be studied. An interesting outcome of the scenario shown in Fig. 7 is 
the prediction that a locus of ideal glass–gas mechanical instability must exist. Such a pos-
sibility is strongly supported, for example, by experimental data [87] on liquids which show 
a negatively sloped (in the pressure temperature plane) line of glass transitions, implying an 
intersection with the liquid–gas spinodal at finite temperatures. 
 
9. Related questions and future directions 

The results described above illustrate the utility of focusing attention of aspects of the en-
ergy landscape explored by the liquid in elucidating the nature of the slow down of dynam-
ics in liquids at low temperature and the glass transition. While the ability to calculate 
configurational entropy and test the Adam–Gibbs relation in recent studies has been very 
useful, as Fig. 5 illustrates, it also highlights the limitations of configurational entropy by 
itself to predict dynamical properties. In this regard, recent work [75–78] focusing on prop-
erties of saddle points, and in particular, exploration of relationship between configurational 
entropy of liquids to such more detailed descriptions [77, 78] is likely to be very fruitful. 
Since the generally accepted derivation of the Adam–Gibbs relation exists, work on these 
lines will serve to rationalise a widely employed notion. One of the important questions not 
addressed in this article is the existence of an ideal glass transition. Based on an analysis of 
inherent structure statistics, Stillinger [37] has presented an argument against the existence 
of a Kauzmann temperature. While the existence of an ideal glass transition is not relevant 

FIG. 7. Liquid–gas spinodal obtained from (a) REMC 
simulations, (b) kT, (c) polynomial fits to isotherms, and 
(d) the empirical free energy (‘Ts Therm. Int.’). The 
same curve is also shown shifted in ρ by 0.08 (‘Ts(ρ–
0.08) Therm. Int.’). The glass transition locus obtained 
from (e) VFT fits to diffusivity data, and (d) extrapola-
tion of configurational entropy to zero (‘TIG Therm. 
Int.’). Also marked (*) is the density ρ* where inherent 
structure pressure is a minimum. The zero pressure 
curve is also shown for reference. Adapted from [40]. 
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to understanding the slow dynamics in liquids per se, it is nevertheless an important ques-
tion in its own right. This argument, which relies on considerations concerning local defects 
that may occur in amorphous inherent structures, has recently been tested numerically by 
generating inherent structures for a model liquid. The results concerning defects in inherent 
structures conform to Stillinger’s description [88]. A counter to Stillinger’s argument is that 
inherent structures are not necessarily ‘suitable objects’ to discuss the possible existence of 
a thermodynamic transition. For example, notwithstanding an analogy that can be made, in-
herent structures are not equivalent to metastable states in mean-field spin models which 
display a ‘Kauzmann’ temperature. The characterisation of the appropriate analog for sys-
tems with finite range interactions, and its relation to inherent structures, are open questions 
[89, 90]. On the other hand, in the case of realistic systems, some of the results discussed 
here indicate that the inherent structure approach affords one the ability to address fairly de-
tailed questions (e.g. the fragile-to-strong crossover in silica [55] recently studied, or the 
analysis of fragility presented here) and a means to refine relevant concepts. Regarding the 
analysis of fragility, it is desirable to further establish the link between parameters quantify-
ing the energy landscape and fragility, and more importantly, to develop an understanding 
of how these parameters may be tuned in real systems. Further study of the relationship be-
tween the liquid–gas spinodal and the glass transition curve, and possible experimental veri-
fication of the glass–gas mechanical instability, constitute another direction for future work. 
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